Simple explicit formulae for finite time blow up solutions to the complex KdV equation

Y. Charles Li

Department of Mathematics, University of Missouri, Columbia, MO 65211, United States

Abstract

Simple explicit formulae for finite time blow up solutions to the complex KdV equation are obtained via a Darboux transformation. Diffusions induced by perturbations are calculated.

© 2007 Elsevier Ltd. All rights reserved.

1. The formulae

By viewing the variable \(u(t, x) \) in the KdV equation to be a complex-valued function of still two real variables \((t, x)\), one obtains the so-called complex KdV equation. Complex KdV generated some interests recently \([2,9,3,4]\). Unlike the original real KdV, complex KdV is an explosive equation that has abundant finite time blow up solutions \([2,9,1]\). Complex KdV also has applications \([5,7,8]\).

In this note, we will derive some simple explicit formulae for some finite time blow up solutions to the complex KdV equation. For example, the following

\[
 u(t, x) = i + \frac{8\exp[12(1 - t) + i(8t + 2x)]}{\exp[12(1 - t) + i(8t + 2x)] + 1^2}
\]

(1.1)

is a simple finite time blow up solution. When \(t = 0, u(0, x) \) is \(C^\infty \). Finite time blow up is developed when \(t = 1 \), with two singularities of \(u(1, x) \) at \(x = \frac{3\pi}{4} \) and \(x = \frac{5\pi}{4} \). When \(t \in [0, 1) \), \(u(t, x) \) is \(C^\infty \) in both \(x \) and \(t \). In fact, this solution represents a finite time blow up homoclinic orbit. As \(t \to \pm \infty \), \(u \to i \).

The complex KdV equation

\[
u_t = 6uu_x - u_{xxx}
\]

has a Lax pair

\[
 L\psi = \lambda \psi, \quad \psi_t = A\psi,
\]

where

\[
 L = - \partial_x^3 + u, \quad A = -4\partial_x^3 + 6u\partial_x + 3u_x.
\]

E-mail address: cli@math.missouri.edu

0960-0779/ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2007.04.015
u and ψ are complex-valued functions of two real variables (t,x), and λ is a complex spectral parameter.

Let u be a solution to the complex KdV, and φ be a solution to the Lax pair at $\lambda = \nu$ for some ν, define

$$U = u - 2\partial_t^2 \ln \varphi, \quad \Psi = \psi_x - (\partial_x \ln \varphi)\psi,$$

does the Lax pair at λ and an arbitrary λ. Then U is also a solution to the complex KdV, and Ψ solves the Lax pair at λ and the same arbitrary λ. This is the so-called Darboux transformation.

Next we pose the periodic boundary condition

$$u(t,x + 2\pi) = u(t,x)$$

to the complex KdV. For any complex constant $a = a_c + i a_i$, $u(t,x) = a$ is a solution to the complex KdV. For any $k \in \mathbb{Z}$, the Lax pair has two linearly independent solutions at $\lambda = a$ and $\lambda = \nu = a + k^3$:

$$\psi_{\pm} = \exp\{\pm(\omega t + ikx)\},$$

where

$$\omega = 6iak + 4ik^3.$$

Let

$$\varphi = c_+\psi_+ + c_-\psi_-,$$

where c_{\pm} are two arbitrary complex constants. Applying the Darboux transformation, one obtains

$$U = a + 2k^2 \left[1 - \frac{(\exp\{2\omega t + i2kx + \nu + i\gamma\} - 1)^2}{(\exp\{2\omega t + i2kx + \nu + i\gamma\} + 1)^2} \right],$$

where $c_+/c_- = \exp\{\nu + i\gamma\}$ and (ν, γ) are arbitrary real constants. Let $\omega = \omega_r + i\omega_i$, where

$$\omega_r = -6ak, \quad \omega_i = 6ak + 4k^3.$$

The singularities of the solution happens at

$$t = -\frac{\rho}{2\omega_r}, \quad x = \frac{1}{2k} \left[\frac{\rho \omega_i}{\omega_r} - \gamma + (2n + 1)\pi \right], \quad \forall n \in \mathbb{Z}.$$

When $\omega_i \neq 0$, the solution represents a finite time blow up homoclinic orbit asymptotic to $u = a$. That is, as $t \to \pm\infty$, $U \to a$. When $\omega_i = 0$ and $\rho \neq 0$, the solution is a C^∞ global complex-valued solution. When $\omega_i = 0$ and $\rho = 0$, the solution has singularities for any t. Finally, the choice $K = 1, a = i, \rho = 12$, and $\gamma = 0$ reduces the solution to (1.1).

Of course, one can iterate the Darboux transformation to get more and more solutions. Next we linearize the complex KdV around $u = a$, we get

$$u_t = \mathcal{L}u,$$

where

$$\mathcal{L}u = 6\omega_i u_x - u_{xxx}.$$

The spectrum of \mathcal{L} consists of eigenvalues

$$\sigma = 6iak + ik^3, \quad k \in \mathbb{Z}.$$

When $\omega_i \neq 0$, \mathcal{L} cannot generate a C_0 semigroup. In fact, for any $u(0,x) \in H^s$ (The Sobolev space on the periodic domain $[0,2\pi]$),

$$e^{\tau \mathcal{L}}u(0,x) \notin H^s, \quad \forall \tau \neq 0.$$

Locating the complex KdV around $u = a$ by setting $u = a + v$, one gets

$$v_t = \mathcal{L}v + 6\omega_i v_x.$$

The complex KdV in this case is not locally well-posed in H^s for any s.

Finally we do some formal calculation on diffusions. There is an infinite sequence of invariants for (complex) KdV [6]:

$$I_n = \int_0^{2\pi} Q_n(u)dx, \quad n = 0, 1, 2, \ldots;$$
where
\[Q_n(u) = [u^{(n)}]^2 + \alpha_1 u [u^{(n-1)}]^2 + \ldots \]
is a linear combination of monomials
\[[u^{(m_1)}]_{m_1} \ldots [u^{(m_r)}]_{m_r} \]
of index
\[\text{ind} = \sum_{i=1}^{r} m_i + \frac{1}{2} \sum_{r=1}^{c} m_rm_l \]
equal to \(n + 2 \). Of course, the mean
\[M = \int_{0}^{2\pi} u \, dx \]
is also an invariant. We like to know the diffusions of these invariants under the perturbed complex KdV flow
\[ut = 6uux - u_{xxx} + eF(u). \]
All the time derivatives of the invariants are evaluated along (1.1).

When \(F(u) = u_{xx} \), the real and imaginary parts of \(u \) receive equal decay from this perturbation:
\[\frac{dM}{dt} = e \int_{0}^{2\pi} u \, dx = 0, \quad \text{except} \quad t = 1; \]
thus, \(\lim_{t \to 1} \frac{dM}{dt} = 0. \)

\[\frac{dI_0}{dt} = 2e \int_{0}^{2\pi} |u|^2 \, dx \]
where \(\theta = 12(t - 1) + i(8t + 2x) \). Thus, \(\lim_{t \to 1} \frac{dI_0}{dt} = 0. \) In fact,
\[\frac{dI_n}{dt} = 0, \quad \text{except} \quad t = 1; \]
for all \(n \). Thus, the perturbation \(F(u) = u_{xx} \) is a diffusionless perturbation.

When \(F(u) = \bar{u} \), the real part of \(u \) grows and the imaginary part decays from this perturbation:
\[\frac{dM}{dt} = e \int_{0}^{2\pi} \bar{u} \, dx = -\epsilon \alpha 2\pi, \quad \text{except} \quad t = 1; \]
thus, \(\lim_{t \to 1} \frac{dM}{dt} = -\epsilon \alpha 2\pi. \)

\[\frac{dI_0}{dt} = 2e \int_{0}^{2\pi} |u|^2 \, dx \]
where \(\theta_1 = 12(t - 1) \) and \(\theta_2 = 8t + 2x \). There is a \(\delta > 0 \) such that
\[\cos \theta_2 < -1 + \frac{1}{2} \epsilon^2, \quad \zeta \in [-\delta, \delta], \quad \theta_2 = \pi + \zeta. \]

Let \(t = 1 - \beta \), then the integral is larger than
\[\frac{1}{2} \int_{-\delta}^{\delta} \frac{1}{(1 + e^{2\beta} - 2e^{12\beta} + e^{12\beta} \zeta^2)^{\frac{3}{2}}} \, d\zeta \]
which is larger than \(\frac{1}{2} \epsilon^{-3} \) when \(\beta \) is sufficiently small. Letting \(\delta \to 0^+ \), one gets
\[\lim_{t \to 1} \frac{dI_0}{dt} = +\infty. \]
Thus, the perturbation \(F(u) = \bar{u} \) is a super-diffusive perturbation.
Remark 0.1. One can also construct finite time blow up solutions for the whole line problem. By taking \(a = 0 \) and relaxing \(k \) to be complex in the formula of \(U \), one gets

\[
U = 2k^2 \left[1 - \frac{\exp\{i8k^3t + i2kx + \rho + i\gamma\} - 1}{\exp\{i8k^3t + i2kx + \rho + i\gamma\} + 1} \right] ^2.
\]

The plan is to choose \((k, \rho, \gamma)\) such that

\[
i8k^3t + i2kx + \rho + i\gamma \neq i\pi \text{ at } t = 0, \text{ and } = i\pi \text{ at some } t > 0.
\]

Let \(k = k_r + ik_i, k_r \neq 0 \) and \(k_i \neq 0 \); pick \(\rho \) and \(\gamma \) such that

\[
k_r\rho + k_i(\gamma - \pi) \neq 0,
\]

then at \(t = 0, U \) is \(C^\infty \) in \(x \) on the whole line, and decays exponentially at infinity. Its finite time blow up happens at

\[
t = \frac{k_r\rho + k_i(\gamma - \pi)}{16k_r k_i (k_r^2 + k_i^2)}, \quad x = \frac{k_r\rho (3k_r^2 - k_i^2) + k_i(\gamma - \pi)(k_r^2 - 3k_i^2)}{4k_r k_i (k_r^2 + k_i^2)}.
\]

A simple example of these finite time blow up solutions is

\[
U = \frac{16i \exp\{-2[(x - 8) + 8(t - 1)] + i2[(x - 8) - 8(t - 1)] + i\pi\} - 1}{\exp\{-2[(x - 8) + 8(t - 1)] + i2[(x - 8) - 8(t - 1)] + i\pi\} + 1}^2,
\]

for which the finite time blow up happens at

\[
t = 1, \quad x = 8.
\]

References