Math 331 - Summary of Chapter VI -

1. Eigen Values and Eigen Vectors

V is a vector space over \mathbb{R}, the real numbers (or \mathbb{C}, the complex numbers). Let $T: V \rightarrow V$ be a linear transformation.

A scalar λ is called an eigenvalue of T if there is a non-zero vector v in V such that $T(v) = \lambda v$. This non-zero vector v is called an eigenvector of T with the eigenvalue λ.

If A is a square matrix of size n over \mathbb{R} (or \mathbb{C}, the complex numbers), then the eigenvalues and eigen vectors of A are the eigenvalues and the eigen vectors of the linear transformation on \mathbb{R}^n (or \mathbb{C}^n defined by multiplication by A. Let $V = \mathbb{R}^n$ (or \mathbb{C}^n.

A scalar λ is called an eigenvalue of A if there is a non-zero vector v in V such that $Av = \lambda v$. This non-zero vector v is called an eigenvector of A with the eigenvalue λ.

The characteristic polynomial $P_A(\lambda)$ of A is the polynomial

$$ \text{det}(A - \lambda I) = (-1)^n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0 $$

For a matrix A, and a scalar λ,

$E_\lambda(A) = \{v|A(v) = \lambda v\}$ is the subspace of all eigen vectors with eigen value λ. This is called the eigen space of λ.

Thus, dimension of $E_\lambda(A)$ is not zero if and only if λ is an eigenvalue of A.

Theorem 1. x is an eigen value of A if and only if x is the root of the characteristic polynomial of A, that is if and only if $P_A(x) = 0$.

Theorem 2. Similar matrices have the same characteristic polynomial and hence the same eigen values.

Theorem 3. A and A^t, the transpose of A, have the same characteristic polynomial and the same eigen values.

As a result of Theorem 2, the eigen values and eigen vectors of a linear transformation T as defined above can be computed by finding those of the matrix of T with respect to some basis B of the vector space V. Theorem 2 says that the eigen values and eigen vectors do not depend on the choice of the basis.

To Compute the eigen values and the eigen vectors of a matrix A.

1. Compute $A-xI$.
2. Compute determinant $(A-xI) = P_A(x)$
3. Solve $P_A(x) = 0$ to find the roots $x = \lambda_1, \cdots, \lambda_t$
4. Proceed to find the eigen vectors. $E_{\lambda_i}(A) = \text{Null space of } (A - \lambda_i I)$.

Use Gaussian elimination to find a basis for the null space of $A - \lambda_i I$ for each i.

Theorem 4. If v_1, v_2, \cdots, v_n are eigen vectors of A with distinct eigen values $\lambda_1, \cdots, \lambda_n$, then v_1, v_2, \cdots, v_n are linearly independent.

An eigen value λ of a matrix A is said to be of multiplicity k if $(\lambda - x)^k$, divides the characteristic polynomial $P_A(x)$ and $(\lambda - x)^{k+1}$ does not divide $P_A(x)$. That is, λ is an eigen value with multiplicity k if λ is a root of $P_A(x) = 0$ with multiplicity k.

1
Theorem 5: If \(\lambda \) is an eigen value of \(A \) with multiplicity \(k \) then \(\dim E_\lambda(A) \leq k \).

To compute the multiplicity of the eigen value \(\lambda \) and \(\dim E_\lambda(A) \),

Factor the characteristic polynomial \(P_A(x) \). Then the multiplicity of \(\lambda \) equals the power of \((x - \lambda) \) in the factorization of \(P_A(x) \).

Compute a row echelon form of matrix \(A - \lambda I \). Dimension of the eigne space of \(\lambda \) is the number of columns without a leading 1.

2. Diagonalization

A matrix \(A \) is **diagonalizable** if there is an invertible matrix \(X \) such that \(X^{-1}AX \) is a diagonal matrix.

Theorem 6. An \(n \times n \) matrix \(A \) is diagonalizable over \(\mathbb{R} \) (or \(\mathbb{C} \)) if and only if there is a basis for \(\mathbb{R}^n \) (respectively \(\mathbb{C}^n \)) consisting of eigen vectors of \(A \).

To determine if a given matrix \(A = (a_{ij})_{n \times n} \) is diagonalizable:

1. Compute the eigen values and their multiplicities as in the previous section.
2. Let \(\lambda_1, \cdots, \lambda_t \) be the distinct eigen values of \(A \) with multiplicities \(k_1, k_2, \cdots k_n \) respectively.

Compute the basis for the eigen spaces \(E_{\lambda_i}(A) \) as before. If \(\dim (E_{\lambda_i}(A)) < k_i \) for any \(i \), then \(A \) is not diagonalizable. If \(\dim E_{\lambda_i}(A) = k_i \) for all \(i \), then \(A \) is diagonalizable. Collect all the vectors in the bases of \(E_{\lambda_i}(A) \) for each \(i \), to get a \(v_1, v_2, \cdots v_n \) consisting of eigen vectors. Let \(X = v_1, v_2, \cdots v_n \). Then \(X^{-1}AX \) is diagonal.

3. Orthogonal diagonalization

A matrix \(A \) is said to be orthogonally diagonalizable if there is an orthogonal matrix \(X \) such that \(XAX^{-1} \) is diagonal. \(A \) is orthogonally diagonalizable if there is an orthonormal basis consisting of eigen vectors.

Theorem 7. Suppose that \(A \) is a symmetric matrix. If \(v_1 \) and \(v_2 \) are eigen vectors with distinct eigen values \(t_1 \) and \(t_2 \) respectively, then \(v_1 \) and \(v_2 \) are orthogonal to each other.

Theorem 8. If \(A \) is orthogonally diagonalizable then \(A \) must be symmetric.

Suppose that \(A \) is symmetric. To orthogonally diagonalize \(A \): 1. Proceed as in section 2 to find the eigen values and bases for eignen spaces.
2. Use Gram-Schmidt process to find orthonormal basis for each eigen space. Putting these together gives us an orthonormal basis of eigen vectors.