Smoothed IV quantile regression and quantile Euler equations

David M. Kaplan
University of Missouri

Coauthors: Luciano de Castro (Iowa), Antonio F. Galvao (Arizona), Xin Liu (Missouri), Yixiao Sun (UCSD)
Outline

1. Consumption Euler equations
2. Smoothed IV quantile regression (SIVQR)
3. Results
4. Conclusion
Standard consumption Euler equation

- Expected utility maximization, \(U(C) = C^{1-\gamma}/(1 - \gamma) \):

\[
0 = \mathbb{E}[\beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t],
\]

\(\Omega_t \): information set at time \(t \)
\(R_{t+1} \): real rate of return of asset
\(C_t \): real consumption at time \(t \)
\(\beta \): discount factor (e.g., \(\beta = 0.99 \))
\(1/\gamma \): elasticity of intertemporal substitution (EIS)

- Estimation: use variables in \(\Omega_t \) as instruments (inflation, etc.); run GMM, or IV/2SLS after log-linearization
Standard consumption Euler equation

- Expected utility maximization, $U(C) = C^{1-\gamma}/(1 - \gamma)$:

\[
0 = \mathbb{E}[\beta (1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t],
\]

- Ω_t: information set at time t
- R_{t+1}: real rate of return of asset
- C_t: real consumption at time t
- β: discount factor (e.g., $\beta = 0.99$)
- $1/\gamma$: elasticity of intertemporal substitution (EIS)

- Estimation: use variables in Ω_t as instruments (inflation, etc.); run GMM, or IV/2SLS after log-linearization

- Drawback: no separation of EIS ($1/\gamma$) and risk aversion (γ)

- Drawback: approximation error from log-linearization
Quantile Euler equation?

- Standard: \(0 = \mathbb{E}[\beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t] \)
- Replace \(\mathbb{E}[\cdot | \Omega_t] \) with conditional \(\tau \)-quantile \(Q_\tau[\cdot | \Omega_t] \):
 \[
 0 = Q_\tau[\beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t]
 \]
Quantile Euler equation?

- Standard: \(0 = \mathbb{E}[\beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t] \)
- Replace \(\mathbb{E}[\cdot | \Omega_t] \) with conditional \(\tau \)-quantile \(Q_\tau[\cdot | \Omega_t] \):
 \[
 0 = Q_\tau[\beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t]
 \]

- Advantage: \(1/\gamma \) is EIS, but both \(\tau \) and \(\gamma \) capture risk attitude
- Advantage: \(\ln(Q_\tau(W)) = Q_\tau(\ln(W)) \), no error
- Advantage: robust to fat tails in consumption
- Application: economically reasonable estimates even when 2SLS unreasonable
Quantile Euler equation?

- Standard: \(0 = \mathbb{E}[\beta (1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t] \)
- Replace \(\mathbb{E}[\cdot | \Omega_t] \) with conditional \(\tau \)-quantile \(Q_\tau[\cdot | \Omega_t] \):
 \[
 0 = Q_\tau[\beta (1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma} - 1 | \Omega_t]
 \]
- Advantage: \(1/\gamma \) is EIS, but both \(\tau \) and \(\gamma \) capture risk attitude
- Advantage: \(\ln(Q_\tau(W)) = Q_\tau(\ln(W)) \), no error
- Advantage: robust to fat tails in consumption
- Application: economically reasonable estimates even when 2SLS unreasonable
- Grounded in decision theory? (next slide)
- Practical to estimate? (SIVQR)
Quantile Euler equation: decision theory

- Quantile utility maximization, static setting: Manski (1988), Chambers (2009), and Rostek (2010) (axiomatization)
- Dynamic setting: de Castro and Galvao (2017) show dynamic consistency and derive Euler equation
Quantile Euler equation: estimation

- Can write as $Q_{\tau}[\epsilon_{t+1} \mid \Omega_t] = 1$, $\epsilon_{t+1} \equiv \beta(1 + R_{t+1})(C_{t+1}/C_t)^{-\gamma}$
- Since $\ln(\cdot)$ is strictly increasing, $Q_{\tau}[\ln(W)] = \ln(Q_{\tau}[W])$
- In contrast, $\mathbb{E}[\ln(W)] \leq \ln(\mathbb{E}[W])$ (Jensen’s); approx error
IV quantile regression (IVQR)

- So we can just run IVQR; but...
IV quantile regression (IVQR)

Chernozhukov and Hong (2003), Figure 1(a)

Criterion for IV-QR
IV quantile regression (IVQR)

- So we can just run IVQR; but...
- Very difficult to compute IVQR estimator numerically
IV quantile regression (IVQR)

- So we can just run IVQR; but...
- Very difficult to compute IVQR estimator numerically
- Chernozhukov and Hansen (2006): iid, linear model, only 1 or 2 endogenous regressors (so can’t have many interactions, polynomial terms, etc.)
IV quantile regression (IVQR)

- So we can just run IVQR; but...
- Very difficult to compute IVQR estimator numerically
- Chernozhukov and Hansen (2006): iid, linear model, only 1 or 2 endogenous regressors (so can’t have many interactions, polynomial terms, etc.)
- Other methods (also iid): compliers/LQTE (Abadie, Angrist, and Imbens, 2002), MCMC (Chernozhukov and Hong, 2003; Lancaster and Jun, 2010), triangular system (Lee, 2007, and others), very slow MIQP (Chen and Lee, 2017)
IV quantile regression (IVQR)

- So we can just run IVQR; but...
- Very difficult to compute IVQR estimator numerically
- Kaplan and Sun (2017), smoothing: iid, linear, but fast and allows many endogenous regressors; also high-order MSE improvement, connection to 2SLS
So we can just run IVQR; but...

Very difficult to compute IVQR estimator numerically

Kaplan and Sun (2017), smoothing: iid, linear, but fast and allows many endogenous regressors; also high-order MSE improvement, connection to 2SLS

de Castro, Galvao, and Kaplan (2017): dependent data, nonlinear model; fast and robust computation, consistency and asymptotic normality

New results underway from Xin Liu: smoothed two-step GMM, computation (code) and asymptotic theory
Outline

1. Consumption Euler equations
2. Smoothed IV quantile regression (SIVQR)
3. Results
4. Conclusion
Smoothed IVQR (SIVQR): benefits

- Approach: smooth the moment conditions (estimating equations)
- Initially: use just-identified system for numerical robustness; if over-identified, just take linear combination of instruments
Smoothed IVQR (SIVQR): benefits

- **Approach:** smooth the moment conditions (estimating equations)
- **Initially:** use just-identified system for numerical robustness; if over-identified, just take linear combination of instruments
- **Benefit #1:** computation is feasible, fast, scalable (many endogenous regressors), and numerically robust
- **Benefit #2:** often improves MSE (Kaplan and Sun, 2017)
- **Benefit #3:** important first step toward true IV quantile GMM (in progress by Xin Liu)
Smoothed QR (not IV): literature

- Horowitz (1998): smooths criterion fn instead of moments; Studentized bootstrap refinement
- Whang (2006): same moment smoothing used here, but for empirical likelihood QR; also in Otsu (2008)
- Fernandes, Guerre, and Horta (2017): kernel-smoothed QR criterion; FOC same as smoothed moments above
- MaCurdy and Hong (1999): original IVQR smoothing? (unpub’d notes)
What does IVQR estimate?

- Chernozhukov and Hansen (2005): identification of (conditional) \(\tau \)-quantile treatment effects, or “structural quantile effects”
What does IVQR estimate?

- Chernozhukov and Hansen (2005): identification of (conditional) τ-quantile treatment effects, or “structural quantile effects”

- Simplistic example: linear structural random coefficient model, $Y = \mathbf{X}'\beta(U)$, assume $\mathbf{X}'\beta(U)$ monotonic in unobserved $U \sim \text{Unif}(0,1)$

- If Y is wage, U is “ability”: $\mathbf{X}'\beta(0.5)$ traces out potential wage outcomes (given different \mathbf{X}) for individual with median ability ($P(U \leq 0.5) = 0.5$)
What does IVQR estimate?

- Chernozhukov and Hansen (2005): identification of (conditional) \(\tau \)-quantile treatment effects, or “structural quantile effects”

- Simplistic example: linear structural random coefficient model, \(Y = X' \beta(U) \), assume \(X' \beta(U) \) monotonic in unobserved \(U \sim \text{Unif}(0, 1) \)

- If \(Y \) is wage, \(U \) is “ability”: \(X' \beta(0.5) \) traces out potential wage outcomes (given different \(X \)) for individual with median ability \(\left(P(U \leq 0.5) = 0.5 \right) \)

- If instrument vector \(Z \perp \perp U \), then \(P(Y \leq X' \beta(\tau) \mid Z) = P(U \leq \tau \mid Z) = P(U \leq \tau) = \tau \): a conditional quantile restriction on the observables \(Y, X, \) and \(Z \), and the parameter vector \(\beta(\tau) \)
Alternative quantile models with endogeneity

- Triangular system: compared in Chernozhukov, Hansen, and Wüthrich (2017, §2.5); like Chesher (2003), Lee (2007), et al.
- LQTE (like LATE): compared in Melly and Wüthrich (2017, §§5–6); like Abadie et al. (2002), Frölich and Melly (2013), et al.
IVQR moment conditions

\[\tau = P(Y \leq h(X, \tau) \mid Z) \]

(linear IV)

(linear IVQR)
IVQR moment conditions

\(\tau = P(Y \leq h(X, \tau) \mid Z), \quad h(X, \tau) = X'\beta_{0\tau}, \quad P(\cdot) = \mathbb{E}(1\{\cdot\}) \rightleftharpoons 0 = \mathbb{E}[Z(1\{Y - X'\beta_{0\tau} \leq 0\} - \tau)] \)
IVQR moment conditions

\[Y = h(X) + U, \quad \mathbb{E}(U \mid Z) = 0, \quad h(X) = X'\beta_0 \implies 0 = \mathbb{E}[Z(Y - X'\beta_0)] \] (linear IV)

\[\tau = P(Y \leq h(X, \tau) \mid Z), \quad h(X, \tau) = X'\beta_{0\tau}, \quad P(\cdot) = \mathbb{E}(1\{\cdot\}) \implies 0 = \mathbb{E}[Z(1\{Y - X'\beta_{0\tau} \leq 0\} - \tau)] \] (linear IVQR)
IVQR moment conditions

\[Y = h(X) + U, \quad \mathbb{E}(U \mid Z) = 0, \quad h(X) = X'\beta_0 \implies 0 = \mathbb{E}[Z(Y - X'\beta_0)], \quad \beta_0 = \left[\mathbb{E}(ZX') \right]^{-1} \mathbb{E}(ZY) \quad (\text{linear IV}) \]

\[\tau = \mathbb{P}(Y \leq h(X, \tau) \mid Z), \quad h(X, \tau) = X'\beta_{0\tau}, \quad \mathbb{P}(\cdot) = \mathbb{E}(1\{\cdot\}) \implies 0 = \mathbb{E}[Z(1\{Y - X'\beta_{0\tau} \leq 0\} - \tau)] \quad (\text{linear IVQR}) \]
Just run GMM?

Chernozhukov and Hong (2003), Figure 1(a)

Criterion for IV-QR
Smoothing the indicator function
Smoothing the indicator function
Connections: IV, Winsorized mean

\[0 = n^{-1} \sum_{i=1}^{n} Z_i \left[\tilde{I} \left(\frac{X_i' \hat{\beta}_\tau - Y_i}{h_n} \right) - \tau \right] \]

- As \(h_n \to \infty \), \(\tilde{I}(\cdot/h_n) \) approx linear:
Connections: IV, Winsorized mean

\[0 = n^{-1} \sum_{i=1}^{n} Z_i \left[\tilde{I} \left(\frac{X_i \hat{\beta}_\tau - Y_i}{h_n} \right) - \tau \right] \]

- As \(h_n \to \infty \), \(\tilde{I}(\cdot/h_n) \) approx linear:
 - IVQR
 - Smoothed IVQR
 - IV (mean)

\(h_n = 0 \) \quad \text{or} \quad h_n > 0 \quad \text{or} \quad h_n \to \infty \)
Connections: IV, Winsorized mean

\[0 = n^{-1} \sum_{i=1}^{n} Z_i \left[\tilde{I} \left(\frac{X_i \hat{\beta} - Y_i}{h_n} \right) - \tau \right] \]

- As \(h_n \to \infty \), \(\tilde{I}(\cdot/h_n) \) approx linear:
 - IVQR
 - Smoothed IVQR
 - IV (mean)

\(h_n = 0 \quad h_n > 0 \quad h_n \to \infty \)

- Can try to pick \(h_n \) to improve efficiency (like median vs. mean); maybe even better to explicitly average IVQR and IV (and QR) like Hansen (2017)?
Connections: IV, Winsorized mean

\[0 = n^{-1} \sum_{i=1}^{n} Z_i \left[\tilde{I} \left(\frac{X_i \hat{\beta}_\tau - Y_i}{h_n} \right) - \tau \right] \]

- As \(h_n \to \infty \), \(\tilde{I}(\cdot/h_n) \) approx linear:

 - IVQR
 - smoothed IVQR
 - IV (mean)

- Can try to pick \(h_n \) to improve efficiency (like median vs. mean); maybe even better to explicitly average IVQR and IV (and QR) like Hansen (2017)?

- Special case:
 \(X_i = Z_i = 1 \),
 \[\tilde{I}'(u) = \mathbb{1}\{-1 \leq u \leq 1\}/2, \]
 \(\tau = 0.5 \) \(\Rightarrow \) “Winsorized” mean (Huber, 1964, Ex. iii, p. 79)
Outline

1. Consumption Euler equations
2. Smoothed IV quantile regression (SIVQR)
3. Results
4. Conclusion
JTPA: context

- Abadie, Angrist, and Imbens (2002), 5102 adult men
- Randomized offer of services to individuals (Z_i), 62% uptake: $P(D_i = 1 \mid Z_i = 1) = 0.62$.
- Other regressors: age, race, etc.
- Endogeneity from self-selection into treatment; OLS estimate twice as big as IV est
- Y_i: 30-month earnings (US dollars) in “after” period
JTPA: results

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Method</th>
<th>0.15</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>AAI</td>
<td>121</td>
<td>702</td>
<td>1544</td>
<td>3131</td>
<td>3378</td>
</tr>
<tr>
<td>Training</td>
<td>SEE ((\hat{h}))</td>
<td>57</td>
<td>381</td>
<td>1080</td>
<td>2630</td>
<td>2744</td>
</tr>
<tr>
<td>Training</td>
<td>CH</td>
<td>-125</td>
<td>341</td>
<td>385</td>
<td>2557</td>
<td>3137</td>
</tr>
<tr>
<td>Training</td>
<td>tiny (h)</td>
<td>-129</td>
<td>500</td>
<td>381</td>
<td>2760</td>
<td>3114</td>
</tr>
<tr>
<td>Training</td>
<td>huge (h)</td>
<td>1579</td>
<td>1584</td>
<td>1593</td>
<td>1602</td>
<td>1607</td>
</tr>
<tr>
<td>Training</td>
<td>2SLS</td>
<td></td>
<td></td>
<td></td>
<td>1593</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>AAI</td>
<td>1564</td>
<td>3190</td>
<td>7683</td>
<td>9509</td>
<td>10,185</td>
</tr>
<tr>
<td>Married</td>
<td>SEE ((\hat{h}))</td>
<td>1132</td>
<td>2357</td>
<td>7163</td>
<td>10,174</td>
<td>10,431</td>
</tr>
<tr>
<td>Married</td>
<td>CH</td>
<td>504</td>
<td>2396</td>
<td>7722</td>
<td>10,463</td>
<td>10,484</td>
</tr>
<tr>
<td>Married</td>
<td>tiny (h)</td>
<td>504</td>
<td>2358</td>
<td>7696</td>
<td>10,465</td>
<td>10,439</td>
</tr>
<tr>
<td>Married</td>
<td>huge (h)</td>
<td>6611</td>
<td>6624</td>
<td>6647</td>
<td>6670</td>
<td>6683</td>
</tr>
<tr>
<td>Married</td>
<td>2SLS</td>
<td></td>
<td></td>
<td></td>
<td>6647</td>
<td></td>
</tr>
</tbody>
</table>
Quantile Euler equation estimates

- Same data, model, instruments as Yogo (2004) Table 2 (but with quantiles); “weak instruments are not a problem” (Yogo, 2004, p. 805)
- Very little smoothing (for estimation)
- β: discount factor (1 = no discount)
- $1/\gamma$: EIS, elasticity of intertemporal substitution
Quantile Euler equation estimates: UK

![Quantile Euler equation estimates graph](chart.png)
Quantile Euler equation estimates: USA

\[\hat{\beta}(\tau) \quad \Delta \quad 1/\hat{\gamma}(\tau) \]
Quantile Euler equation estimates: Netherlands

![Chart showing Quantile Euler equation estimates for Netherlands.](chart)

- **Estimate**: \(\hat{\beta}(\tau) \) and \(1/\hat{\gamma}(\tau) \)

Kaplan and: Sun, de Castro, Galvao, Liu
Quantile Euler equation estimates: Sweden

\[\widehat{\beta}(\tau) \quad \Delta \quad 1/\widehat{\gamma}(\tau) \]
Quantile Euler equation estimates

<table>
<thead>
<tr>
<th>τ</th>
<th>US</th>
<th></th>
<th>UK</th>
<th></th>
<th>NTH</th>
<th></th>
<th>SWE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>̂β_τ</td>
<td>̂γ_τ</td>
<td>̂β_τ</td>
<td>̂γ_τ</td>
<td>̂β_τ</td>
<td>̂γ_τ</td>
<td>̂β_τ</td>
<td>̂γ_τ</td>
</tr>
<tr>
<td>0.70</td>
<td>1.01</td>
<td>4.9</td>
<td>1.00</td>
<td>2.8</td>
<td>0.98</td>
<td>25.5</td>
<td>0.98</td>
<td>8.9</td>
</tr>
<tr>
<td>0.80</td>
<td>1.01</td>
<td>5.2</td>
<td>0.98</td>
<td>3.9</td>
<td>0.90</td>
<td>19.1</td>
<td>0.98</td>
<td>4.7</td>
</tr>
<tr>
<td>2SLS</td>
<td>1.08</td>
<td>16.7</td>
<td>1.03</td>
<td>6.0</td>
<td>0.96</td>
<td>−6.8</td>
<td>0.27</td>
<td>−544.4</td>
</tr>
</tbody>
</table>
Outline

1. Consumption Euler equations
2. Smoothed IV quantile regression (SIVQR)
3. Results
4. Conclusion
Conclusion

- Smoothed IVQR: fast, scalable, robust computation (and better MSE)
- First theoretical results for feasible IVQR with dependent data (and nonlinear model)
- Quantile Euler equations: decouple EIS and risk attitude, robust to fat tails, no error in log-linearization, more reasonable estimates than 2SLS (in our example)
 determination of \(\tau \)?
Conclusion

- Smoothed IVQR: fast, scalable, robust computation (and better MSE)
- First theoretical results for feasible IVQR with dependent data (and nonlinear model)
- Quantile Euler equations: decouple EIS and risk attitude, robust to fat tails, no error in log-linearization, more reasonable estimates than 2SLS (in our example)
- Thank you!
- (And further questions or comments are welcome)

References VI

