Abstract. We treat second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L^p classes. We establish:

1. Mapping properties for the double and single layer potentials, as well as the Newton potential;

2. Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given L^p space automatically assures their solvability in an extended range of Besov spaces;

In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients.

This is joint work with Svitlana Mayboroda.