The Bystander Effect
in a Multi-Player Dictator Game

Karthik Panchanathan
Willem E. Frankenhuis
Joan B. Silk

The Good Samaritan
by Ho Qi

The Bystander Effect
Latané and Nida, 1981

For more than half an hour thirty-eight respectable, law-abiding citizens in Queens watched a killer stalk and stab a woman [Kitty Genovese] in three separate attacks in Kew Gardens. Twice, the sound of their voices and the sudden glow of their bedroom lights interrupted him and frightened him off. Each time he returned, sought her out and stabbed her again. Not one person telephoned the police during the assault; one witness called after the woman was dead.

– NY Times, 1964

Do the presence of others reduce prosocial preferences?

Study 1 – Multi-player Dictator Game,
Laboratory, Real Stakes

• N = 198 UCLA students
 (110 females, 88 males)
• Mean age = 20.3 (SD = 3.1)
• For each condition, we had 22 groups, comprised of 1 recipient and 1, 2, or 3 dictators

1 Dictator

2 Dictators

3 Dictators

• $24
• $18
• $16

• $18
• $16
• $16
Study 2 – Multi-player Dictator Game, Online, Hypothetical Stakes

- N = 215 Craigslist volunteers (157 females, 58 males)
- Well-represented age distribution from 18–64
- For each condition, there were only Dictators, no Recipients

Study 3 – Strategy Method, Laboratory, Real Stakes

- N = 80 UCLA students (37 females, 43 males)
- Mean age = 20.0 (SD = 1.8)
- We recruited 84 subjects (28 triads), but excluded 4 subjects (2 dictators, 2 recipients) who said they did not take the study seriously.
Most subjects revealed unconditional response strategies (most common: $0, $3, $6, $9).

There were some “compensators.”

There were some “matchers.”

Study 4 – Strategy Method, Online, Hypothetical Stakes

- N = 98 Craigslist volunteers (78 females, 20 males)
- Well-represented age distribution from 18–54
- There were only Dictators, no Recipients

2 Dictators
Study 5 – Bargaining Game, Lab, Real Stakes

- N = 84 UCLA students (43 females, 41 males)
- Mean age = 19.4 (SD = 1.8)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Study</th>
<th>Sample Size</th>
<th>Mean Payoff ($)</th>
<th>95% CI ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>1 dictator</td>
<td>1</td>
<td>6.68</td>
<td>4.73, 8.64</td>
</tr>
<tr>
<td>Lab</td>
<td>2 dictator</td>
<td>1</td>
<td>4.18</td>
<td>2.95, 5.50</td>
</tr>
<tr>
<td>Lab</td>
<td>3 dictator</td>
<td>1</td>
<td>4.23</td>
<td>3.09, 5.41</td>
</tr>
<tr>
<td>Lab</td>
<td>Strategy</td>
<td>3</td>
<td>4.82</td>
<td>3.36, 6.43</td>
</tr>
<tr>
<td>Lab</td>
<td>Bargain</td>
<td>5</td>
<td>4.51</td>
<td>2.93, 6.18</td>
</tr>
<tr>
<td>Online</td>
<td>1 dictator</td>
<td>2</td>
<td>9.07</td>
<td>7.18, 10.98</td>
</tr>
<tr>
<td>Online</td>
<td>2 dictator</td>
<td>2</td>
<td>13.18</td>
<td>11.23, 15.31</td>
</tr>
<tr>
<td>Online</td>
<td>3 dictator</td>
<td>2</td>
<td>13.05</td>
<td>11.25, 15.00</td>
</tr>
<tr>
<td>Online</td>
<td>Strategy</td>
<td>4</td>
<td>13.56</td>
<td>12.78, 14.33</td>
</tr>
</tbody>
</table>

Recipient Payoffs

Dictator

Proposals

Prosocial subject transferred more in the five Prosocial–Individualist dyads with asymmetric transfers.
This really made me think. The fair thing would be for everyone to end up with the same amount of money, which means that the allocators should give up $6.00 each. But if you have a stingy allocator, then it would be fair to split the $18 with the innocent recipient. From there, it may seem fair to continue to give more than $6.00 to make the innocent person even. After that, since $6.00 is the fair amount, it should not matter that the other allocator is very generous. I should still give my fair share instead of letting the one allocator bear all the load. Of course, that means that the recipient gets more than a “fair” $12.00, but since I’m not out any more money than my fair share, why should I care?

— Online research participant