1. a. Prove that if A and B are invertible then the product AB is invertible.
 b. Prove that if the product of two square matrices AB is invertible then both A and B must be invertible. (Cannot use determinants.)

2. Determine if the following matrices are invertible. If an inverse exists, find it.

 \[
 A = \begin{bmatrix}
 2 & 0 & -1 \\
 -3 & 3 & 4 \\
 2 & 1 & 0
 \end{bmatrix},
 B = \begin{bmatrix}
 2 & 1 & 5 & 7 \\
 0 & 2 & 1 & 3 \\
 0 & 0 & 3 & 1 \\
 0 & 0 & 0 & 8
 \end{bmatrix},
 C = \begin{bmatrix}
 3 & -1 & 1 \\
 1 & 4 & 3 \\
 5 & -6 & -1
 \end{bmatrix}
 \]

3. Find all possible values of x that will make the following matrix singular.

 \[
 \begin{bmatrix}
 2 & 3 & -1 \\
 x & -3 & 2 \\
 0 & 1 & x
 \end{bmatrix}
 \]

4. Which of the following are true? If true, give your reasoning. If not true, give an example to show that it may not be true.
 i. Inverse of a triangular matrix, if it exists, is also triangular.
 ii. Inverse of a diagonal matrix, if it exists, is also diagonal.
 iii. Inverse of a symmetric matrix, if it exists, is also symmetric.
 iv. If an invertible matrix has integer entries, then its inverse also has integer entries.