Initiation of DNA Strand Cleavage by 1,2,4-Benzotriazine 1,4-Dioxide Antitumor Agents: Mechanistic Insight from Studies of 3-Methyl-1,2,4-benzotriazine 1,4-Dioxide

Venkatraman Junnotula, Ujjal Sarkar, Sarmistha Sinha, and Kent S. Gates

Downloaded from http://pubs.acs.org on January 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Initiation of DNA Strand Cleavage by 1,2,4-Benzotriazine 1,4-Dioxide Antitumor Agents: Mechanistic Insight from Studies of 3-Methyl-1,2,4-benzotriazine 1,4-Dioxide

Venkatraman Junnottula, Ujjal Sarkar, Sarminatha Sinha, and Kent S. Gates*

University of Missouri-Columbia, Departments of Chemistry and Biochemistry, 125 Chemistry Building, Columbia, Missouri 65211

Received June 28, 2008; E-mail: gatesk@missouri.edu

Abstract: The antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1) gains medicinal activity through its ability to selectively damage DNA in the hypoxic cells found inside solid tumors. This occurs via one-electron enzymatic reduction of TPZ to yield an oxygen-sensitive drug radical (2) that leads to oxidatively generated DNA damage under hypoxic conditions. Two possible mechanisms have been considered to account for oxidatively generated DNA damage by TPZ. First, homolysis of the N–OH bond in 2 may yield the well-known DNA-damaging agent, hydroxyl radical. Alternatively, it has been suggested that elimination of water from 2 generates a benzotriazinyl radical (4) as the ultimate DNA-damaging species. In the studies described here, the TPZ analogue 3-methyl-1,2,4-benzotriazine 1,4-dioxide (5) was employed as a tool to probe the mechanism of DNA damage within this new class of antitumor drugs. Initially, it was demonstrated that 5 causes redox-activated, hypoxia-selective oxidation of DNA and small organic substrates in a manner that is completely analogous to TPZ. This suggests that 5 and TPZ damage DNA by the same chemical mechanism. Importantly, the methyl substituent in 5 provides a means for assessing whether the putative benzotriazinyl intermediate 7 is generated following one-electron reduction. Two complementary isotopic labeling experiments provide evidence against the formation of the benzotriazinyl radical intermediate. Rather, a mechanism involving the release of hydroxyl radical from the activated drug radical intermediates can explain the DNA-cleaving properties of this class of antitumor drug candidates.

Introduction

The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1, Scheme 1) is currently undergoing a variety of phase I, II, and III clinical trials for the treatment of human cancers.1 TPZ gains medicinal activity from its ability to selectively damage DNA in the oxygen-poor (hypoxic) cells found inside solid tumors.2–8 This DNA-damage process begins with intracellular enzymatic reduction of TPZ to yield the drug radical intermediate (2, Scheme 1).9–12 In normally oxygenated cells, 2 undergoes relatively harmless oxidation back to the parent drug (Scheme 1),9,10,13 whereas under hypoxic conditions, the drug radical intermediate 2 leads to oxidatively generated DNA damage including hydroxylation of the nucleobases22,23 and strand breaks initiated by the abstraction of hydrogen atoms from the sugar–phosphate backbone of DNA.7–9,24–28
In the recent literature, two mechanisms have been considered to explain TPZ-mediated DNA damage. We have presented evidence22–26,28,29 supporting a mechanism involving homolysis of the N–OH bond in the neutral drug radical (2) to yield the mono-N-oxide metabolite 3 and the well-known DNA-damaging agent hydroxyl radical (Scheme 1, upper branch).30 This radical fragmentation is calculated to be thermodynamically reasonable31 and finds a wealth of precedents in the organic literature. For example, the radical-induced fragmentation of Barton’s N-hydroxy-2-pyridinethione esters (Scheme 3) is directly analogous to that proposed for TPZ.32–34 Additionally, several groups have studied similar photoinduced fragmentations of N-(alkoxy)pyridinium salts (Scheme 3).35–37 Alternatively, the results of pulse radiolysis experiments led to the suggestion that the activated intermediate 2 eliminates the elements of water from the exocyclic NH2 and the N–OH group to generate a benzo triazinyl radical (4) as the ultimate DNA-damaging species (Scheme 1, lower branch).38–40 The benzo triazinyl radical 4 has been generated via SO2•− oxidation of 3 and is, indeed, capable of oxidizing 2-deoxyribose and deoxyguanosine monophosphate.41 however, there is no direct evidence for the generation of this intermediate via bioreductive activation of

(30) Hydroxyl radical is a well-known DNA-damaging agent, see refs 31–34.
(36) The possibility that activated TPZ releases hydroxyl radical was first considered by Laderoute and coworkers (ref 9), and later, the analogous mechanism was favored by Hecht and coworkers in the context of reductively-activated phenazine di-N-oxides: Nagai, K.; Carter, B. J.; Xu, J.; Hecht, S. M. J. Am. Chem. Soc. 1991, 113, 5099–5100.
The dehydration process proposed for the formation of 4 finds some general precedent in radiation chemistry (Scheme 4). In particular, analogous eliminations of water from hydroxyl radical adducts of phenol and toluene have been reported, although to the best of our knowledge this type of transformation has not been observed in nitrogen-containing systems more closely related to the benzotriazine antitumor agents.

Development of novel 1,2,4-benzotriazine 1,4-dioxide drugs may be facilitated by improved understanding of the molecular mechanisms by which this new chemical class of antitumor agents damages DNA. In the studies described here, a TPZ analogue, 3-methyl-1,2,4-benzotriazine 1,4-dioxide (5), was employed as a tool to probe the mechanism of DNA damage by the 1,2,4-benzotriazine 1,4-dioxide antitumor drugs. First, we demonstrated that 5 causes redox-activated, hypoxia-selective oxidation of DNA and small organic substrates in a manner that parallels TPZ. Further, we found that one-electron reductive activation of 5 and TPZ under anoxic conditions generates analogous mono-N-oxide metabolites, 8 and 3, respectively. Having shown that the behavior of 5 mirrors TPZ, we recognized that the methyl group in this compound provides a “handle” for determining whether a benzotriazaryl radical intermediate (7) is generated following one-electron reduction of the heterocycle. Specifically, generation of the putative benzotriazinyl radical intermediate 7 in deuterated solvent mixtures would lead to formation of the deuterated, 3-(methyl-d)-1,2,4-benzotriazine 1-oxide (12) as a telltale metabolite. In the event, we find that bioreductive activation of 5 in solvent mixtures composed of CD₃OD and D₂O leads to the incorporation of less than 5% deuterium in the resulting mono-N-oxide metabolite. A complementary labeling experiment utilizing an analogue of 5 containing deuterium in the methyl group reveals no significant washout of label during bioreductive metabolism. Overall, the results provide evidence that benzotriazinyl radicals are not obligate intermediates in DNA damage by the 1,2,4-benzotriazine 1,4-dioxide family of antitumor agents. Rather, a mechanism involving the release of the well-known DNA-damaging agent hydroxyl radical from activated drug radical intermediates such as 2 and 6 may account for the DNA-cleaving properties of this family of drug candidates.

Results and Discussion

Hypoxia-Selective, Enzyme-Activated DNA Damage by 5. The hypoxia-selective cytotoxicity of 5 against human cancer cell lines is comparable to TPZ, however, the ability of 5 to damage DNA has not been examined previously. In the context of the mechanistic studies described here, it was first important to determine whether 5 generates redox-activated, hypoxia-selective DNA damage comparable to the lead compound TPZ. Compound 5 and its expected bioreductive metabolites, 8 and 11, were synthesized by literature routes involving either BF₃-catalyzed cyclization of a formazan precursor or PtO₂-catalyzed cyclization of the 2-nitrophenylhydrazone of pyruvic acid, followed by N-oxidation using m-chloroperoxybenzoic acid. We employed either NADPH:cytochrome P450 reductase or xanthine/xanthine oxidase enzyme systems for the one-electron reductive activation of 5. These enzymes were chosen because NADPH:cytochrome P450 reductase, or a related enzyme, is thought to be responsible for *in vitro* activation of TPZ, and xanthine/xanthine oxidase has been used successfully for the activation of TPZ in a variety of *in vitro* studies. For reactions carried out under anoxic conditions, molecular oxygen was removed from stock solutions by freeze–pump–thaw degassing and the assay mixtures prepared and incubated in an inert atmosphere glovebag.

We first explored the ability of 5 to generate strand breaks in double-stranded, supercoiled plasmid DNA. In this assay, single-strand cleavage converts supercoiled plasmid DNA (form I) to the open-circular form (form II). The two forms of plasmid DNA are then separated using agarose gel electrophoresis, the gel stained with a DNA-binding dye such as ethidium bromide, and the relative amounts of cut and uncut DNA assessed by staining and visual inspection. The results of the strand break assay are summarized in Table 1. These data indicate that compound 5 causes strand breaks in plasmid DNA that are comparable to those caused by TPZ.

References

Figure 1. DNA cleavage by various concentrations of reductively activated 5 under anaerobic conditions. Superoxo plasmid DNA (33 µg/mL, pGL-2 Basic) was incubated with 5 (25–150 µM), NADPH (500 µM), cytochrome P450 reductase (0.03 µM/mL), catalase (100 µg/mL), superoxide dismutase (10 µg/mL), sodium phosphate buffer (50 mM, pH 7.0), and desferal (1 mM) under anaerobic conditions at 25 °C for 4 h, followed by agarose gel electrophoretic analysis. Lane 1, DNA alone (S = 0.19 ± 0.02); lane 2, NADPH (500 µM) + reductase (0.03 µM/mL) + 5 (150 µM) (S = 0.18 ± 0.03); lanes 4–9, NADPH (500 µM) + reductase (0.03 µM/mL) + 5 (25 µM, lane 4) (S = 0.46 ± 0.11); (50 µM, lane 5) (S = 0.71 ± 0.03); (75 µM, lane 6) (S = 0.82 ± 0.03); (125 µM, lane 7) (S = 0.92 ± 0.05); (150 µM, lane 8) (S = 1.13 ± 0.11); (125 µM, lane 9) (S = 1.22 ± 0.01); (150 µM, lane 10) (S = 1.46 ± 0.03). The values, S, represent the mean number of strand breaks per plasmid molecule and were calculated using the equation \(S = -\ln f_i \), where \(f_i \) is the fraction of plasmid present as in the supercoiled form I.

Figure 2. DNA cleavage by various concentrations of reductively activated TPZ (1) under anaerobic conditions. Superoxo plasmid DNA (33 µg/mL, pGL-2 Basic) was incubated with TPZ (25–150 µM), NADPH (500 µM), cytochrome P450 reductase (0.03 µM/mL), catalase (100 µg/mL), superoxide dismutase (10 µg/mL), and desferal (1 mM) under anaerobic conditions at 25 °C for 4 h, followed by agarose gel electrophoretic analysis. Lane 1, DNA alone (S = 0.24 ± 0.01); lane 2, NADPH (500 µM) + reductase (0.03 µM/mL) + 1 (25 µM, lane 4) (S = 0.26 ± 0.03); lane 3, TPZ (150 µM) (S = 0.24 ± 0.02); lanes 4–9, NADPH (500 µM) + reductase (0.03 µM/mL) + 1 (25 µM, lane 4) (S = 0.38 ± 0.01); (50 µM, lane 5) (S = 0.51 ± 0.03); (75 µM, lane 6) (S = 0.61 ± 0.03); (100 µM, lane 7) (S = 0.72 ± 0.02); (125 µM, lane 8) (S = 0.82 ± 0.05); (150 µM, lane 9) (S = 1.04 ± 0.01). The values, S, represent the mean number of strand breaks per plasmid molecule and were calculated using the equation \(S = -\ln f_i \), where \(f_i \) is the fraction of plasmid present in the supercoiled form I.

Figure 3. Comparison of the efficiency of redox-activated DNA-cleavage by 5 and TPZ under anaerobic conditions. Superoxo plasmid DNA (33 µg/mL, pGL-2 Basic) was incubated with TPZ or 5 (25–150 µM), NADPH (500 µM), cytochrome P450 reductase (0.03 µM/mL), catalase (100 µg/mL), superoxide dismutase (10 µg/mL), sodium phosphate buffer (50 mM, pH 7.0), and desferal (1 mM) under anaerobic conditions at 25 °C for 4 h, followed by agarose gel electrophoretic analysis. The values, S, are derived from agar gel data such as that shown in Figures 1 and 2 and represent the mean number of strand breaks per plasmid molecule and were calculated using the equation \(S = -\ln f_i \), where \(f_i \) is the fraction of plasmid present as form I. Background cleavage in the untreated plasmid was subtracted to allow direct comparison of DNA strand cleavage yields between different experiments.

Figure 4. Cleavage of supercoiled plasmid DNA by 5. All reactions contained DNA (33 µg/mL, pGL-2 Basic), sodium phosphate buffer (50 mM, pH 7.0), catalase (100 µg/mL), superoxide dismutase (10 µg/mL), and desferal (1 mM) and were incubated under anaerobic conditions (except lane 9) at 25 °C for 3 h, followed by agarose gel electrophoretic analysis. Lane 1, DNA alone (S = 0.17 ± 0.03); lane 2, NADPH (500 µM) + NADPH:cytochrome P450 reductase (0.03 µM/mL) (S = 0.15 ± 0.01); lane 3, 5 (250 µM) + NADPH (500 µM) + reductase (0.03 µM/mL) (S = 1.01 ± 0.35); lanes 4–5, 5 (250 µM) + NADPH (500 µM) + reductase (0.03 µM/mL) + methanol (500 mM, lane 4) (S = 0.28 ± 0.04); ethanol (500 mM, lane 5) (S = 0.27 ± 0.03); tert-butyl alcohol (500 mM, lane 6) (S = 0.49 ± 0.03); DMSO (500 mM, lane 7) (S = 0.37 ± 0.13); mannitol (500 mM, lane 8) (S = 0.46 ± 0.06); lane 9, 5 (250 µM) + NADPH (500 µM) + reductase (0.03 µM/mL) + air (S = 0.17 ± 0.04); lane 10, mono-N-oxide 8 (250 µM) + NADPH (500 µM) + reductase (0.03 µM/mL) (S = 0.18 ± 0.06); lane 11, benzotriazine 11 (250 µM) + NADPH (500 µM) + reductase (0.03 µM/mL) (S = 0.18 ± 0.04); lanes 12–14, 5 alone (250 µM, lane 12) (S = 0.22 ± 0.07); 8 alone (250 µM, lane 13) (S = 0.16 ± 0.04); 11 alone (250 µM, lane 14) (S = 0.23 ± 0.08). The values, S, represent the mean number of strand breaks per plasmid molecule and were calculated using the equation \(S = -\ln f_i \), where \(f_i \) is the fraction of plasmid present as form I.

Oligodeoxynucleotide duplex was treated with 5 and the NADPH:cytochrome P450 reductase enzyme system under anaerobic conditions. Following the DNA-damage reaction, the resulting 32P-labeled DNA fragments were resolved on a denaturing polyacrylamide sequencing gel and visualized by phosphorimagery analysis. The relevant lanes from the gel are displayed as densitometry traces in which each cleavage band appears as a peak (Figure 5). We find that DNA strand cleavage by reductively activated 5 occurs at every base pair in the duplex (Figure 5B). The pattern of sequence-independent DNA strand cleavage caused by 5 closely resembles that generated by TPZ (Figure 5C) and is generally characteristic of a highly oxidizing, small, diffusible species such as hydroxyl radical. Comparison with the iron-EDTA cleavage lane reveals that both TPZ and 5 display some preference for cleavage at purine residues in the duplex. This result raises the possibility that iron-EDTA is not an appropriate control because the system operates under aerobic conditions. Thus, we were driven to examine the sequence-
We carried out the photolysis reactions under the salt (Figure 5H). Indeed the result closely resembles DNA strand cleavage at every nucleotide, but with a subtle, yet significant, preference for cleavage at purine residues. In short, we believe that other experiments in our manuscript (vide infra and supra) seem best explained by the hypothesis that bioreductively activated benzotriazine N-oxides decompose with release of hydroxyl radical. If so, why is the sequence specificity of strand cleavage by the N-oxides not identical to that of anaerobic hydroxyl radical?

We offer two potential explanations for the sequencing data. First, although the experiments presented in the manuscript indicate that generation of the benzotriazinyl radical 7 is not a major process (see below), it remains possible that small amounts of the 7 could contribute to the observed sequence specificity. Previous work has shown that the benzotriazinyl radical is capable of oxidizing guanine residues. Alternatively, intermediate hydroxyl radical adducts with deoxypurines may undergo secondary reactions with the parent di-N-oxides, the mono-N-oxo metabolites, or the radical anions and these reactions may lead to the generation of labile lesions (and strand cleavage in our experiments). There is precedent for this general type of process. For example, addition of hydroxyl radical to the 5,6-double bond of guanine, followed by loss of water, yields the so-called (G-H)+ radical (see Scheme 2 in ref 70b). Importantly, subsequent oxidation of (G-H)+ by superoxide radical is thought to generate hydantoin or imidazolone products (Schemes 13, 18, and 21 in ref 70b) that may be base labile. In the context of sugar damage, it has been shown that TPZ and its metabolites can oxidize radical intermediates. The possibility for interaction of the N-oxides with initially generated hydroxyl radical adducts with the purine bases is unique to the benzotriazine N-oxide DNA-damaging system and, therefore, provides a plausible molecular mechanism for the observed differences in the sequence specificity of strand cleavage between TPZ and “authentic” hydroxyl radical. The nature of the ultimate nucleobase products generated by TPZ-mediated DNA damage deserves further study.

In Vitro Metabolism of 5 Generates the Mono-N-Oxide 8
As the Major Product. In vitro one-electron bioreductive activation of TPZ by enzyme systems such as NADPH:cytochrome P450 reductase or xanthine/xanthine oxidase produces the 3-amino-1,2,4-benzotriazine-1-oxide (3) as the major metabolite. Under some conditions, 3-amino-1,2,4-benzotriazine (9) is also observed along with small amounts of 3-amino-1,2,4-benzotriazine 4-oxide (10). A similar spectrum of metabolites is generated by cellular metabolism of TPZ. As part of the present investigation of the molecular mechanisms underlying strand cleavage by 5, we examined the products generated by one-electron reductive activation of this compound by the enzyme NADPH:cytochrome P450 reductase under anaerobic conditions. Reverse-phase HPLC analysis reveals two major products resulting from enzymatic activation of 5 (Figure 6). The products display the same retention times as TPZ and the mono-N-oxide 8, as was established by direct HPLC comparison of the authentic material with the major components isolated from TPZ metabolites. Since the one-electron reductive activation is the same for both TPZ and 5, it is reasonable that both substrates generate similar metabolites. This analysis, therefore, argues against the hypothesis that the observed differences in sequence specificity are due to differences in the chemically induced products generated by the enzyme system in the absence of TPZ (Figure 5E). It remains clear that the benzotriazine N-oxides cause DNA strand cleavage at every nucleotide, but with a subtle, yet significant, preference for cleavage at purine residues. In short, we believe that other experiments in our manuscript (vide infra and supra) seem best explained by the hypothesis that bioreductively activated benzotriazine N-oxides decompose with release of hydroxyl radical. If so, why is the sequence specificity of strand cleavage by the N-oxides not identical to that of anaerobic hydroxyl radical?
as authentic standards\(^7\) of 3-methyl-1,2,4-benzotriazine 1-oxide (8) and 3-methyl-1,2,4-benzotriazine (11). The identity of the metabolites was further confirmed by coinjection with authentic synthetic standards and LC/ESI-MS analysis operating in the positive ion mode. Thus, the major metabolites generated by one-electron bioreductive activation of 5 under anerobic conditions are completely analogous to those produced by TPZ.

Isotopic Labeling Studies Provide Evidence That Bioreductive Activation of 5 Does Not Generate the Benzotriazinyl Radical Intermediate 7. Overall, the results described above suggest that TPZ and 5 damage DNA by the same chemical mechanism. Thus, compound 5 may be employed as a tool to investigate the general mechanisms of DNA damage by the 1,2,4-benzotriazine 1,4-dioxide family of antitumor agents. In the context of 5, the two mechanisms under consideration here lead to the same metabolite 8 via chemically distinct pathways (Scheme 2, upper and lower routes). In the upper pathway, 8 is generated directly from 6 by homolytic fragmentation of the \(\text{N-OH}\) bond. On the other hand, in the lower pathway, compound 8 is formed only after the benzotriazinyl radical 7 abstracts a hydrogen atom from a donor molecule. The methyl group in 5 provides a means for detecting whether the benzotriazinyl radical intermediate (7) is generated following one-electron reduction of the heterocycle. Specifically, generation of 7 in deuterated solvent mixtures would lead to formation of the deuterated product 3-(methyl-d)-1,2,4-benzotriazine 1-oxide (12) as a telltale metabolite. For example, abstraction of a deuterium atom from a donor such as CD\(_2\)OD would produce 12. Importantly, it is clear from the data shown in Figure 4 that methanol is able to quench the DNA-cleaving species generated upon one-electron reduction of 5. If hydrogen atom abstraction occurs at a position other than the methyl group in the resonance delocalized radical 7, tautomeration would intervene on the way to the observed metabolite 12 but, in CD\(_2\)OD/D\(_2\)O mixtures, deuterium incorporation would still be expected. Likewise, if 7 were to oxidize substrates via an electron transfer mechanism, incorporation of deuterium from CD\(_2\)OD/D\(_2\)O mixtures likely would result.

In accord with the experimental design described above, we carried out NADPH:cytochrome P450 reductase-mediated activation of 5 in deuterated sodium phosphate buffer containing the deuterium atom donor CD\(_2\)OD (2 M) and analyzed the isotopic content of the mono-N-oxide product (8/12) by LC/ESI-MS operated in the positive ion mode. We find that bioreductive activation of 5 in solvent mixtures composed of CD\(_2\)OD and D\(_2\)O leads to the incorporation of less than 5\% deuterium in the metabolite 8/12 (Figure 7).

In addition, we performed a complementary experiment with an analogue of 5 containing deuterium in the methyl group. Using this compound, we investigated whether deuterium in the methyl group of 5 “washes out” during redox-activated conversion of the drug to its mono-N-oxide metabolite. The analogue of 5 containing deuterium in the methyl group was prepared by incubation of 5 in slightly basic D\(_2\)O (pD = 7.6) at 24 °C for 25 days. Slow exchange produced a mixture of non-, mono-, di-, and trideuterated isomers of 5. Mass spectrometric analysis of this material revealed a set of peaks with relative intensities of 15:41:35:9 for these isotopologues (Figure 8). In vitro metabolism of this material by NADPH:cytochrome P450 reductase under anoxic conditions yields a mixture of mono-N-oxide metabolites in which the ratio of non-, mono-, di-, and trideuterated isomers is not significantly different from that seen in the mixture of starting di-N-oxides (Figure 8).

Overall, we find that significant amounts of hydrogen or deuterium atoms do not exchange in or out of the methyl group in 5 during bioreductive metabolism. Taken together, the results indicate that the benzotriazinyl radical 7 is not a precursor to the mono-N-oxide metabolite (8). These results led us to further examine the alternative hypothesis involving the release of hydroxyl radical (HO\(^{•}\)) from the reductively activated drug 7.

Generation of Characteristic Hydroxyl Radical-Derived Products by Redox-Activated 5 under Anoxic Conditions. In light of our hypothesis that reductive activation of 1,2,4-benzotriazine 1,4-dioxides under hypoxic conditions leads to the release of hydroxyl radical, we felt it would be interesting to examine the enzymatic activation of 5 in the presence of reagents such as DMSO and salicylic acid that yield characteristic products upon reaction with HO\(^{•}\).
The reaction of hydroxyl radical with DMSO yields methanesulfonic acid (13) as a characteristic product.\(^\text{75-77}\) Methanesulfonic acid, in turn, can be quantitatively detected as the methane diazosulfone (15) resulting from derivatization with the diazonium salt 14 (Scheme 5).\(^\text{75,77,78}\) We find that enzymatic activation of 5 (500 \(\mu\)M) with NADPH:cytochrome P450 reductase under anaerobic conditions in the presence of DMSO (1 M), followed by treatment with 14, produces a 41% yield of the methanesulfonic acid derivative 15 (based on 5). By way of comparison, TPZ produces an 89% yield of the methanesulfonic acid derivative under these conditions. The yields are corrected for the small amounts of methanesulfonic acid generated in the incubation of DMSO with 5 alone, or with the NADPH:cytochrome P450 reductase enzyme system. These results are consistent with the notion that TPZ and 5 produce substantial yields of hydroxyl radical following bioreductive activation.

Salicylic acid has long been employed as a hydroxyl radical trapping agent.\(^\text{15,79,80}\) The reaction of hydroxyl radical with salicylic acid generates hydroxylated aromatic products including 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid (Scheme 6).\(^\text{81}\) We find that enzymatic activation of 5 (250 \(\mu\)M) under anaerobic conditions in the presence of salicylic acid (10 mM) produces the expected hydroxylated metabolites, 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid (Figure 9). Reductive activation of TPZ also yields 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid under these conditions. The identity of these hydroxylated aromatic species was confirmed by coinjection with authentic standards and LC/ESI-MS operated in the negative ion mode. Control reactions show that incubation of salicylic acid with either the NADPH:cytochrome P450 reductase or xanthine/xanthine oxidase enzyme systems in the absence of 5 does not produce significant amounts of these products. Further control experiments show that incubation of TPZ or 5 with salicylic acid in the absence

(75) Steiner, M. G.; Babbs, C. F. Arch. Biochem. Biophys. 1990, 278, 478–481.
of the enzyme does not generate significant amounts of the hydroxylated metabolites. Again, these results are consistent with the hypothesis that one-electron reduction of TPZ and 5 under anoxic conditions leads to the generation of hydroxyl radical.

Conclusions

The results described here provide useful information regarding the structure–activity relationships and the mechanism of DNA damage by 1,2,4-benzotriazine 1,4-dioxides against human cancer cell lines that are comparable to TPZ.34 Extravascular transport properties that may be superior to the parent drug.91,92 Accordingly, the 3-alkyl analogues have been described as potential clinical “back-ups” for TPZ.54 Despite their promising preclinical properties, the redox-activated DNA-damaging properties of 3-alkyl-1,2,4-benzotriazine 1,4-dioxides, such as 5, have not been examined previously. We find that 5 causes hypoxia-selective, oxidatively generated DNA damage in a manner completely analogous to TPZ. These findings support the expectation that, like TPZ, the bioactivity of 3-alkyl-1,2,4-benzotriazine 1,4-dioxides are of particular interest. These analogues display hypoxia-selective activity against human cancer cell lines that are comparable to TPZ,24 and extravascular transport properties that may be superior to the parent drug.91,92

Having shown that the DNA-damaging activity of 5 mirrors that of TPZ, we recognized that the methyl group in this compound provides a “handle” for examining the mechanism of DNA strand cleavage. The results of two complementary isotopic labeling experiments provided evidence that 5 does not generate substantial amounts of the benzotriazinyl radical 7 upon one-electron reduction. Rather, we suggest that bioreductive activation of 5 under anoxic conditions leads to release of hydroxyl radical from the intermediate drug radical 6. Consistent with this hypothesis, we find that enzymatic one-electron reduction of both TPZ and 5 in the presence of DMSO or salicylic acid leads to the generation of characteristic hydroxyl radical-derived products. Indeed, a mechanism involving release of the well-known DNA-damaging agent hydroxyl radical from the reductively activated drug radical intermediates (e.g., 2 and 6) can explain the DNA-damaging properties of the entire 1,2,4-benzotriazine 1,4-dioxide family of antitumor agents.

Experimental Section

Materials. Materials were of the highest purity available and were obtained from following sources: sodium phosphate, mannitol, xanthine, DMSO, and TLC plates from Aldrich Chemical Co. (Milwaukee, WI); NADPH, desferal, cytochrome P450 reductase, calf thymus DNA, and superoxide dismutase (SOD) from Sigma Chemical Co. (St. Louis, MO); xylene cyanol, bromophenol blue, formamide, and urea from United States Biochemical; T4 polynucleotide kinase from New England Biolabs; [γ-32P]-dATP from Perkin-Elmer Life Sciences; oligonucleotides were purchased from Integrated DNA Technologies; acrylamide and bisacrylamide from Roche Diagnostics; xanthine oxidase from Roche Diagnostics; agarose from Seakem; HPLC grade solvents (acetoniitrile, methanol, ethanol, tert-butyl alcohol, ethyl acetate, hexane, and acetic acid) from Fischer (Pittsburgh, PA); ethidium bromide from Roche Molecular Biochemicals (Indianapolis, IN); Silica gel (0.04–0.063 mm pore-size) for column chromatography from Merck. The plasmid pGL2BASIC was prepared using standard protocols.93 Tirapazamine (1, TPZ), 3, and 9 were synthesized according to literature methods.53 High resolution mass spectroscopy was performed at the University of Illinois Urbana–Champaign Mass Spectroscopy facility and low resolution mass spectroscopy were performed at the University of Missouri-Columbia.

Cleavage of Plasmid DNA. Individual components of the DNA-cleavage assays, except DNA, NADPH, and enzymes were deoxygenated using three cycles of freeze–thaw–thaw degassing in Pyrex tubes and then torch-sealed under high vacuum. Sealed tubes were scored, opened in an argon-filled glovebag, and used to prepare individual reactions. The enzymes, NADPH, and DNA were diluted with degassed water in the glovebag to prepare stock solutions. The DNA-cleavage assays contained supercoiled plasmid DNA (33 μg/mL), NADPH (500 μM), cytochrome P450 reductase (0.03 units/mL), catalase (100 μg/mL), superoxide dismutase (10 μg/mL), sodium phosphate buffer (50 mM, pH 7.0), and desferal (1 mM) in a final volume of 30 μL and were incubated with different concentrations of 5 or 1 (25 μM-150 μM) under anaerobic conditions at 25 °C for 4 h. To suppress possible background DNA damage resulting from enzymatic reduction of traces of molecular oxygen to superoxide, we employed desferal to sequester adventitious trace metals in a nonredox active form, thus preventing the conversion of superoxide-derived hydrogen peroxide to hydroxyl radical.54 In addition, the assays contained superoxide dismutase and catalase to decompose any superoxide radical and hydrogen peroxide that was produced.55 Following incubation, the reactions were quenched by addition of 5 μL of 50% glycerol loading buffer and were loaded onto a 0.9% agarose gel. The gel was electrophoresed for approximately 2.5 h at 82 V in 1x TAE buffer before staining in a solution of aqueous ethidium bromide (0.3 μg/mL) for 3 h. DNA in the gel was visualized by UV-transillumination, and the amount of DNA in each band was quantified using an Alpha Innotech IS-1000 digital imaging system. The values reported are not corrected for differential staining of form I and form II DNA by ethidium bromide.54 DNA-cleavage assays containing radical scavengers were carried out as described above, with the exception that degassed solutions of radical scavengers such as a methanol, ethanol, tert-butyl alcohol, DMSO, or mannitol (500 mM) were added to the reactions prior to the addition of cytochrome P450 reductase.

Sequence Specificity of DNA Strand Cleavage by 5. A 30 base 2'-deoxyoligonucleotide 5'-GTCACGTGCTGCAGACGACGT-

GCTGAGCCT-3' was 5'-end labeled with \(^{32}P \) using \([\gamma-^{32}P]\) dATP and T4 polynucleotide kinase and was purified on a 20% denaturing polyacrylamide gel.\(^{95}\) The labeled single strand oligonucleotide was then annealed with its complimentary strand by heating the mixture to 90 °C sodium phosphate (pH 7, 20 mM) followed by slow cooling to room temperature overnight. DNA cleavage by 1 and 5 was performed in a dialysis chamber placed in deoxygenated aqueous buffer (three freeze–pump–thaw cycles) inside an inert atmosphere glovebox as described previously.\(^{25}\) The heated inlet capillary temperature was 250 °C and electrospray needle voltage was 4.5 kV. Nitrogen sheath gas was supplied at 80 psi.

Isotopic Labeling Experiments: In Vitro Metabolism of 5 in Deuterated Solvents. A solution of 5 (800 μM) was prepared in deuterated sodium phosphate buffer (pD 6.6, 50 mM). Deuterated buffer was prepared by dissolving NaHPO₄ (20.5 mg, 28.9 mmol) and NaH₂PO₄ (12.7 mg, 21.2 mmol) in D₂O (5 mL). The resulting solution of 5 was deoxygenated using three cycles of freeze–pump–thaw in Pyrex tubes, followed by torch sealing. Pyrex tubes were scored, opened and contents transferred into a deuterated sodium phosphate buffer (pD 6.6, 50 mM). Deuterated sodium phosphate buffer (pD 6.6, 50 mM) was prepared by dissolving Na₂HPO₄ (66.2 mg, 93.3 mmol) and NaH₂PO₄ (4.1 mg, 6.7 mmol) in D₂O (5 mL). Deuterium incorporation into the methyl group of 5 was detected by using \(^1H\) NMR analysis and LC/ESI-MS. The \(^1H\) NMR shows no changes in the relative intensities of the aromatic protons but a 44% decrease in the intensity of peak corresponding to the methyl hydrogens. Mass spectrometric analysis reveals that the exchange reaction yields a mixture of non-, mono-, di-, and trideuterated 5, as shown in Figure 8.

In the experiment, a solution of deuterated 5, synthesized as described above, was prepared in sodium phosphate buffer (pH 7, 50 mM). This solution was deoxygenated using three cycles of freeze–pump–thaw in Pyrex tubes, followed by torch sealing. The Pyrex tubes were scored, opened and contents transferred into a microcentrifuge tube in an argon-filled glovebag. In vitro metabolism reactions were carried out by addition of NADPH (3 mM) and NADPH/cytochrome P450 reductase (0.6 U/mL), both in the presence and absence of CH₃OH (2 M) and were incubated under centrifugation through an Amicon Microcon (YM3) filter. The filtrate was analyzed by HPLC employing a C18 reverse phase Rainin Microsorb-MV column (5 μm particle size, 100 Å pore size, 25 cm length, 4.6 mm i.d.) eluted with gradient starting with 80% A (0.5% acetic acid in water) and 20% B (2:1 methanol/acetonitrile) followed by linear increase to 30% B from 0 to 20 min. The column was eluted with 30% B for 10 min, then decreased to 20% B over the next 10 min. A flow rate of 0.9 mL/min was used and the products were monitored by their UV-absorbance at 240 nm. In vitro metabolism of 5 by NADPH/cytochrome P450 reductase yields two major products in the HPLC chromatogram. The major product eluting at ~19 min was identified as 8 and the minor product eluting at ~18 min as 11 by coinjection with authentic synthetic products and by LC/ESI-MS analysis. Metabolites were extracted into ethyl acetate and dried, and redissolved in 50:50 methanol:water. LC/ESI-MS experiments were carried out on a Finnigan TSQ 7000 triple quadrupole instrument interfaced to a ThermoSeparations liquid chromatograph (TSP4000). Positive ion electrospray was used as the means of ionization. The heated inlet capillary temperature was 250 °C and electrospray needle voltage was 4.5 kV. Nitrogen sheath gas was supplied at 80 psi.

Characterization of Products Arising from In Vitro Metabolism of 5. A solution containing 5 (500 μM) and desferal (1 mM) in sodium phosphate (pH 7, 50 mM) was deoxygenated by three freeze–pump–thaw cycles and then torch-sealed under vacuum. The sealed tube was scored before being transferred to an argon-filled glovebag. The tube was then opened and the degassed solution was transferred to a microcentrifuge tube. To this solution, NADPH (1 mM), and cytochrome P450 reductase (0.33 U/mL) were added and the resulting samples incubated in an argon-filled glovebag at 25 °C for 3 h. The protein was removed by centrifugation through an Amicon Microcon (YM3) filter. The filtrate was analyzed by HPLC employing a C18 reverse phase Rainin Microsorb-MV column (5 μm particle size, 100 Å pore size, 25 cm length, 4.6 mm i.d.) eluted with gradient starting with 80% A (0.5% acetic acid in water) and 20% B (2:1 methanol/acetonitrile) followed by linear increase to 30% B from 0 to 20 min. The column was eluted with 30% B for 10 min, then decreased to 20% B over the next 10 min. A flow rate of 0.9 mL/min was used and the products were monitored by their UV-absorbance at 240 nm. In vitro metabolism of 5 by NADPH/cytochrome P450 reductase yields two major products in the HPLC chromatogram. The major product eluting at ~19 min was identified as 8 and the minor product eluting at ~18 min as 11 by coinjection with authentic synthetic products and by LC/ESI-MS analysis. Metabolites were extracted into ethyl acetate and dried, and redissolved in 50:50 methanol:water. LC/ESI-MS experiments were carried out on a Finnigan TSQ 7000 triple quadrupole instrument interfaced to a ThermoSeparations liquid chromatograph (TSP4000). Positive ion electrospray was used as the means of ionization. The heated inlet capillary temperature was 250 °C and electrospray needle voltage was 4.5 kV. Nitrogen sheath gas was supplied at 80 psi.
an argon atmosphere at 24 °C for 16 h. Control samples were prepared without addition of enzyme, NADPH, or methanol. The metabolites generated from these reactions were extracted into ethyl acetate (2 mL) and the resulting solutions dried under a stream of air. The products were analyzed by using LC/ESI-MS in a positive ion mode as described above.

Oxidation of DMSO to Methanesulfonic Acid during In Vitro Metabolism of 1 and 5. Methanesulfonic acid produced by the oxidation of DMSO during in vitro metabolism of 1 and 5 was quantitatively measured using a modified version of the protocol reported by Fukui et al.77 In a typical assay, individual components of the reactions were deoxygenated as described above. To a degassed solution containing sodium phosphate (50 mM, pH 7.0), 1 or 5 (500 μM) and desferal (1 mM), deoxygenated DMSO (1 M), NADPH (2 mM) and cytochrome P450 reductase (0.29 U/mL) were added. The reaction (1 mL final volume) was capped, mixed, and allowed to incubate under an argon atmosphere at 24 °C for 4 h. Then sodium phosphate (0.5 mL, 500 mM, pH 4.0) was added to the reaction, followed by Fast Red TR diazonium salt (14, 0.5 mL of a 10 mg/mL solution water) and the mixture allowed to stand at room temperature for 10 min. During this time an orange color developed and the resulting solution was extracted with ethyl acetate (2 × 1 mL) and exactly 1.2 mL of the upper ethyl acetate layer removed by pipet. A portion of this ethyl acetate solution (20 μL) containing the methane diazosulfone was then analyzed by HPLC. The diazosulfone conjugate 15 was observed by its absorbance at 310 nm at a retention time of approximately 9 min on a Rainin Microsorb-MV propylamine column eluted with hexane-2-propanol (100:3) at a flow rate of 1 mL/min. Authentic 15 for comparison was prepared as previously described.96 The yield of methanesulfonic acid reported here for 1 are higher than that reported previously.26 The assays described here utilized a higher concentration of the hydroxyl radical trapping agent DMSO and the yields are corrected for unmetabolized starting drug. For the construction of calibration curves, known amounts of methanesulfonic acid was dissolved in sodium phosphate buffer (50 mM, pH 7.0) to make 1 mL solutions containing different concentrations of methane sulfonic acid (100–500 μM). To these solutions, sodium phosphate buffer (0.5 mL, 500 mM, pH 4.0) was added, followed by Fast Red TR diazonium salt (14, 0.5 mL of 10 mg/mL). The reactions were allowed to stand at room temperature for 10 min and the resulting orange solutions extracted with ethyl acetate (2 × 1 mL) and exactly 1.2 mL of the upper ethyl acetate layer removed by pipet. A portion of this ethyl acetate solution (20 μL) containing the methane diazosulfone was then analyzed and quantified by HPLC. Injection-to-injection variation in this system is less than ± 5%. Parallel control reactions lacking either NADPH or enzyme were performed. The final yields of 15 reported here are corrected for background levels measured in these control reactions and for unmetabolized di-N-oxide.

Hydroxyl Radical Trapping by Salicylic Acid. Assay solutions were degassed in Pyrex tubes using three cycles of freeze—pump—thaw, followed by torch sealing. Enzyme solutions were prepared in degassed water. The Pyrex tubes containing degassed solutions were scored, opened in an argon-filled glovebag, and the assays prepared in microcentrifuge tubes. Typical assays (300 μL final volume) contained 1 or 5 (250 μM, final concentrations), salicylic acid (10 mM), catalase (50 μg/mL), desferal (1 mM), sodium phosphate buffer (50 mM, pH 7), and NADPH (1 mM), NADPH:cytochrome P450 reductase (0.05 U/mL in the case of 1). Control reactions were prepared in an identical manner except without di-N-oxide or without the enzymatic reducing system. The reaction mixtures were incubated for 16–18 h in an argon-filled glovebag. Following incubation, enzymes were removed by Microcon filtration and the reaction products analyzed by their absorbance at 310 and 278 nm using reverse-phase HPLC with a C18 column eluted with a gradient solvent system starting with 95% A (2% acetic acid in water) and 5% B (methanol) for 2 min, followed by an increase to 25% B from 2–10 min, an increase to 40% B from 10–20 min, an increase to 50% B from 20–30 min and, finally an increase to 80% B from 30–45 min at a flow rate of 0.9 mL/min. The identity of hydroxylated products was confirmed by coinjection with authentic standards and by LC/ESI/MS operating in the negative ion mode, employing conditions analogous to those described above.

Acknowledgment. We are grateful to the NIH for support of this research (CA 100757), we acknowledge Dr. Nathan Leigh (University of Missouri Department of Chemistry) for assistance with mass spectrometric analysis, and we thank Earl W. Gates and Professor Marc Greenberg (Johns Hopkins University) for helpful comments on the manuscript.