\[s_m + t_m = \sum_{n=0}^{\infty} a_n = s \implies t_m = s - s_m. \]

Let \(m \to \infty \) and use \(s_m - s \to 0 \) to obtain that \(t_m \to 0 \), as desired.

Definition 1.5.19. A complex series \(\sum_{n=0}^{\infty} a_n \) is said to be **absolutely convergent** if the series \(\sum_{n=0}^{\infty} |a_n| \) is convergent.

A well-known consequence of the completeness property of real numbers is that every bounded monotonic sequence (increasing or decreasing) converges. Since the partial sums of a series with nonnegative terms are increasing, we conclude that if these partial sums are bounded, then the series is convergent. Thus, if for a complex series we have \(\sum_{n=1}^{N} |a_n| \leq M \) for all \(N \), then the series \(\sum_{n=1}^{\infty} a_n \) is absolutely convergent.

Recall that, for series with real terms, absolute convergence implies convergence. The same is true for complex series.

Theorem 1.5.20. Absolutely convergent series are convergent, i.e., for \(a_n \in \mathbb{C} \)

\[\sum_{n=0}^{\infty} |a_n| < \infty \implies \sum_{n=0}^{\infty} a_n \text{ converges.} \]

Proof. Let \(s_n = a_0 + a_1 + \cdots + a_n \) and \(v_n = |a_0| + |a_1| + \cdots + |a_n| \). By Theorem 1.5.11, it is enough to show that the sequence of partial sums \(\{s_n\}_{n=0}^{\infty} \) is Cauchy.

For \(n > m \geq 0 \), using the triangle inequality, we have

\[|s_n - s_m| = \left| \sum_{j=m+1}^{n} a_j \right| \leq \sum_{j=m+1}^{n} |a_j| = v_n - v_m. \]

Since \(\sum_{n=0}^{\infty} |a_n| \) converges, the sequence \(\{v_n\}_{n=0}^{\infty} \) converges and hence it is Cauchy. Thus, given \(\epsilon > 0 \) we can find \(N \) so that, \(v_n - v_m < \epsilon \) for \(n > m \geq N \), implying that \(|s_n - s_m| < \epsilon \) for \(n > m \geq N \). Hence \(\{s_n\}_{n=0}^{\infty} \) is a Cauchy sequence.

For a complex series \(\sum_{n=0}^{\infty} a_n \), consider the series \(\sum_{n=0}^{\infty} |a_n| \) whose terms are real and nonnegative. If we can establish the convergence of the series \(\sum_{n=0}^{\infty} |a_n| \) using one of the tests of convergence for series with nonnegative terms, then using Theorem 1.5.20, we can infer that the series \(\sum_{n=0}^{\infty} a_n \) is convergent. Thus, all known tests of convergence for series with nonnegative terms can be used to test the (absolute) convergence of complex series. We list a few such convergence theorems.

Theorem 1.5.21. Suppose that \(a_n \) are complex numbers, \(b_n \) are real numbers, \(|a_n| \leq b_n \) for all \(n \geq n_0 \), and \(\sum_{n=0}^{\infty} b_n \) is convergent. Then \(\sum_{n=0}^{\infty} a_n \) is absolutely convergent.

Proof. By the comparison test for real series, we have that \(\sum_{n=0}^{\infty} |a_n| \) is convergent. By Theorem 1.5.20, it follows that \(\sum_{n=0}^{\infty} a_n \) is convergent.