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Ordinal dispersion Inequality testing Ordinal again

Motivation: self-reported health status (SRHS)

From Deaton and Paxson (1998a, pp. 248–9):

“Our interest in health inequality stems from a more general
interest in the distribution of welfare.”

SRHS is 1) “useful over the complete adult life cycle” and 2)
strongly correlated with more objective measures (mortality,
activities of daily living, etc.).

Interested in “whether inequality in health status. . . increases with
age” as well as “across socioeconomic groups.”

“Plausible that health shocks have both permanent and transitory
components. . . the former implies that health status will be
nonstationary. . . dispersion of health status will grow with age.”
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Ordinal dispersion Inequality testing Ordinal again

Motivation: self-reported health status (SRHS)

From Deaton and Paxson (1998b, pp. 431–2):

Goal: “to document the evolution of [SRHS] with age, looking at
both cohort means and within-cohort dispersion.”

“Although some health shocks will have only temporary effects,
others will leave a permanent residue, so that even if this residue is
a small component of the original shock, the resulting health
status will be non-stationary. . . . health of members of a cohort
will disperse over time.”
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Ordinal dispersion Inequality testing Ordinal again

SRHS: empirical mean and variance?

From Deaton and Paxson (1998a), SRHS vs. age, males:

Mean Variance

Data: Panel Study of Income Dynamics (PSID), 1984–92

1 = “excellent”; 2 = “very good”; 3 = “good”;

4 = “fair”; 5 = “poor”
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Ordinal dispersion Inequality testing Ordinal again

SRHS: empirical mean and variance?

From Deaton and Paxson (1998b), SRHS vs. age, males:

Mean Variance

Data: National Health Interview Survey (NHIS), 1983–94

Dispersion increases with age?

But: variance depends on cardinal values; SRHS is ordinal,
“values” (1=excellent, . . . , 5=poor) are arbitrary.
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Ordinal dispersion Inequality testing Ordinal again

SRHS: empirical percentiles?

From Deaton and Paxson (1998b, NHIS), percentiles:

Doesn’t make same “cardinal sin” of variance; but, is dispersion
zero if everyone is “excellent” (or “poor”)?

Could the ordinal data trends be explained by a latent health
variable whose distribution shifts only in location, not dispersion?
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Ordinal dispersion Inequality testing Ordinal again

SRHS: latent model

Could the ordinal data trends be explained by a latent health
variable whose distribution shifts only in location, not dispersion?

Assume latent health H∗, SRHS H, fixed thresholds γj :

H = 1 H = 2 H = 3 H = 4 H = 5

γ1 γ2 γ3 γ4
H∗

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 6 / 58



Ordinal dispersion Inequality testing Ordinal again

SRHS: latent model

Could the ordinal data trends be explained by a latent health
variable whose distribution shifts only in location, not dispersion?

Assume latent health H∗, SRHS H, fixed thresholds γj :

H = 1 H = 2 H = 3 H = 4 H = 5

γ1 γ2 γ3 γ4
H∗

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 6 / 58



Ordinal dispersion Inequality testing Ordinal again

SRHS: simulated pure latent location shift

age=20

γ1 γ2 γ3 γ4
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Ordinal dispersion Inequality testing Ordinal again

SRHS: empirical vs. simulated pure latent location shift

Mean Variance

Data: NHIS
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Ordinal dispersion Inequality testing Ordinal again

SRHS: empirical vs. simulated pure latent location shift

Mean Variance
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DGP: for ages a = 20, . . . , 70, sample 1000 iid N(µa, 1) each for
increasing µa, convert to ordinal using fixed thresholds.
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Ordinal dispersion Inequality testing Ordinal again

First-order stochastic dominance (SD1)

H = 1 H = 2 H = 3 H = 4 H = 5

γ1 γ2 γ3 γ4
H∗

Pure location shift of H∗ =⇒ SD1 in H∗ =⇒ SD1 in H.

Proof: picture. F (j) = F ∗(γj), so
F ∗1 (γj) ≤ F ∗2 (γj) ⇐⇒ F1(j) ≤ F2(j)

Latent SD1 can also suggest the other type of health inequality
(“across socioeconomic groups”).

Rejecting ordinal SD1 =⇒ rejecting latent SD1 and pure location
shift.

But ordinal SD1 does not imply latent SD1; latent SD1 is refutable
but non-verifiable (without further assumptions).
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Ordinal dispersion Inequality testing Ordinal again

Ordinal SD1 inference

Let θj ≡ F2(j)− F1(j) = E[1{H2 ≤ j} − 1{H1 ≤ j}].

Ordinal SD1: H2 SD1 H1 ⇐⇒ θj ≤ 0, j = 1, 2, 3, 4.

Can use recent moment inequality tests: Andrews and Barwick
(2012), Romano, Shaikh, and Wolf (2014), McCloskey (2015), et
al.

Bayesian inference: Dirichlet–multinomial model.
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Ordinal dispersion Inequality testing Ordinal again

Literature: comparing Bayesian and frequentist inference

Various results, various settings.

Settings where frequentist inference is “too conservative” from
Bayesian perspective: Kline (2011) examples with multiple
inequalities; Goutis, Casella, and Wells (1996) multiple independent
one-sided hypotheses; Moon and Schorfheide (2012) CS for
partially ID’d parameter; Sims and Uhlig (1991) unit root testing.

Frequentist “too aggressive”: Lindley’s (1957) paradox and Berger
and Sellke (1987), testing point (or small interval) hypothesis with
prior P(H0) = 1/2; although Casella and Berger (1987b) disagree
that P(H0) is “objective.”

Similar/same: Casella and Berger (1987a) one-sided hypothesis
(scalar); Berger, Brown, and Wolpert (1994) conditional
frequentist.
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Ordinal dispersion Inequality testing Ordinal again

Literature: comparing Bayesian and frequentist inference

Various results, various settings.

Settings where frequentist inference is “too conservative” from
Bayesian perspective: Kline (2011) examples with multiple
inequalities; Goutis, Casella, and Wells (1996) multiple independent
one-sided hypotheses; Moon and Schorfheide (2012) CS for
partially ID’d parameter; Sims and Uhlig (1991) unit root testing.

Frequentist “too aggressive”: Lindley’s (1957) paradox and Berger
and Sellke (1987), testing point (or small interval) hypothesis with
prior P(H0) = 1/2; although Casella and Berger (1987b) disagree
that P(H0) is “objective.”

Similar/same: Casella and Berger (1987a) one-sided hypothesis
(scalar); Berger, Brown, and Wolpert (1994) conditional
frequentist.

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 11 / 58



Ordinal dispersion Inequality testing Ordinal again

Literature: comparing Bayesian and frequentist inference

Various results, various settings.

Settings where frequentist inference is “too conservative” from
Bayesian perspective: Kline (2011) examples with multiple
inequalities; Goutis, Casella, and Wells (1996) multiple independent
one-sided hypotheses; Moon and Schorfheide (2012) CS for
partially ID’d parameter; Sims and Uhlig (1991) unit root testing.

Frequentist “too aggressive”: Lindley’s (1957) paradox and Berger
and Sellke (1987), testing point (or small interval) hypothesis with
prior P(H0) = 1/2; although Casella and Berger (1987b) disagree
that P(H0) is “objective.”

Similar/same: Casella and Berger (1987a) one-sided hypothesis
(scalar); Berger, Brown, and Wolpert (1994) conditional
frequentist.

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 11 / 58



Ordinal dispersion Inequality testing Ordinal again

Literature: comparing Bayesian and frequentist inference

Various results, various settings.

Settings where frequentist inference is “too conservative” from
Bayesian perspective: Kline (2011) examples with multiple
inequalities; Goutis, Casella, and Wells (1996) multiple independent
one-sided hypotheses; Moon and Schorfheide (2012) CS for
partially ID’d parameter; Sims and Uhlig (1991) unit root testing.

Frequentist “too aggressive”: Lindley’s (1957) paradox and Berger
and Sellke (1987), testing point (or small interval) hypothesis with
prior P(H0) = 1/2; although Casella and Berger (1987b) disagree
that P(H0) is “objective.”

Similar/same: Casella and Berger (1987a) one-sided hypothesis
(scalar); Berger, Brown, and Wolpert (1994) conditional
frequentist.

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 11 / 58



Ordinal dispersion Inequality testing Ordinal again

Literature: SRHS inequality methodology

Goal: compare latent health distributions using ordinal data.

Literature: either assume parametric model (like ordered probit) or
discrete latent distribution with 5 categories (unknown cardinal
values).

Allison and Foster (2004): “median-preserving spread” (MPS),
called “the breakthrough in analyzing inequality with [SRHS] data”
by Madden (2014, p. 206).

SRHS-based inequality indexes (compute scalar summary of
“inequality” based on ordinal probabilities): Abul Naga and Yalcin
(2008), Reardon (2009), Silber and Yalonetzky (2011), Lazar and
Silber (2013), Lv, Wang, and Xu (2015), and Yalonetzky (2016).
Provides complete ordering of distributions, but many possible
indexes and weighting parameters/functions, implicit assumptions.

Only Lazar and Silber (2013) mention statistical inference (w/o
formal justification).
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: our contribution

Parametric: very strong; can relax?

Discrete: treats all “good” as having identical health (for
example); also unrealistic.

What if we assume a continuous latent distribution, but only
semi/nonparametric restrictions?

Various conditions on ordinal distributions: different combinations
(unions, intersections) of inequalities.

And discuss statistical inference seriously.

And Bayesian/frequentist differences.

More later (if time).

Meanwhile: we have these combinations of inequalities; does it
matter (practically) if we use frequentist or Bayesian methods?
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Goal

Goal: understand how shape of H0 affects Bayesian/frequentist
differences.

Methods: many possible methods. . . consider frequentist size of a
certain Bayesian hypothesis test.

Limit experiment: ignore influence of prior (for now) (kind of).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

(Generalized) Bayes decision rule: pick “reject” or “accept” to
minimize posterior expected loss (PEL).

PEL if reject: (type I loss) times (probability of type I error) is
(1− α) P(H0 | X).

PEL if accept: (type II loss) times (prob of type II) is
αP(Ha | X) = α[1− P(H0 | X)].

Thus: PEL(reject) is smaller iff P(H0 | X) ≤ α.

This is the “Bayesian test” we consider.

(Posterior is treated like p-value.)
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

(Generalized) Bayes decision rule: pick “reject” or “accept” to
minimize posterior expected loss (PEL).

PEL if reject: (type I loss) times (probability of type I error) is
(1− α) P(H0 | X).

PEL if accept: (type II loss) times (prob of type II) is
αP(Ha | X) = α[1− P(H0 | X)].

Thus: PEL(reject) is smaller iff P(H0 | X) ≤ α.

This is the “Bayesian test” we consider.

(Posterior is treated like p-value.)

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 15 / 58



Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

(Generalized) Bayes decision rule: pick “reject” or “accept” to
minimize posterior expected loss (PEL).

PEL if reject: (type I loss) times (probability of type I error) is
(1− α) P(H0 | X).

PEL if accept: (type II loss) times (prob of type II) is
αP(Ha | X) = α[1− P(H0 | X)].

Thus: PEL(reject) is smaller iff P(H0 | X) ≤ α.

This is the “Bayesian test” we consider.

(Posterior is treated like p-value.)

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 15 / 58



Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

(Generalized) Bayes decision rule: pick “reject” or “accept” to
minimize posterior expected loss (PEL).

PEL if reject: (type I loss) times (probability of type I error) is
(1− α) P(H0 | X).

PEL if accept: (type II loss) times (prob of type II) is
αP(Ha | X) = α[1− P(H0 | X)].

Thus: PEL(reject) is smaller iff P(H0 | X) ≤ α.

This is the “Bayesian test” we consider.

(Posterior is treated like p-value.)

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 15 / 58



Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

(Generalized) Bayes decision rule: pick “reject” or “accept” to
minimize posterior expected loss (PEL).

PEL if reject: (type I loss) times (probability of type I error) is
(1− α) P(H0 | X).

PEL if accept: (type II loss) times (prob of type II) is
αP(Ha | X) = α[1− P(H0 | X)].

Thus: PEL(reject) is smaller iff P(H0 | X) ≤ α.

This is the “Bayesian test” we consider.

(Posterior is treated like p-value.)

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 15 / 58



Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Methods: decision-theoretic setup

Test H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0.

Loss function: 1− α for type I error, α for type II error, zero
otherwise.

Minimax risk decision rule? (“Risk” as in expected loss.)

Unbiased frequentist test with size α (e.g., Lehmann and Romano,
2005, Problem 1.10).

If H0 true: risk is rejection probability (RP) times 1− α loss; RP
bounded above by size.

If H0 false: risk is 1− RP (type II error rate) times α loss; RP bdd
below by size (b/c unbiased).

Thus: size α gives max risk α(1− α) in both cases.

Even without unbiasedness, still approximately true (e.g., want size
0.052 instead of α = 0.05).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Assumptions

Limit experiment: single observation X, (local) parameter θ.

X and θ in Banach space, possibly infinite-dimensional.

φ(·): continuous linear functional.

Bernstein–von Mises (BvM) theorem: φ(X)− φ(θ) | θ ∼ F ,
φ(θ)− φ(X) | X ∼ F
F (·): continuous CDF, support R, symmetry F (−x) = 1− F (x).

F : properties satisfied by N(0, σ2).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Assumptions

Easier to have BvM with drifting centering value than drifting
DGP:

Xn =
√
n(µ̂− µ0,n) =

d−→N(0,Σ)︷ ︸︸ ︷√
n(µ̂− µ) +

≡θn→θ︷ ︸︸ ︷√
n(µ− µ0,n)

d−→
limit experiment︷ ︸︸ ︷
X ∼ N(θ,Σ), Σ known or Σ̂

p−→ Σ.

Posterior: θn =
√
n(µ− µ0,n),

θn −Xn =
√
n(µ− µ̂)

d−→ N(0,Σ).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Assumptions

BvM: same as improper uninformative prior in limit experiment.

Ex: if sampling dist X | θ ∼ N(θ, 1), prior θ ∼ N
(
m, τ2

)
, then

posterior
θ | X ∼ N

(
τ2X +m

τ2 + 1
,

τ2

τ2 + 1

)
,

so τ2 →∞ yields posterior θ | X ∼ N(X, 1).

Improper prior ok: only posterior probabilities used; unlike with
point null, where Bayes factors involve prior probabilities (e.g.,
Bayarri, Berger, Forte, and Garćıa-Donato, 2012).

Parametric BvM: Theorem 10.1 in van der Vaart (1998, §10.2) and
Theorems 20.1–3 in DasGupta (2008, §20.2).

Semiparametric BvM: Shen (2002), Bickel and Kleijn (2012),
Castillo and Rousseau (2015); Hahn (1997, Thm. G), Kwan (1999,
Thm. 2), Kim (2002, Prop. 1), Lancaster (2003, Ex. 2), Schennach
(2005, p. 36), Sims (2010, Sec. III.2), Norets (2015, Thm. 1).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: part (i), scalar case

Let X, θ ∈ R, X ∼ N(θ, 1), θ ∼ N(X, 1), H0 : θ ≤ 0, α = 10%.

Sampling distribution of X given θ = 0:
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Theorem: part (i), scalar case

Let X, θ ∈ R, X ∼ N(θ, 1), θ ∼ N(X, 1), H0 : θ ≤ 0, α = 10%.

P(H0 | X = 1.28) = α =⇒ reject iff X ≥ 1.28.

Size: supθ≤0 P(reject | θ) = P(X ≥ 1.28 | θ = 0) = α.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: part (i)

Prior slide: symmetry (not Gaussianity) is key.

In higher or infinite dimensions: if can write H0 in terms of
continuous linear functional φ(·) as Θ0 = {θ : φ(θ) ≤ 0}, and
functional has symmetric distribution, then can reduce to the
one-dimensional result and size is α.

Geometrically: Θ0 is half-space.

Ex: if X = (X1, . . . , Xd) is Gaussian with mean θ, then θ1 = φ(θ)
may be tested with (only) X1 = φ(X), reduces to scalar case.

Ex: X ∼ N(θ,V), then for constant vector c,
c′X ∼ N(c′θ, c′Vc), scalar Gaussian.

Ex: if X(·) is Gaussian process, then X(r) is scalar Gaussian. So is
φ(X(·)) if φ belongs to the dual of the Banach space of X(·).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: part (ii,iii)

H0
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Theorem: part (ii,iii)

P(H0 | X) = α

H0
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P(H0 | X) < α

P(H0 | X) = α

H0
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Theorem: part (ii,iii)

P(H0 | X) < α

P(H0 | X) = α P(rej | θ) = α

H0
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: part (ii,iii)

What if d > 2 dimensions, or infinite?

Rd: same argument applies if carved away part has positive
Lebesgue measure and distribution has support on Rd.

Infinite: basically, check if there is a finite-dimensional test of a
necessary (not sufficient) condition of the infinite-dimensional H0.

A =⇒ B means “reject B” =⇒ “reject A.” So,
P(rej B | θ(·)) < P(rej A | θ(·)), and
P(rej B | θ(·)) > α =⇒ P(rej A | θ(·)) > α.

Ex: H0 : θ(·) ≤ 0(·) =⇒ (θ(r1), θ(r2)) ≤ (0, 0).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: part (iv)

If Θ0 not contained in half-space, then. . .

Anything’s possible: size{>,=, <}α.

Further: may depend on distribution, not just shape of Θ0.

Examples follow: bivariate normal distribution, unit variances,
correlation ρ.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Thm(iv): example of size depending on ρ

H0 H0
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Thm(iv): size is 0% if ρ = 1 (P(H0 | X) = 1, ∀X)

H0 H0
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Thm(iv): size is 100% if ρ = −1 (set θ1 = θ2 = 0)

H0 H0
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Thm(iv): example of H0 : θ1θ2 ≥ 0

H0

H0
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Thm(iv): size is 100% if ρ = −1 (set θ1 = θ2 = 0)
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Thm(iv): size is α if ρ = 1 (let θ1 →∞, θ2 = 0)

H0

H0
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: discussion

Part (iii) is partly due to small prior P(H0).

Flat prior on θ means P(H0) changes with H0.

Would be interesting to examine P(H0) = 1/2 like J. Berger et al.

But: not the only factor; shape still important.

Ex: H0 : θ1θ2 ≥ 0 vs. H0 : θ1 ≤ 0.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Theorem: discussion

Theorem applies to Θ0 = {θ : g(θ) ≤ g0} as special case, but g(·)
not restricted to directional differentiability, etc.

Another special case: if multiple linear inequalities, then size
strictly above α. (If single, then size α.)

It matters greatly whether H0 : θ ∈ Θ0 or H0 : θ 6∈ Θ0: if part (iii)
applies to H0 : θ ∈ Θ0, then part (iv) applies to H0 : θ 6∈ Θ0.

Ex: stochastic dominance.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

First-order stochastic dominance (SD1)

One-sample SD1 (see paper for two-sample):
FX(·) ≤ F0(·) ⇐⇒

√
n(FX(·)− F0(·)) ≤ 0(·).

Donsker’s thm:
√
n(F̂X(·)− FX(·)) B(FX(·)), B(·) is standard

Brownian bridge.

Bernstein–von Mises thm: Lo (1983, 1987) or Castillo and Nickl
(2014, Thm. 4).

Like before, Xn(·) =
√
n(F̂X(·)− F0,n(·)),

θn(·) =
√
n(FX(·)− F0,n(·)).

Limit experiment: H0 : θ(·) ≤ 0(·), X(·)− θ(·) | θ(·) ∼ B(FX(·)).

Theorem part (iii) applies here, when H0 is SD1. (Bayesian test of
necessary condition (θ(r1), θ(r2)) ≤ (0, 0) has size above α
already.) But, (iv) applies if H0 is non-SD1.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

SD1: analytic results

Prop. 2: P(SD1 | X(·) = 0(·)) = 0. (Similar to p-value
comparisons in Kline (2011).)

Prop. 3: Bayesian test’s type I error rate is 100% when θ(·) = 0(·).

Cor. 4: rejection probability is zero for non-SD1 when θ(·) = 0(·).
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

SD1: simulations (fixed dataset)

Posterior probs, Xi = i/(n+ 1) vs. Unif(0,1) (or vs. Yi = i/n).

Comparison distribution

H0 n Unif(0, 1) Y

SD1 10 0.103 0.097
SD1 40 0.028 0.025
SD1 100 0.009 0.010
SD1 ∞ 0.000 0.000

non-SD1 10 0.897 0.903
non-SD1 40 0.972 0.975
non-SD1 100 0.991 0.990
non-SD1 ∞ 1.000 1.000
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

SD1: simulations (type I error rate)

Rejection probabilities, α = 0.1, FX = F0 (or FX = FY ).

Comparison distribution

H0 n Unif(0, 1) Y

SD1 10 0.740 0.655
SD1 40 0.935 0.917
SD1 100 0.981 0.977
SD1 ∞ 1.000 1.000

non-SD1 10 0.000 0.005
non-SD1 40 0.000 0.000
non-SD1 100 0.000 0.000
non-SD1 ∞ 0.000 0.000
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Curvature: background

Curvature constraints arise from second-order conditions on
optimization problems (utility max, cost min, etc.).

O’Donnell and Coelli (2005): Bayesian approach appealing for
testing curvature due to relative simplicity.

Here: test concavity of cost function wrt input prices.

Translog functional form (Christensen, Jorgenson, and Lau, 1973):
parametric, but flexible enough to allow violations.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Curvature: translog model (Christensen et al., 1973)

Output y; input prices w = (w1, w2, w3); total cost C(y,w).

ln(C(y,w)) =
5∑

k=1

k∑
m=1

βkmxkxm,

(x1, . . . , x5) ≡
(
1, ln(y), ln(w1), ln(w2), ln(w3)

)
.

C(y,w) concave in w (e.g., Kreps, 1990, §7.3).

=⇒ Hessian matrix (of C wrt w) negative semidefinite (NSD).

Here: test “local” NSD at (1, 1, 1, 1); necessary (not sufficient) for
global NSD. (Check signs of principal minors. . . .)
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Curvature: simulation setup

Parameters: impose homogeneity of degree one in prices (also
imposed in estimation).

Parameters: principal minors all satisfy NSD and non-zero (i.e.,
strictly inside Θ0), except determinant is zero due to homogeneity.

Sampling: iid, ln(y) and all ln(wk) are N(0, σ = 0.1),
ε ∼ N(0, σε), all variables mutually independent.

Posterior: Bayesian bootstrap or OLS-based.

Other: n = 100 observations, 500 simulation replications, 200
posterior draws.
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Ordinal dispersion Inequality testing Ordinal again Setup Theorem Examples

Curvature: simulated type I error rates
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: SD1

One type of “inequality” is disparities between subpopulations.

Latent first-order stochastic dominance (SD1) would show one
distribution is unambiguously better.

But does ordinal SD1 imply latent SD1? Or: is ordinal SD1 at
least a testable implication of latent SD1?
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: SD1

Proposition 2 in “paper.”

Earlier (Prop 2.i): if same γj , then latent SD1 =⇒ ordinal SD1.

(2.ii) If different γj : can’t tell.

(2.iii,iv) To have ordinal SD1 =⇒ latent SD1, need very strong
assumption, like pure location shift.
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: SD1

What if latent location–scale model? Unknown base distribution
F ∗(·), assume F ∗X(r) = F ∗((r − µX)/σX),
F ∗Y (r) = F ∗((r − µY )/σY ).

(No moments required; e.g., Cauchy F ∗ ok.)

Latent “restricted SD1” on interval [a, b]: Condition I of Atkinson
(1987, p. 751), F ∗X(r) ≤ F ∗Y (r) for all r ∈ [a, b].

See also Davidson and Duclos (2000, 2013).

(2.v) If same γj and location–scale model, then ordinal SD1 =⇒
latent restricted SD1 on interval [γ1, γ4]. (Reason: location–scale
model implies at most one crossing of latent CDFs. So, may cross
in tails, but can’t secretly cross and then cross back within any
[γj−1, γj ].)
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: motivation for dispersion

Some quotations from David Madden’s chapter in the
Encyclopedia of Health Economics (2014):

“In the literature there is still only a limited number of indices
specifically designed for ordinal data”: and, most treat latent
distribution as discrete.

“For the case of ordinal health measures, which are arguably more
widely employed, dominance results are generally less applicable,
there are fewer inequality indices and statistical inference is less
well developed.”

“The breakthrough in analyzing inequality with [SRHS] data came
from Allison and Foster (2004).”
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: dispersion

Other type of inequality: individuals within the same population.

Pure location shift has zero effect on “dispersion.” Similarly, γj
can all shift by some constant ∆γ without affecting results, unlike
for SD1.

But still can’t have each γj shift idiosyncratically.

Lindeboom and van Doorslaer (2004) call these “index shift” and
“cut-point shift” (respectively). They and Hernández-Quevedo,
Jones, and Rice (2005) find mixed evidence of no shift, index shift,
and cut-point shift among different subpopulations in Canadian
and British data (respectively).
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: dispersion

Most fundamentally: we can learn about certain latent
interquantile range (IQR) differences (in some cases).

Then: stronger assumptions allow extrapolation from these IQR
differences to other/all IQR differences.

If even stronger assumptions, including no γj shift: then can even
infer latent SD2.
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Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: dispersion, CDF crossing

(Prop 3.i) If first ordinal CDF crosses the second from below, then
know at least some interquanile ranges are larger in second latent
distribution.

“Median-preserving spread” of Allison and Foster (2004) is special
case of single CDF crossing.

Ordinal CDF crossing implies no ordinal SD1. But, if γj shift, then
possibly latent SD1.
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SRHS inequality: dispersion, CDF crossing
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SRHS inequality: dispersion, CDF crossing

(3.ii) Assuming latent location–scale model lets you infer the scale
parameter is larger if even one IQR is larger, which then implies all
IQRs are larger.

(3.iii) If also F ∗(·) symmetric about zero, and no γj shift, and
second ordinal distribution’s median is strictly lower: then latent
SD2. (Reason: strong enough assumptions to characterize SD2 by
only µ and σ.)

We call this a “median-decreasing spread.” Even with all these
assumptions, if the medians are identical (as in median-preserving
spread), then SD2 is ambiguous.

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 45 / 58



Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: dispersion, CDF crossing

(3.ii) Assuming latent location–scale model lets you infer the scale
parameter is larger if even one IQR is larger, which then implies all
IQRs are larger.

(3.iii) If also F ∗(·) symmetric about zero, and no γj shift, and
second ordinal distribution’s median is strictly lower: then latent
SD2. (Reason: strong enough assumptions to characterize SD2 by
only µ and σ.)

We call this a “median-decreasing spread.” Even with all these
assumptions, if the medians are identical (as in median-preserving
spread), then SD2 is ambiguous.

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 45 / 58



Ordinal dispersion Inequality testing Ordinal again

SRHS inequality: dispersion, fanning out

Can we ever infer dispersion changes without a CDF crossing?

Yes, with stronger assumptions: symmetric, unimodal latent
distributions.

(Prop 4.i) Since unimodal symmetric implies latent CDFs are
concave after their medians, then “fanning out” of ordinal CDFs
after median implies a certain IQR is larger in the lower
distribution.
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SRHS inequality: dispersion, fanning out

(4.ii) Similar (mirror image) result for below median.

(4.iii) Adding location–scale assumption again allows extrapolation
from certain IQRs to all IQRs (via σ).
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Prior-adjusted Bayesian inference

What if adjust prior so that P(H0) = 1/2? (As advocated as
“objective” by J. Berger et al.)

Easy to pre-compute (depends only on relationship and number of
categories): can simulate P(H0) given uniform Dir(1, . . . , 1) prior,
then multiply prior over H0 by constant (simulated) P(H1)/P(H0)
and renormalize.

Leads to adjusting posterior by constant and renormalizing; e.g.,
see Goutis, Casella, and Wells (1996), eqn (9).

Weird: use different prior to examine ordinal SD1 vs.
single-crossing (vs. ...).

Also weird to have P(H0) = 1/2 for SD1 if you’re just looking at
all pairs of US states or something, like Allison and Foster (2004);
can’t have 1/2 probability on both X SD1 Y and Y SD1 X.

But, worth trying, simulating (haven’t done yet).
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Ordinal dispersion: median-preserving spread (MPS)

Allison and Foster (2004): propose MPS, inspired by
mean-preserving spread but for ordinal SRHS.

Limitation: must have same median (and can’t be first or last
category).

If known median category m, then set of inequalities like SD1.

If not: union of sets of inequalities (union over possible m.)

m: shared median; i.e., F1(m− 1) < 1/2 ≤ F1(m), same for F2.

For j < m, F1(j) ≤ F2(j); for j ≥ m, F1(j) ≥ F2(j).

Let θj ≡ F1(j)− F2(j) again.

MPS is θj ≤ 0 for j < m and θj ≥ 0 for j ≥ m.
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Empirical: data and methods

Current population survey (CPS).

Annual social and economic (ASEC) supplement.

Started including health in 1994.

Comparing across age: mostly obvious SD1.

Here, focus on non-obvious cases.

“Black” individuals born 1972–76, observed in 1996, 2001, 2006,
2011, 2016, around n = 1400 each.

“Y MPS X” means Y is a MPS of X.

Frequentist: Andrews and Barwick (2012) refined moment
selection (RMS).

Bayesian: Dirichlet–multinomial model, uninformative prior.
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Empirical: SD1 and MPS over age

X: 20–24 years old; Y : age range in table.

p-values and posterior probabilities; bold if below 5%.

H0 : Y SD1 X H0 : X SD1 Y

Y RMS Bayes RMS Bayes

[ 25, 29 ] 8.0% 0.8% 63.6% 13.1%
[ 30, 34 ] 100% 42.3% 3.7% 0.1%
[ 35, 39 ] 100% 74.7% 0.1% 0.0%
[ 40, 44 ] 100% 86.0% 0.0% 0.0%

Dave Kaplan (Missouri) and Longhao Zhuo Ordinal data: Bayesian and frequentist perspectives 53 / 58



Ordinal dispersion Inequality testing Ordinal again

Empirical: SD1 and MPS over age

X: 20–24 years old; Y : 25–29 years old.

H0 in table header. (MPS: same median, “very good.”)

Y SD1 X X SD1 Y Y MPS X X MPS Y

RMS 8.0% 63.6% 37.2% 9.3%
Bayes 0.8% 13.1% 7.7% 0.0%
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Empirical: SD1 and MPS over generation (at same age)

Ages 65–69. X born 1937–41, Y born 1932–36.

B=“black”; W=“white”; M=“male”; F=“female”

H0 : Y MPS X H0 : Y SD1 X H0 : X SD1 Y

Sample RMS Bayes RMS Bayes RMS Bayes

B 100% 25.8% 39.7% 3.2% 100% 17.9%
BM 76.4% 11.7% 12.4% 0.1% 100% 39.4%
BF 100% 10.3% 100% 25.4% 61.2% 4.3%
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Empirical: SD1 and MPS over generation (at same age)

Ages 65–69. X born 1947–51, Y born 1942–46.

B=“black”; W=“white”; M=“male”; F=“female”

H0 : Y MPS X H0 : Y SD1 X H0 : X SD1 Y

Sample RMS Bayes RMS Bayes RMS Bayes

M 100% 26.9% 51.4% 9.3% 58.9% 6.8%
BM 100% 38.3% 4.6% 1.2% 16.4% 2.0%
WM 100% 12.4% 100% 15.8% 65.3% 10.3%
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Outline

1 Motivation: health inequality/dispersion in ordinal data

2 Frequentist size of Bayesian inequality tests

Setting

Theorem

Examples

3 Ordinal data again

4 Conclusion
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Conclusion

Summary (Bayes/freq): if null hypothesis is smaller than
half-space, then Bayesian test has (asymptotic) size above α; if
not, then can depend on sampling distribution, too.

Summary (ordinal): given continuous latent distributions but no
parametric model, certain latent distribution relationships imply
certain ordinal relationships, under certain assumptions. Ordinal
relationships are combinations of moment inequalities.

Future work (Bayes/freq): incorporate proper priors? which prior
(or loss function) achieves nominal size?

Future work (ordinal): more results with shape restrictions?
multivariate ordinal, like e.g. Yalonetzky (2013)? Bayesian
inference with P(H0) = 1/2? extend to settings like regression?

Thank you!

(And further questions or comments are welcome)
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