Perspectives on Inference for Restricted Stochastic Dominance

David M. Kaplan
University of Missouri

BU Econometrics Seminar
23 Oct 2020
Prologue

Defining “Better”
“Better”?

Two distributions (of earnings, productivity, ...)

Which is “better”?
“Better”?

Two distributions (of earnings, productivity, ...)

Which is “better”?

► Would you prefer to (live there, buy this, use that, ...?)
“Better”?

2 PDFs
“Better”?

2 CDFs
I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$
Expected Utility

I prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for your $u(\cdot)$
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$
You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$
All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$
Expected Utility

I prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for all $u(\cdot)$

Most prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for $u \in \mathcal{U}$

All: first-order stochastic dominance (SD$_1$)

Most: utility restricted stochastic dominance (SD$_U$) (thanks to Tim Armstrong)

includes second-order SD (etc.)
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$

Most prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for $u \in U$

All: first-order stochastic dominance (SD$_1$)

Most: utility restricted stochastic dominance (SD$_U$)
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$
You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$
All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$
Most prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for $u \in \mathcal{U}$

All: first-order stochastic dominance (SD_1)
Most: utility restricted stochastic dominance ($SD_\mathcal{U}$)
(thanks to Tim Armstrong)
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$

Most prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for $u \in \mathcal{U}$

All: first-order stochastic dominance (SD_1)

Most: utility restricted stochastic dominance ($SD_\mathcal{U}$)

(thanks to Tim Armstrong)

includes second-order SD (etc.)
CDFs (Atkinson, 1987, §1)

Poverty line: v
Headcount poverty: $F_Y(v)$ and $F_Z(v)$
CDFs (Atkinson, 1987, §1)

Poverty line: v

Headcount poverty: $F_Y(v)$ and $F_Z(v)$

Me: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for my v

You: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for your v

All: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for all v

Most: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for $v \in \mathcal{V}$
CDFs (Atkinson, 1987, §1)

Poverty line: \(v \)

Headcount poverty: \(F_Y(v) \) and \(F_Z(v) \)

Me: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for my \(v \)

You: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for your \(v \)

All: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for all \(v \)

Most: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for \(v \in \mathcal{V} \)

All: first-order stochastic dominance (SD\(_1\))

Most: CDF restricted stochastic dominance (SD\(_\mathcal{V}\))

Condition I of Atkinson (1987, p. 751)
Brief Tangent: Economic Inequality

Literature on measuring inequality, comparing distributions

Similar issue (me/you/all/most), like

- ϵ of Atkinson (1970, p. 257)
- α of Cowell and Flachaire (2017, §4.3)
Inference

Learning from Data
Literature: Testing

Two features in common:

- Single H_0: all-or-nothing
- CDF-based

Barrett and Donald (2003), many others

Good for testing economic theory that implies SD_1 H_0: Y non-$SD_1 Z$ (H_1: Y $SD_1 Z$)

Davidson and Duclos (2013)

Want stronger evidence for SD_1 (analog: H_0: $\beta = 0$)

Actually $SD_{[v_1, v_2]}$
Two features in common:

- Single H_0: all-or-nothing
- CDF-based

$H_0: Y \ SD_1 \ Z$ (or SD_2, \ldots)

- 1-sided Kolmogorov–Smirnov
- Barrett and Donald (2003), many others
- Good for testing economic theory that implies SD_1
Literature: Testing

Two features in common:

- Single H_0: all-or-nothing
- CDF-based

H_0: $Y \ SD_1 \ Z$ (or SD_2, \ldots)

- 1-sided Kolmogorov–Smirnov
- Barrett and Donald (2003), many others
- Good for testing economic theory that implies SD_1

H_0: $Y \ nonSD_1 \ Z$ ($H_1: Y \ SD_1 \ Z$)

- Davidson and Duclos (2013)
- Want stronger evidence for SD_1 (analog: $H_0: \beta = 0$)
- Actually $SD_{[v_1,v_2]}$
New Perspectives

Single H_0 Multiple testing

- Goldman and Kaplan (2018)
- $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- Learn about $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$ ($Y \text{ SD}_\mathcal{V} Z$)
New Perspectives

Single H_0 Multiple testing

- Goldman and Kaplan (2018)
- $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- Learn about $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$ (Y SD\mathcal{V} Z)

CDF-based Utility-based

- Draft circulated for this talk
- $H_{0u}: \mathbb{E}[u(Y)] \leq \mathbb{E}[u(Z)]$ for each $u \in \mathcal{U}$
- Learn about $\mathcal{D} \equiv \{u : \mathbb{E}[u(Y)] > \mathbb{E}[u(Z)]\}$ (Y SD\mathcal{D} Z)
Examples (**distcomp** in Stata)
Examples (distcomp RDD)
Examples (distcomp experiment)
Examples (CDF)

Monthly earnings (1980 USD)

Empirical CDF

GK reject
Non-urban
Urban

Empirical CDF

0.0 0.2 0.4 0.6 0.8 1.0

Monthly earnings (1980 USD)

0 500 1000 1500 2000 2500 3000
Examples (utility)

inner 95% CS for higher expected utility (urban > non–urban)
Multiple Testing Goal

Multiple testing procedure (MTP)

- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$
- $\mathcal{V}^C = \{v : H_{0v} \text{ is true}\}$
Multiple Testing Goal

Multiple testing procedure (MTP)

- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$
- $\mathcal{V}^C = \{v : H_{0v} \text{ is true}\}$

Familywise error rate (FWER)

- FWER $\equiv P(\text{reject any true } H_{0v})$
- “Weak control”: FWER $\leq \alpha$ if $\mathcal{V}^C = \mathbb{R}$ (all H_{0v} true)
- “Strong control”: FWER $\leq \alpha$ regardless
Multiple Testing Goal

Multiple testing procedure (MTP)
- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$
- $\mathcal{V}^c = \{v : H_{0v} \text{ is true}\}$

Familywise error rate (FWER)
- FWER $\equiv P(\text{reject any true } H_{0v})$
- “Weak control”: FWER $\leq \alpha$ if $\mathcal{V}^c = \mathbb{R}$ (all H_{0v} true)
- “Strong control”: FWER $\leq \alpha$ regardless

Expected utility version
- Test $H_{0u}: E[u(Y)] \leq E[u(Z)]$ for each $u \in \mathcal{U}$
- Strong control of FWER
MTP vs. All-or-Nothing Test

If $H_0: Y SD_1 Z$ rejected:

- MTP shows where/why (which v or u)
MTP vs. All-or-Nothing Test

If $H_0: Y \ SD_1 \ Z$ rejected:
 ▶ MTP shows where/why (which v or u)

If $H_0: Y \ SD_1 \ Z$ not rejected:
 ▶ MTP shows evidence favoring $Y \ SD_1 \ Z$ vs. just uncertainty
 ▶ “Reject $H_0: Z \ SD_1 \ Y$” is a crude version of this idea
 ▶ Non-rejection may be type II error if small sample, etc.
Confidence Sets (CDF)

\[\mathcal{V} \equiv \{ v : F_Y(v) < F_Z(v) \} \]

“Inner” CS: \(1 - \alpha \leq P(\hat{\mathcal{V}} \subseteq \mathcal{V}) \)

- Invert MTP of \(H_{0v} : F_Y(v) \geq F_Z(v) \) (\(H_{0v} : v \notin \mathcal{V} \))
- \(\hat{\mathcal{V}} = \{ v : H_{0v} \text{ rejected} \} \)
- \(P(\hat{\mathcal{V}} \subseteq \mathcal{V}) = P(\text{reject only false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)
Confidence Sets (CDF)

\[V \equiv \{ v : F_Y(v) < F_Z(v) \} \]

“Inner” CS: \(1 - \alpha \leq P(\hat{V} \subseteq V) \)

- Invert MTP of \(H_{0v} : F_Y(v) \geq F_Z(v) \) \((H_{0v} : v \notin V) \)
- \(\hat{V} = \{ v : H_{0v} \) rejected}\)
- \(P(\hat{V} \subseteq V) = P(\text{reject only false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)

“Outer” CS: \(1 - \alpha \leq P(\hat{V} \supseteq V) \)

- Invert MTP of \(H_{0v} : F_Y(v) < F_Z(v) \) \((H_{0v} : v \in V) \)
- \(\hat{V} = \{ v : H_{0v} \) not rejected}\)
- \(P(\hat{V} \supseteq V) = P(\text{reject only false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)
Confidence Sets (CDF)

\[\mathcal{V} \equiv \{ v : F_Y(v) < F_Z(v) \} \]

“Inner” CS: \(1 - \alpha \leq \Pr(\hat{\mathcal{V}} \subseteq \mathcal{V}) \)

- Invert MTP of \(H_{0v} : F_Y(v) \geq F_Z(v) \) (\(H_{0v} : v \notin \mathcal{V} \))
- \(\hat{\mathcal{V}} = \{ v : H_{0v} \text{ rejected} \} \)
- \(\Pr(\hat{\mathcal{V}} \subseteq \mathcal{V}) = \Pr(\text{reject only false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)

“Outer” CS: \(1 - \alpha \leq \Pr(\hat{\mathcal{V}} \supseteq \mathcal{V}) \)

- Invert MTP of \(H_{0v} : F_Y(v) < F_Z(v) \) (\(H_{0v} : v \in \mathcal{V} \))
- \(\hat{\mathcal{V}} = \{ v : H_{0v} \text{ not rejected} \} \)
- \(\Pr(\hat{\mathcal{V}} \supseteq \mathcal{V}) = \Pr(\text{reject only false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)

“2-sided” CS: \(1 - \alpha \leq \Pr(\hat{\mathcal{V}}_1 \subseteq \mathcal{V} \subseteq \hat{\mathcal{V}}_2) \)

- Combine \(1 - \alpha/2 \) inner \& outer (Bonferroni)
Confidence Sets (Expected Utility)

Same arguments but with \mathcal{D} instead of \mathcal{V}

$\mathcal{D} \equiv \{ u(\cdot) : E[u(Y)] > E[u(Z)] \}$

“Inner” CS: $1 - \alpha \leq P(\hat{\mathcal{D}} \subseteq \mathcal{D})$

- Invert MTP of $H_{0u}: E[u(Y)] \leq E[u(Z)]$ \hspace{1em} ($H_{0u}: u \notin \mathcal{D}$)
- $\hat{\mathcal{D}} = \{u : H_{0u} \text{ rejected}\}$
- $P(\hat{\mathcal{D}} \subseteq \mathcal{D}) = P(\text{reject only false } H_{0u}) = 1 - \text{FWER} \geq 1 - \alpha$

“Outer” CS: $1 - \alpha \leq P(\hat{\mathcal{D}} \supseteq \mathcal{D})$

- Invert MTP of $H_{0u}: E[u(Y)] > E[u(Z)]$ \hspace{1em} ($H_{0u}: u \in \mathcal{D}$)
- $\hat{\mathcal{D}} = \{u : H_{0u} \text{ not rejected}\}$
- $P(\hat{\mathcal{D}} \supseteq \mathcal{D}) = P(\text{reject only false } H_{0u}) = 1 - \text{FWER} \geq 1 - \alpha$
CS/MTP from Uniform Confidence Band

Uniform confidence band for $\Delta(\cdot) \implies$ CS/MTP

$\Delta(v) \equiv F_Z(v) - F_Y(v)$ \hspace{1cm} $\mathcal{V} = \{ v : \Delta(v) > 0 \}$

$\Delta(u) \equiv E[u(Y)] - E[u(Z)]$ \hspace{1cm} $\mathcal{D} = \{ u : \Delta(u) > 0 \}$

- Inner CS: values where lower band above zero
- Outer CS: values where upper band above zero
- MTP: equivalent to CS like before

Availability

- CDF diff: asymptotic band, but finite-sample CS/MTP

Information vs. comprehension

- EU band more informative, CS/MTP easier to comprehend
CS/MTP from Uniform Confidence Band

Uniform confidence band for $\Delta(\cdot) \implies$ CS/MTP

- $\Delta(v) \equiv F_Z(v) - F_Y(v)$ \hspace{1cm} $\mathcal{V} = \{v : \Delta(v) > 0\}$
- $\Delta(u) \equiv E[u(Y)] - E[u(Z)]$ \hspace{1cm} $\mathcal{D} = \{u : \Delta(u) > 0\}$
- Inner CS: values where lower band above zero
- Outer CS: values where upper band above zero
- MTP: equivalent to CS like before

Availability

- CDF diff: asymptotic band, but finite-sample CS/MTP

Information vs. comprehension

- EU band more informative, CS/MTP easier to comprehend
Utility-based CS/MTP

inner 95% CS for higher expected utility (urban > non-urban)
Details

Theoretical & Otherwise
CDF: KS vs. Probability Integral Transform

Kolmogorov–Smirnov MTP/CS

- Reject H_{0v} when $\hat{F}_Y(v) - \hat{F}_Z(v)$ exceeds KS critical value
- Prop. 3 of Goldman and Kaplan (2018)

KS: well-known low tail power

- \texttt{ks.test(c(1:15/21,10^6+1:5),punif)}

 D = 0.25, p-value = 0.1376
CDF: KS vs. Probability Integral Transform

Kolmogorov–Smirnov MTP/CS

- Reject H_{0v} when $\hat{F}_Y(v) - \hat{F}_Z(v)$ exceeds KS critical value
- Prop. 3 of Goldman and Kaplan (2018)

KS: well-known low tail power

- `ks.test(c(1:15/21,10^6+1:5),punif)`

 D = 0.25, p-value = 0.1376

If cts, $F_Y(Y_i) \sim \text{Unif}(0, 1)$

- Retain finite-sample properties
- Power more even than KS across distribution
- Goldman and Kaplan (2018): two-sample MTP, RDD, computation
CDF: KS vs. Probability Integral Transform

![Graph showing CDF comparison between KS and Probability Integral Transform](image)

- The x-axis represents time (t)
- The y-axis represents the transformed values (B(t))
- The graph compares the KS and Probability Integral Transform methods across various time points.

23
CDF: KS vs. Probability Integral Transform

![Plot showing CDF comparison]

- **Dirichlet**
- **KS**
- **Weighted KS**
CDF: KS vs. Probability Integral Transform

Pointwise type I error, nx=ny=40, Fx=Fy=Unif(0,1)

X (or Y)
Rejection probability

Dirichlet KS
CDF: KS vs. Probability Integral Transform

![Graph showing CDF comparison between Dirichlet and KS distributions.](image)
Expected Utility: Asymptotics

\[\Delta(v) \equiv F_Z(v) - F_Y(v) = E[1 \{ Z \leq v \}] - E[1 \{ Y \leq v \}] \]

\[\{ f_v(\cdot) : f_v(t) = 1 \{ t \leq v \}, v \in \mathbb{R} \} \text{ is Donsker} \]

\[\hat{\Delta}(\cdot) : \text{Gaussian limit} \]

\[\Delta(u) \equiv E[u(Y)] - E[u(Z)] \]

\[\hat{\Delta}(\cdot) : \text{Gaussian limit and bootstrap consistency if Donsker } \mathcal{U} \]
Expected Utility: Asymptotics

\[\Delta(v) \equiv F_Z(v) - F_Y(v) = E[1\{Z \leq v\}] - E[1\{Y \leq v\}] \]

- \{f_v(\cdot) : f_v(t) = 1\{t \leq v\}, v \in \mathbb{R}\} is Donsker
- \hat{\Delta}(\cdot): Gaussian limit

\[\Delta(u) \equiv E[u(Y)] - E[u(Z)] \]

- \hat{\Delta}(\cdot): Gaussian limit and bootstrap consistency if Donsker \(\mathcal{U} \)

Cor. 3.1 of van der Vaart (1996): \(\mathcal{U} \) Donsker if

- non-decreasing
- bounded from below (or above)
- \(2 + \delta \) moments of envelope function
Expected Utility: MTP

\[H_{0u}: \Delta(u) \equiv E[u(Y)] - E[u(Z)] \leq 0, \text{ each } u \in U \]

Compute pointwise \(t \)-statistics \(\hat{T}_u = \frac{\Delta(u)}{\hat{SE}_u} \)

Bootstrap cv: \(1 - \alpha \) quantile of \(\sup_{u \in U} \hat{T}_u \mid \text{all } \Delta(u) = 0 \)

FWER = \(P(\text{reject any true}) \leq P(\sup_{u} \hat{T}_u > \text{cv}) \rightarrow \alpha \)
Expected Utility: MTP

\[H_{0u} : \Delta(u) \equiv E[u(Y)] - E[u(Z)] \leq 0, \text{ each } u \in \mathcal{U} \]

Compute pointwise t-statistics \(\hat{T}_u = \frac{\hat{\Delta}(u)}{\hat{SE}_u} \)

Bootstrap cv: \(1 - \alpha \) quantile of \(\sup_{u \in \mathcal{U}} \hat{T}_u \mid \text{all } \Delta(u) = 0 \)

FWER = \(P(\text{reject any true}) \leq P(\sup_u \hat{T}_u > cv) \to \alpha \)

Stepdown (Holm, 1979)

\[\leq \text{maybe very conservative if many } \Delta(u) > 0 \]
\[\Rightarrow \text{Re-compute bootstrap cv using only non-rejected } u \]
\[\Rightarrow \text{Iterate: bounded by oracle test using true } \{u : H_{0u} \text{ true}\} \]

Can also pre-test to remove \(\hat{\Delta}(u) \ll 0, \text{ etc.} \)
Expected Utility: CS

Invert MTP to get CS
Simulation

Performance of New Methods
Setup

\[Y_i \overset{iid}{\sim} \log N(0, 1) + 0.1, \ i = 1, \ldots, n \]

\[Z_i \overset{iid}{\sim} \log N(\mu, \sigma) + 0.1, \ i = 1, \ldots, n \]

\(\mathcal{U} \): CRRA w/ risk aversion \(\theta \in [0, 3] \)

Band for \(\Delta(u) = \mathbb{E}[u(Y)] - \mathbb{E}[u(Z)] \)

► Equivalently: \(\Delta(\theta) \) on \(\theta \in [0, 3] \)

CSs for \(\mathcal{D} \equiv \{ u(\cdot) : \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)] \} \)

► Equivalently: \(\mathcal{D} \) is subset of \(\theta \in [0, 3] \)
Results: $n = 40$

<table>
<thead>
<tr>
<th>σ</th>
<th>μ</th>
<th>${\theta : u_\theta \in D}$</th>
<th>Coverage $(1 - \alpha = 0.9)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>band</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.873</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.865</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.855</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.920</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.938</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.922</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.896</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.883</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.861</td>
</tr>
</tbody>
</table>
Results: $n = 100$

<table>
<thead>
<tr>
<th>σ</th>
<th>μ</th>
<th>${\theta : u_\theta \in D}$</th>
<th>Coverage ($1 - \alpha = 0.9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.907 0.968 0.975 0.993</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.897 0.977 0.993 0.984</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.908 0.999 0.999 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.934 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.929 0.965 0.965 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.922 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.901 0.974 0.979 0.995</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.900 0.983 0.987 0.996</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.887 0.964 0.992 0.972</td>
</tr>
</tbody>
</table>
Results: $n = 250$

<table>
<thead>
<tr>
<th>σ</th>
<th>μ</th>
<th>${\theta : u_\theta \in D}$</th>
<th>Coverage ($1 - \alpha = 0.9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.920 0.978 0.983 0.995</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.912 0.981 0.995 0.986</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.893 0.998 0.998 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.920 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.937 0.968 0.968 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.942 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.927 0.976 0.978 0.998</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.902 0.979 0.988 0.991</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.892 0.974 0.994 0.980</td>
</tr>
</tbody>
</table>
Epilogue

Past & Future
Conclusion

“Better”: restricted stochastic dominance based on
▶ CDF
▶ Expected utility

Inference on set of:
▶ values with lower CDF
▶ utility functions with higher expected utility

Future:
▶ non-iid, improve power, implement richer utility family
▶ economic inequality
▶ restricted stochastic monotonicity
▶ other ideas?

Thank you / further questions & comments welcome
Conclusion

“Better”: restricted stochastic dominance based on
- CDF
- Expected utility

Inference on set of:
- values with lower CDF
- utility functions with higher expected utility

Future:
- non-iid, improve power, implement richer utility family
- economic inequality
- restricted stochastic monotonicity
- other ideas?
Conclusion

“Better”: restricted stochastic dominance based on
- CDF
- Expected utility

Inference on set of:
- values with lower CDF
- utility functions with higher expected utility

Future:
- non-iid, improve power, implement richer utility family
- economic inequality
- restricted stochastic monotonicity
- other ideas?

Thank you / further questions & comments welcome
References I

References II

References III
