The limitations of the structural information in the normal mass spectrum can be partly offset by special mass-spectral techniques. Although a complete description of these is beyond the scope of this book, you should have a basic familiarity with their capabilities.

6.1 Soft ionization methods

Low-energy electron ejection. Lowering the energy of the bombarding electrons (e.g., to 15 eV) will also lower the average (but not the minimum) internal energy of the molecular ions. Such low-energy $M^{+\ast}$ ions can also be produced by field ionization, charge exchange, or photoionization (Section 7.4). For structure elucidation it is sometimes useful to eliminate higher-energy reactions that give secondary product ions that are much less representative of the original structure. However, lower electron energies increase the relative abundance of primary rearrangement reactions (Section 7.2). Further, lowering the electron energy decreases the absolute abundance of all ions; although the relative abundance of the molecular ion increases, it nevertheless is more difficult to detect at lower electron energies (unless it has been obscured by fragment ions from a higher-molecular-weight impurity). Lowering the molecule’s energy (such as with supersonic expansion, Amirav 1991) before ionization does produce $M^{+\ast}$ of even lower internal energy, increasing $[M^{+\ast}]$ (Section 7.4).

EE^{+} molecular species from ion-molecule reactions. The most common method of producing a stable ion containing the sample molecule is to react it with an ionized EE^{+} species. An early example was the use of high sample pressures under EI conditions to produce MH^{+} ions from compounds not yielding M^{+} (McLafferty 1957b). Chemical ionization (CI; see Munson and Field 1966, Harrison 1992) is very useful, in that most (although not all) molecules that do
not yield molecular ions by EI can produce CI ions indicative of the molecular weight. CI conditions produce abundant thermal electrons, giving highly efficient electron capture for negative ion formation from electronegative molecules (Figure 1.2; Budzikiewicz 1981, 1983b; Bowie 1984, 1989; Hites 1988). Recently a wide variety of powerful methods for the ionization of large molecules (even of molecular weight > 10^6) have been developed; most yield such EE^+ molecular species (Section 6.2).

Chemical ionization. For CI the reagent gas R is introduced into the ion source (~0.5 torr, ~70 Pa) at a concentration in large excess (~10^4:1) to that of the sample, and is ionized by electron (~500 V) bombardment or electric discharge (Hunt 1975). The R^+ ions initially formed can react further with other R molecules to form reactive ion species that then attack the sample molecule M:

\[
\begin{align*}
R + e^- & \rightarrow R^{+} + 2e^- & (6.1) \\
R^{+} + R & \rightarrow RH^{+} + (R - H)^{+}, \text{ or } (R - H)^{+} + RH & (6.2) \\
RH^{+} + M & \rightarrow R + MH^{+} & \text{(protonation)} (6.3) \\
(R - H)^{+} + M & \rightarrow (R - 2H) + MH^{+} & \text{(protonation)} (6.4) \\
(R - H)^{+} + M & \rightarrow R + (M - H)^{+} & \text{(hydride abstraction)} (6.5) \\
R^{+} + M & \rightarrow R + M^{+} & \text{(charge exchange)} (6.6)
\end{align*}
\]

Among this wide variety of possible ionization reactions, the most common are: protonation (Equations 6.3 and 6.4), which is favored for sample molecules of proton affinity higher than that of the reagent; hydride abstraction (Equation 6.5), which is common for lower-proton-affinity molecules, such as alkanes; and charge exchange (6.6), which is favored for reagents of high ionization energy, such as helium. The internal energy of the resulting ionized M species depends on the reagent chosen and the ion source temperature and pressure (number of thermalizing collisions). For example, Figure 6.1 (Fjeldsted et al. 1990) shows the CI spectra of lavanduyl acetate (PA = ~8.7 eV) using CH₄ (PA = 5.7 eV), isobutane (reagent C₄H₉⁺, PA of iso-C₄H₈ = 8.5 eV), and NH₃ (PA = 9.0 eV). Further dissociation is nearly complete for the highly exothermic CH₃⁺ reaction, and minor for the NH₃⁺ reaction. Such unimolecular fragmentations obey the mechanisms outlined in Chapters 4 and 8; the major m/z 137 product ion is formed by CH₃COOH loss, consistent with Field’s Rule: PA(CH₃COOH) = 8.2 eV, PA(C₁₀H₁₆) = ~8.7 eV. The m/z 154 product in the NH₃/CI spectrum corresponds to CH₃COOH loss from (M + NH₃)⁺. Thus CI spectra can provide structural as well as molecular weight information. Similar CI spectra can
be generated at much lower pressures by using long-lived trapped ions in the ion cyclotron resonance (ICR; see Lehman and Bursey 1976, and Bowers 1979, 1984) or ion trap (IT; see Cooks et al. 1991) instruments. For definitions of PA and gas-phase acidity and basicity, see Bursey 1990.
6.2 Ionization of large molecules

For conventional direct-probe introduction, a sample must have sufficient vapor pressure and thermal stability to be vaporized in the ion source. This severely limits the application of mass spectrometry to important samples such as biological macromolecules, industrial polymers, and petroleum residues. Intensive recent research progress has resulted in highly useful methods. The most widely used are described briefly here; many recent references (Section 6.8) give extensive details.

Fast-atom bombardment (FAB). Introduced by Barber et al. (1982), FAB is particularly suitable for polar molecules, providing ionized molecular species for molecular weights up to ~20 kDa (Williams et al. 1987; Tower 1989). A solution of the sample in a low-volatility matrix such as glycerol is bombarded with fast, heavy atoms (e.g., Xe; ions such as Cs⁺ give similar results) in the ion source, producing the continuous ion beam necessary for scanning instruments. The method is very convenient for appropriate samples, but matrix reactions produce background ions at nearly every mass value.

Plasma desorption (PD) and laser desorption (LD). These pulsed ionization techniques are particularly suitable for the time-of-flight instrument, which has the additional advantage of unlimited mass range. TOF resolving power of 500–1,000 has been a disadvantage, but recent improvements are promising (Benninghoven 1989; Karas et al. 1989; Hillenkamp et al. 1991). PD, pioneered by Macfarlane (1976), first showed that mass spectra could be obtained routinely from large molecules. Fission of ²⁵²Cf produces two 100-MeV products that simultaneously ionize the thin-film samples and start the TOF clock, but produce little ion fragmentation. Ionization of molecules as large as 50 kDa with mass measuring errors of ±0.1% have been reported.

Pioneering laser desorption (LD) capabilities (Posthumus et al. 1978) have been greatly extended (Karas and Hillenkamp 1988) by dissolving the sample in a solid matrix that is a highly efficient absorber of the laser radiation, so as to ionize molecules as large as 300 kDa (Hillenkamp et al. 1991). The absence of matrix effects and mass measuring errors of ±0.01%–0.1% make LD a particularly promising method for protein mixtures (Chait et al. 1990).

Electrospray ionization (ESI). Pioneered by Dole (Dole et al. 1971), for ESI a solution of the sample is sprayed at atmospheric pressure through a several-kilovolt potential difference toward the differentially pumped entrance to the mass spectrometer (Smith et al. 1992). The resulting droplets are electrostatically charged; as the solvent evaporates, electrostatic repulsion produces smaller and smaller droplets, until the macromolecule is expelled “saturated” with charges (Fenn et al. 1989). Thus a protein can bear a proton for every 5–17 amino acids, yielding peaks at m/z 600–2000 even for 200 kDa proteins (Feng et
6.3 Exact mass measurements (high resolution)

Measurement of the mass of an ion with sufficient accuracy provides an unambiguous identification of its elemental (and isotopic) composition. This technique is often referred to as “high resolution” mass spectrometry, since double-focusing (Figure 6.2) or FT/ICR (Section 1.3) instruments are usually used. However, if interfering masses requiring high resolution are absent, sufficiently accurate mass measurements (~20 ppm) can be achieved for low-mass ions with single focusing or quadrupole instruments of 1,000–2,000 resolution.

Elements can be identified in this way because monoisotopic atomic weights are not exact whole numbers. When we take as standard the mass of 12C as 12.000000000 (see Table A.1), then m for 1H = 1.007825035, for 14N = 14.00307400, and for 16O = 15.99491463 (the least significant figure, 10^{-8} daltons, represents 9.3 eV of energy). Every isotope has a unique, characteristic “mass defect”; so the mass of the ion, which shows the total mass defect, identifies its isotopic and elemental composition. For example, an ion with a mass of 43.0184 must be $C_2H_3O^+$; it cannot be $C_3H_7^+$ ($m = 43.0547$), $C_2H_5N^+$ ($m = 43.0421$), CH_3N^+ ($m = 43.0296$), $CHNO^+$ ($m = 43.0058$), or C_2F^+ ($m = 42.9984$). To distinguish these compositions requires an accuracy in measuring mass of 130 ppm.

The usefulness of elemental composition information increases exponentially with increasing mass, as does the required mass-measuring accuracy.