For integers a, b, not both zero, their greatest common divisor, $\gcd(a, b)$, is the largest positive integer that divides both a and b. We first prove that $\gcd(a, b)$ is also the smallest positive integer that can be expressed as a linear combination of a, b. That is,

$$\gcd(a, b) = \min\{n \in \mathbb{N} : n = ax + by \text{ for some } x, y \in \mathbb{Z}\}.$$

For example, if $a = 4$ and $b = 6$, we can look at the table of all possible numbers of the form $ax + by = 4x + 6y$, where x, y are integers.

<table>
<thead>
<tr>
<th>x \ y</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-30</td>
<td>-24</td>
<td>-18</td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>-2</td>
<td>-26</td>
<td>-20</td>
<td>-14</td>
<td>-8</td>
<td>-2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>-1</td>
<td>-22</td>
<td>-16</td>
<td>-10</td>
<td>-4</td>
<td>2</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>-18</td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>-14</td>
<td>-8</td>
<td>-2</td>
<td>4</td>
<td>10</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
<td>-4</td>
<td>2</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>-6</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

The smallest positive integer is $2 = \gcd(4, 6)$. To see that this is true in general, suppose that the smallest positive integer of the form $ax + by$ is $n_0 = ax_0 + by_0$ and that $d = \gcd(a, b)$. We want to show that $d = n_0$. Clearly, since d divides both a, b, we have that d divides n_0, which implies that $d \leq n_0$. Next, we use the division algorithm to write $n_0 = qa + r$ and $n_0 = Qb + R$ with $0 \leq r, R < n_0$. Then, $n_0 = ax_0 + by_0$ implies that

$$r = n_0 - qa = a(x_0 - q) + by_0 \quad \text{and} \quad R = n_0 - Qb = ax_0 + b(y_0 - Q),$$

so r, R are of the form $ax + by$ for some integers x, y. Since n_0 is the smallest positive integer of this form, we see that $r = R = 0$. Therefore, n_0 is a common divisor of both a and b, hence $n_0 \leq d$.

Bezout’s identity. As a corollary of the argument above, we get the following theorem, known as Bezout’s identity.

Given integers a, b, not both zero, there exist integers x, y such that

$$ax + by = \gcd(a, b).$$

Euclidean algorithm. The Euclidean algorithm is an efficient way to compute the greatest common divisor between two integers and also to find a solution x, y to Bezout’s identity. Given integers a, b, you perform the division algorithm on a, b,

$$a = qb + r;$$

if $r = 0$, you are done; otherwise, replace a, b by b, r and perform the division algorithm again. By repeating this loop, you eventually get a remainder of 0 because the remainders are a decreasing sequence of positive integers. Essentially, the Euclidean algorithm is just repeated use of the division algorithm.

For example, if we start with $a = 92$ and $b = 78$, the Euclidean algorithm gives:

$$
\begin{align*}
92 &= 1 \cdot 78 + 14 \\
78 &= 5 \cdot 14 + 8 \\
14 &= 1 \cdot 8 + 6 \\
8 &= 1 \cdot 6 + 2 \\
6 &= 3 \cdot 2 + 0.
\end{align*}
$$

We stop when we finally get a remainder of 0.

As a first application of the Euclidean algorithm, we get the following theorem.

The last nonzero remainder in the Euclidean algorithm on a, b is $\gcd(a, b)$.
To prove this, we note that if \(a = qb + r \), then any common divisor of \(b \), \(r \) is also a divisor of \(a \); in addition, if \(r = a - qb \), then any common divisor of \(a \), \(b \) is also a divisor of \(r \). Therefore, anytime the division algorithm is invoked, we have \(\gcd(a, b) = \gcd(b, r) \). Suppose now that the Euclidean algorithm on \(a \), \(b \) is given by

\[
\begin{align*}
 a &= q_1 b + r_1 \\
 b &= q_2 r_1 + r_2 \\
 r_1 &= q_3 r_2 + r_3 \\
 &\vdots \\
 r_{n-2} &= q_n r_{n-1} + r_n \\
 r_{n-1} &= q_{n+1} r_n + 0.
\end{align*}
\]

Repeated use of the fact proved above yields

\[
\gcd(a, b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \gcd(r_2, r_3) = \cdots = \gcd(r_{n-1}, r_n).
\]

Since the final division shows that \(r_n \) is a divisor of \(r_{n-1} \), we conclude that

\[
\gcd(a, b) = \gcd(r_{n-1}, r_n) = \gcd(a, b).
\]

In the example above, we conclude that \(\gcd(92, 78) = \gcd(78, 14) = \gcd(14, 8) = \gcd(6, 2) = 2 \).

As a second application of the Euclidean algorithm, we find a solution \(x, y \) to \(ax + by = \gcd(a, b) \). Starting at the second-to-last equation in the Euclidean algorithm, we solve for each of the remainders and then systematically perform substitutions. The easiest way to show this is with an example. For \(a = 92 \) and \(b = 78 \), we do the Euclidean algorithm as above and then solve for the remainders to get

\[
\begin{align*}
 2 &= 8 - 6 \\
 6 &= 14 - 8 \\
 8 &= 78 - 5 \cdot 14 \\
 14 &= 92 - 78.
\end{align*}
\]

Substituting the second equation into the first and then collecting like terms gives us

\[
2 = 8 - 6 = 8 - (14 - 8) = -14 + 2 \cdot 8.
\]

Substituting the third equation into this new one gives us

\[
2 = -14 + 2 \cdot 8 = -14 + 2(78 - 5 \cdot 14) = 2 \cdot 78 - 11 \cdot 14.
\]

Finally, substituting the fourth equation into the new one gives us

\[
2 = 2 \cdot 78 - 11 \cdot 14 = 2 \cdot 78 - 11(92 - 78) = -11 \cdot 92 + 13 \cdot 78.
\]

Therefore \(x = -11 \) and \(y = 13 \) is a solution to \(92x + 78y = \gcd(92, 78) \). Indeed, \(92 \cdot -11 + 78 \cdot 13 = 1012 \) and \(78 \cdot 13 = 1014 \), so \(92(-11) + 78(13) = 2 \).

We conclude this section with three statements, which will be proved in the exercises.

1. If \(D \) is a common divisor of \(a \), \(b \), then \(D \) is a divisor of \(\gcd(a, b) \).
2. If \(M \) is a common multiple of \(a \), \(b \), then \(M \) is a multiple of \(\text{lcm}(a, b) \).
3. For any integers \(a \), \(b \), not both zero, \(ab = \gcd(a, b) \cdot \text{lcm}(a, b) \).

In particular, to find the least common multiple of two integers \(a \), \(b \), first use the Euclidean algorithm to find the greatest common divisor, say \(d = \gcd(a, b) \). The third statement in the list will mean that \(\text{lcm}(a, b) = \frac{ab}{d} \), which you can easily compute as \(\frac{a}{d} \cdot b \) or \(\frac{b}{d} \cdot a \). For example,

\[
\text{lcm}(92, 78) = \frac{92}{2} \cdot 78 = 46 \cdot 78 = 3588.
\]
Exercises

1. For each of the following, perform the Euclidean algorithm on \(a, b \), find \(\gcd(a, b) \) and \(\text{lcm}(a, b) \), and find a solution \(x, y \) to \(ax + by = \gcd(a, b) \).

 (a) \(a = 1234, b = 234 \) \hspace{1cm} (d) \(a = 121, b = 23 \)

 (b) \(a = 505, b = 75 \) \hspace{1cm} (e) \(a = 3873, b = 2532 \)

 (c) \(a = 201, b = 44 \) \hspace{1cm} (f) \(a = 21, b = 13 \)

2. Let \(a, b \) be nonzero integers with \(d = \gcd(a, b) \) and suppose that \(x = x_0 \) and \(y = y_0 \) is a solution to \(ax + by = d \). Verify that

\[
x = x_0 + \frac{b}{d}k \quad \text{and} \quad y = y_0 - \frac{a}{d}k
\]

is also a solution to \(ax + by = d \), no matter what integer \(k \) is used.

3. For this problem, let \(a, b \) be nonzero integers with \(d = \gcd(a, b) \) and \(m = \text{lcm}(a, b) \). We will prove the three statements at the end of the section.

 (a) If \(D \) is a common divisor of both \(a \) and \(b \), prove that \(D \) is a divisor of \(d \).

 (Hint: use Bezout’s identity to write \(ax + by = d \) for some integers \(x \) and \(y \).)

 (b) If \(M \) is a common multiple of both \(a \) and \(b \), prove that \(M \) is a multiple of \(m \).

 (Hint: use the division algorithm to write \(M = qm + r \); then show that \(r \) must be a common multiple of \(a \) and \(b \); we know that \(r = 0 \) or that \(0 < r < m \); explain why it is impossible that \(0 < r < m \); conclude that \(r = 0 \).)

 (c) Prove that \(ab \geq dm \).

 (Hint: show that \(\frac{ab}{d} \) is a common multiple of both \(a \) and \(b \); then conclude that \(\frac{ab}{d} \) is greater than or equal to the least common multiple. Why does this give the inequality desired?)

 (d) Prove that \(ab \leq dm \).

 (Hint: use Bezout’s identity to write \(ax + by = d \) for some integers \(x, y \); then multiply both sides by \(m \); explain by the left-hand side is divisible by \(ab \); then conclude that the right-hand side must be divisible by \(ab \). Why does this give the inequality desired?)
Answers

1. (a) \(\gcd(1234, 234) = 2 \), \(\text{lcm}(1234, 234) = 144, 378 \), and \(1234(11) + 234(-58) = 2 \).

(b) \(\gcd(505, 75) = 5 \), \(\text{lcm}(505, 75) = 7575 \), and \(505(-4) + 75(27) = 5 \).

(c) \(\gcd(201, 44) = 1 \), \(\text{lcm}(201, 44) = 8844 \), and \(201(-7) + 44(32) = 1 \).

(d) \(\gcd(121, 23) = 1 \), \(\text{lcm}(121, 23) = 2783 \), and \(121(4) + 23(-21) = 1 \).

(e) \(\gcd(3873, 2532) = 3 \), \(\text{lcm}(3873, 2532) = 3, 268, 812 \), and \(3873(287) + 2532(-439) = 3 \).

(f) \(\gcd(21, 13) = 1 \), \(\text{lcm}(21, 13) = 273 \), and \(21(5) + 13(-8) = 1 \).

2. We assume that \(x = x_0, y = y_0 \) is a solution to \(ax + by = d \), i.e., that \(ax_0 + by_0 = d \). For \(x = x_0 + \frac{b}{d} k \) and \(y = y_0 - \frac{a}{d} k \), we get

\[
ax + by = a(x_0 + \frac{b}{d} k) + b(y_0 - \frac{a}{d} k) = ax_0 + by_0 = d,
\]

so these values are solutions as well.

3. (a) Suppose that \(D \) is a common divisor of \(a, b \), i.e., that \(a = Dk \) and \(b = Dl \). Since \(d = \gcd(a, b) \), we know that there exist integers \(x, y \) such that \(ax + by = d \). Therefore,

\[
(Dk)x + (Dl)y = d \quad \rightarrow \quad D(kx + \ell y) = d,
\]

so \(D \) is a divisor of \(d \).

(b) Suppose that \(M \) is a common multiple of \(a, b \). Since \(m \) is the least common multiple, we know that \(m \leq M \). We use the division algorithm to write \(M = qm + r \). We can write \(M = ka \) and \(m = \ell a \), so

\[
r = M - qm = ka - q\ell a = (k - q\ell)a,
\]

so \(r \) is a multiple of \(a \). We can also write \(M = rb \) and \(m = sb \), so

\[
r = M - qm = rb - qsb = (r - qs)b,
\]

so \(r \) is a multiple of \(b \). If \(0 < r < m \), then \(r \) is a common multiple of \(a, b \) which is smaller than the least common multiple, which is impossible. Therefore, \(r = 0 \), so \(M = qm \), which means that \(M \) is a multiple of \(m \).

(c) We can write \(a = dk \) and \(b = dl \). Then

\[
\frac{ab}{d} = \frac{(dk)b}{d} = kb \quad \text{and} \quad \frac{ab}{d} = \frac{a(dl)}{d} = al.
\]

So \(\frac{ab}{d} \) is a common multiple of \(a, b \). Since \(m \) is the least common multiple, we know that \(\frac{ab}{d} \geq m \). Multiplying both sides by the positive integer \(d \) gives us the inequality \(ab \geq dm \).

(d) We use Bezout’s identity to write \(ax + by = d \) for some integers \(x, y \). Then we multiply both sides by \(m \) to get \(amx + bmy = dm \). We know that \(m = ka \) and \(m = \ell b \) for some integers \(k, \ell \). If we substitute \(m = \ell b \) into the first instance and \(m = ka \) into the second instance, we get

\[
a(\ell b)x + b(ka)y = dm \quad \rightarrow \quad ab(\ell x + ky) = dm.
\]

Therefore, \(ab \) is divisible by \(dm \), so \(ab \geq dm \).