Thiol-Independent DNA Alkylation by Leinamycin

Leonid Breydo, Hong Zang, Kaushik Mitra, and Kent S. Gates*
Departments of Chemistry and Biochemistry
University of Missouri-Columbia
Columbia, Missouri 65211
Received September 8, 2000

Covalement modification of cellular DNA can have profound biological consequences and, therefore, the mechanisms by which small organic molecules react with DNA are of interest in both medicinal chemistry and toxicology.1–4 The reactions underlying the biological activity of DNA-damaging agents are diverse and chemically interesting.1 Some agents contain functional groups that are inherently reactive with DNA, while others require in vivo chemical or enzymatic activation to transform the parent molecule into the reactive intermediate actually responsible for covalent modification of DNA.1,7 In cases where in vivo activation is required, characterization of the relevant chemical or enzymatic reactions is crucial for understanding the overall mechanism of action. In addition, characterization of novel bioactivation processes offers fundamental new insights regarding the types of chemical reactions by which small organic molecules can efficiently modify biomolecules under physiological conditions.

Leinamycin (1) is a structurally unique antitumor agent that is bioactivated by reaction with cellular thiols.8 Thus far, leinamycin has been characterized exclusively as a thiol-triggered DNA-damaging agent. Thiol attack on leinamycin triggers DNA damage by two unprecedented mechanisms (Scheme 1). Thiol-dependent oxidative DNA damage is triggered by release of a hydrodisulfide species (4) that mediates the production of oxygen radicals.9–13 In addition, leinamycin alkylates DNA through a remarkable rearrangement reaction in which the antibiotic is initially converted by reaction with thiol to the oxathiolanone intermediate 3.3,14 The electrophilic sulfur of the oxathiolanone group then reacts with the C6–C7 alkene of the antibiotic’s 18-membered macrocycle to yield an episulfonium ion alkylating agent (6) that efficiently modifies duplex DNA at the N7-position of guanine residues.14

While previous studies have characterized thiol-triggered DNA damage by leinamycin, we report here experiments that reveal a new thiol-independent mode of DNA alkylation by this anti-

9 Correspondence to: Kent S. Gates. Telephone: (573) 882-6763. Fax: (573) 882-2754. E-mail: Gates@missouri.edu.

(5) C6–C7 alkene of the antibiotic’s 18-membered macrocycle
(6) Thiol-Independent DNA Alkylation by Leinamycin

Scheme 1

While previous studies have characterized thiol-triggered DNA damage by leinamycin, we report here experiments that reveal a new thiol-independent mode of DNA alkylation by this anti-

9 Correspondence to: Kent S. Gates. Telephone: (573) 882-6763. Fax: (573) 882-2754. E-mail: Gates@missouri.edu.

(7) hemminki, k.; dipple, a.; shuker, d. e. g.; kadlubar, f. f.; segerback, d.; bartsch, h., eds. dna adducts: identification and biological significance; iarc: lyon, 1994; vol. 125.
(10) hemminki, k.; dipple, a.; shuker, d. e. g.; kadlubar, f. f.; segerback, d.; bartsch, h., eds. dna adducts: identification and biological significance; iarc: lyon, 1994; vol. 125.
(18) DNA alkylation reactions were carried out in the radical-scavenging buffer Hepes to eliminate potential background oxidative DNA damage stemming from RSSH (4).18

(15) Asai et al. have reported on DNA alkylation by a metabolite isolated from the reaction of thiol with leinamycin.16 Alkylation by this thiol-derived metabolite does not require additional thiol and, thus, was described as “thiol-independent”; however, the chemistry described by Asai and co-workers is distinct from the alkylation chemistry reported here, in which there is absolutely no thiol involvement.
(18) DNA alkylation reactions were carried out in the radical-scavenging buffer Hepes to eliminate potential background oxidative DNA damage stemming from RSSH (4).18

10.1021/ja003300r CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/06/2001
systems, 19 Supporting Information). The reaction of leinamycin with glutathione (Figures S7 and S8, yields a second-order rate constant of 10.4 h⁻¹.

Next, we consider the pseudo-first-order reaction rates versus thiol concentration at pH 7.5, 25 leinamycin is subjected to general base catalysis. On the other hand, the pseudo-first-order rate constants S5, Supporting Information) and is subject to general base catalysis. On the other hand, the pseudo-first-order rate constants for the reaction of 0.5, 0.75, and 1 mM glutathione with leinamycin (10 μM in 50 mM Hepes, pH 7, 24 °C) are 15 ± 2 h⁻¹, 26.3 ± 0.7 h⁻¹, and 40.7 ± 0.4 h⁻¹, respectively. A plot of these pseudo-first-order reaction rates versus thiol concentration yields a second-order rate constant of 10.4 ± 0.6 M⁻¹s⁻¹ for the reaction of leinamycin with glutathione (Figures S7 and S8, Supporting Information).

On the basis of precedents from closely related model systems, 19–23 we believe that thiold-independent DNA alkylation by leinamycin is initiated by attack of water (or hydroxide) on the C3′-carbonyl of the antibiotic to yield the sulfenic acid intermediate 2 (Scheme 1). 24 Subsequent intramolecular attack of the carboxylate on the neighboring sulfenic acid group in 2 is envisioned to afford the oxathiolane 3, which leads to DNA alkylation through the episulfonium ion 5. Our rate data allows us to estimate that, under typical cellular conditions (~1 mM thiol, pH 7.5), 25 leinamycin is ~800 times more likely to react via the thiol-promoted pathway as opposed to the thiold-independent pathway. In serum, where thiol concentrations are considerably lower (~5 μM), 20 the two pathways are expected to be competitive. While it is currently unclear whether hydrolytic activation in serum plays an important role in the cytotoxicity of leinamycin, the results presented here indicate that this possibility deserves consideration.

In conclusion, while reactions with water often lead to the destruction of electrophilic antitumor agents, 1–3 it appears that hydrolysis of leinamycin does not lead exclusively to nonproductive decomposition of the antibiotic. In fact, our experiments reveal a new, chemically interesting bioactivation pathway in which hydrolysis of the unstable 1,2-dithiolan-3-one 1-oxide heterocycle unmasks leinamycin’s latent alkylating abilities.

Acknowledgment. We are grateful for support of this work from the National Institutes of Health (GM51565 and CA83925) and we thank Dr. Yutaka Kanda and other researchers at Kyowa Hakko Kogyo Ltd. for providing samples of leinamycin. We thank Christina Wells for critical review of the manuscript.

Supporting Information Available: Complete procedures and data for leinamycin–DNA reactions, gel electrophoresis, and kinetic measurements (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA003309R

Figure 1. Thiol-independent DNA alkylation by leinamycin (LM). A 5′-32P-labeled 377 bp restriction fragment was incubated at 37 °C with leinamycin (50 μM) for varying amounts of time in Hepes buffer (10 mM, pH 7.0) containing NaClO4 (50 mM) and herring sperm DNA (250 μM bp), followed by Maxam–Gilbert workup, denaturing 11% polyacrylamide gel electrophoresis, and phosphorimager analysis, as described in the Supporting Information. Lane 1: Maxam–Gilbert G reaction; lane 2: DNA alone; lanes 3–23: leinamycin + DNA incubated for 0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, and 70 h, respectively.

Figure 2. Sequence specificity and relative efficiency of thiol-dependent and thiol-independent DNA alkylation by leinamycin (LM). The height of each bar represents the amount of cleavage at each guanine in the oligonucleotide duplex 5′-32P-ATT ATT AAA TG GAG G6G4A TAA ATT A TA-3′. Leinamycin (50 μM) was incubated either in the absence or presence of thiol (2 equiv of β-mercaptoethanol) with the labeled DNA duplex at 37 °C for 72 h in Hepes buffer (50 mM, pH 7.0) containing herring sperm carrier DNA (200 μM bp), followed by Maxam–Gilbert workup, denaturing 20% polyacrylamide gel electrophoresis, and phosphorimager analysis as described in the Supporting Information. The sequence preferences for alkylation of this oligonucleotide duplex by dimethyl sulfate (DMS) are shown for comparison.

Ahom o scar system, 19 Supporting Information). The height of each bar represents the amount of cleavage at each guanine in the oligonucleotide duplex 5′-32P-ATT ATT AAA TG GAG G6G4A TAA ATT A TA-3′. Leinamycin (50 μM) was incubated either in the absence or presence of thiol (2 equiv of β-mercaptoethanol) with the labeled DNA duplex at 37 °C for 72 h in Hepes buffer (50 mM, pH 7.0) containing herring sperm carrier DNA (200 μM bp), followed by Maxam–Gilbert workup, denaturing 20% polyacrylamide gel electrophoresis, and phosphorimager analysis as described in the Supporting Information. The sequence preferences for alkylation of this oligonucleotide duplex by dimethyl sulfate (DMS) are shown for comparison.