A correlation inequality for stable random vectors

Alexander Koldobsky

Abstract. Let X_1,\ldots, X_n and Y_1,\ldots, Y_n be jointly q-stable symmetric random variables, $0 < q \leq 2$, so that, for some $k \in \mathbb{N}$, $1 \leq k < n$, the vectors (X_1,\ldots, X_k) and (X_{k+1},\ldots, X_n) have the same distributions as (Y_1,\ldots, Y_k) and (Y_{k+1},\ldots, Y_n), respectively, but Y_i and Y_j are independent for every choice of $1 \leq i \leq k$, $k+1 \leq j \leq n$. Let $(\mathbb{R}^n, \cdot, \| \cdot \|)$ be an n-dimensional normed space such that $\|u \cdot v\| = \|(u, -v)\|$ for every $u \in \mathbb{R}^k$, $v \in \mathbb{R}^{n-k}$. We prove that, for every $p \in [n-3, n)$, $\mathbb{E}(\|X\|^{-p}) \geq \mathbb{E}(\|Y\|^{-p})$.

1. Introduction

Let X_1,\ldots, X_n and Y_1,\ldots, Y_n be jointly q-stable symmetric random variables, $0 < q \leq 2$, so that, for some $k \in \mathbb{N}$, $1 \leq k < n$, the vectors (X_1,\ldots, X_k) and (X_{k+1},\ldots, X_n) have the same distributions as (Y_1,\ldots, Y_k) and (Y_{k+1},\ldots, Y_n), respectively, but Y_i and Y_j are independent for every choice of $1 \leq i \leq k$, $k+1 \leq j \leq n$. Let $B = (\mathbb{R}^n, \cdot, \| \cdot \|)$ be an n-dimensional normed space.

The following result was established in [K, Th.4] and later proved by Houdré [H, Remark 2.4] by different methods:

Theorem A. If $0 < p < n$, $\|x\|^{-p}$ is a positive definite distribution and the norm satisfies a symmetry condition $\|(u, v)\| = \|(u, -v)\|$ for every $u \in \mathbb{R}^k$, $v \in \mathbb{R}^{n-k}$, then $\mathbb{E}(\|X\|^{-p}) \geq \mathbb{E}(\|Y\|^{-p})$.

Here we consider $\|x\|^{-p}$ as a tempered distribution. Recall that by L.Schwartz’s generalization of Bochner’s theorem (see [GV, p. 152]), a tempered distribution $f \in S'(\mathbb{R}^n)$ is positive definite if and only if its Fourier transform \hat{f} is a positive distribution. The latter means that $\langle \hat{f}, \phi \rangle \geq 0$ for every non-negative test function $\phi \in S(\mathbb{R}^n)$.

It was shown in [K, Corollary 2(ii)] that if B is a subspace of L_r with $0 < r \leq 2$ then $\|x\|^{-p}$ is positive definite for every $0 < p < n$. However, if $B = \ell_r^p$, $2 < r < \infty$, $n \geq 3$ then $\|x\|^{-p}$ is positive definite if and only if $p \in [n-3, n)$. In particular, for every $p \in [n-3, n)$, $n \geq 3$

$$
\mathbb{E}(\max_{i=1,\ldots,n} |X_i|^{-p}) \geq \mathbb{E}(\max_{i=1,\ldots,n} |Y_i|^{-p}).
$$

1991 Mathematics Subject Classification. 60E07.

Part of this work was done when the author was visiting the Weizmann Institute of Science. Research supported in part by the NSF Grant DMS-9531594

©1999 American Mathematical Society
In this article we show that the latter inequality is a part of a more general result:

Theorem 1. For every \(p \in [n - 3, n) \) and every \(n \)-dimensional normed space \(B = (\mathbb{R}^n, \| \cdot \|) \), \(n \geq 3 \), whose norm satisfies the symmetry condition \(\| (u,v) \| = \| (u,-v) \| \) for each \(u \in \mathbb{R}^n \), \(v \in \mathbb{R}^{n-k} \), we have \(\mathbb{E}(\| X \|^{-p}) \geq \mathbb{E}(\| Y \|^{-p}) \).

The proof is based on the fact that, for \(p \in [n - 3, n) \), the distribution \(\| x \|^{-p} \) is positive definite for every \(n \)-dimensional normed space \(B = (\mathbb{R}^n, \| \cdot \|) \). Theorem 1 follows immediately from this result and Theorem A.

2. Proof of Theorem 1

We use methods of convex geometry to prove positive definiteness of powers of the norm. Let \(K = \{ x \in \mathbb{R}^n : \| x \| \leq 1 \} \) be the unit ball of the space \(B \). For every unit vector \(\xi \in S^{n-1} \) the parallel section function \(A_\xi \) in the direction of \(\xi \) is defined as a function on \(\mathbb{R} \) so that for each \(t \in \mathbb{R} \), \(A_\xi(t) \) is the \((n-1) \)-dimensional volume of the section of \(K \) by the hyperplane perpendicular to \(\xi \) and located at the distance \(t \) from the origin. We say that the space \(B \) is infinitely smooth if the restriction of the norm of \(B \) to the unit sphere \(S^{n-1} \) belongs to the space \(C^\infty(S^{n-1}) \) of infinitely differentiable functions on the sphere. If \(B \) is infinitely smooth then, for every \(\xi \in S^{n-1} \), \(A_\xi \) is an infinitely differentiable function in a neighborhood of zero. For \(\beta \in (-1, 0) \), the fractional derivative of order \(\beta \) of the function \(A_\xi \) at zero is defined by

\[
A_\xi^{(\beta)}(0) = \frac{1}{\Gamma(-\beta)} \int_0^\infty t^{-1-\beta} A_\xi(t) \, dt.
\]

If \(\beta \in (0, 2), \beta \neq 1 \) then

\[
A_\xi^{(\beta)}(0) = \frac{1}{\Gamma(-\beta)} \int_0^\infty t^{-1-\beta} (A_\xi(t) - A_\xi(0)) \, dt
\]

(note that \(A_\xi \) is an even function so its first derivative at zero is equal to zero; for more on fractional derivatives see, for example, [GKS, Section 3]).

Our main tool is the following theorem, which was proved in [GKS, Th.2] in a more general form (for every \(\beta \in \mathbb{C}, \Re(\beta) > -1, \beta \neq n-1 \)).

Theorem B. Let \(B \) be an infinitely smooth \(n \)-dimensional normed space, \(K \) is the unit ball of \(B \), \(\beta \in (-1, 2), \beta \) is not an integer. Then for every \(\xi \in S^{n-1} \)

\[
A_\xi^{(\beta)}(0) = \frac{\cos \frac{\beta \pi}{2}}{\pi (n - \beta - 1)} (\| x \|^{-n+\beta+1})^\wedge(\xi).
\]

Note that this result in its general form was used in [GKS] as one of the major ingredients of the solution to the Busemann-Petty problem on sections of convex bodies.

Theorem 2. Let \(B = (\mathbb{R}^n, \| \cdot \|) \) be an \(n \)-dimensional normed space. Then for every \(p \in [n - 3, n) \) the distribution \(\| x \|^{-p} \) is positive definite.
PROOF. First assume that \(B \) is infinitely smooth and \(p \) is not an integer. Put
\[\beta = n - p - 1 \in (-1, 2). \]
We are going to show that \((\|x\|^{-\beta + 1})^\wedge\) is a non-negative continuous function on \(S^{n-1} \). Since this function is also homogeneous of degree
\(-\beta - 1 \) on \(\mathbb{R}^n \), \(n \geq 3 \), we deduce that it is non-negative and locally integrable on \(\mathbb{R}^n \). This would mean, in particular, that \((\|x\|^{-\beta + 1})^\wedge = (\|x\|^{-p})^\wedge\) is a positive distribution, and \(\|x\|^{-p} \) is positive definite.

Since the restriction of the norm to \(S^{n-1} \) is infinitely smooth and the volume of every section can be expressed in terms of the norm, it is easily seen that \(A_\xi^{(\beta)}(0) \) is a continuous function of \(\xi \in S^{n-1} \). By Theorem B, the restriction of the function \((\|x\|^{-\beta + 1})^\wedge\) to the sphere is continuous on \(S^{n-1} \).

Let us show that \((\|x\|^{-\beta + 1})^\wedge\) is a non-negative function. First let \(p \in (n - 1, n) \). Then \(\beta \in (-1, 0) \), so \(\Gamma(-\beta) > 0 \) and, by (1), \(A_\xi^{(\beta)}(0) > 0 \) for every \(\xi \in S^{n-1} \). Also \(\cos \frac{\beta \pi}{2} > 0 \), so (3) implies non-negativity.

If \(p \in (n - 2, n - 1) \) then \(\beta \in (0, 1) \), so \(\Gamma(-\beta) < 0 \). But, since the unit ball \(K \) of the space \(B \) is a convex body, the function \(A_\xi \) has maximum at zero (the central section has maximal volume among all sections perpendicular to \(\xi \); this follows for example from the Brunn-Minkowski theorem, see [S, Th. 6.1]). Therefore, the integral in (2) is less or equal to zero, and again \(A_\xi^{(\beta)}(0) \geq 0 \) for every \(\xi \in S^{n-1} \). Also \(\cos \frac{\beta \pi}{2} > 0 \), so the result follows from (3).

If \(p \in (n - 3, n - 2) \) then \(\beta \in (1, 2) \), so \(\Gamma(-\beta) > 0 \). The integral in (2) is less or equal to zero for the same reason as in the case \(\beta \in (0, 1) \), so \(A_\xi^{(\beta)}(0) \leq 0 \) for every \(\xi \in S^{n-1} \). But now \(\cos \frac{\beta \pi}{2} < 0 \).

Now we have to free ourselves from the restrictions imposed in the beginning of the proof.

Suppose that \(B \) is not infinitely smooth. We can approximate the unit ball \(K \) of \(B \) in the Hausdorff metric by infinitely smooth convex bodies \(K_m \), \(m \in \mathbb{N} \) so that \(K_m \subset K \) for every \(m \). Let \(\| \cdot \|_m \) be the norm on \(\mathbb{R}^n \) with the unit ball \(K_m \). Since \(p < n \), the functions \(\|x\|_m^p \) are locally integrable on \(\mathbb{R}^n \). Hence, for every test function \(\phi \), the functions \(\|x\|_m^{-p} \widehat{\phi}(x) \) are integrable on \(\mathbb{R}^n \). Also these functions are majorated by an integrable function \(\|x\|^{-p} |\phi(x)| \). By definition of the Fourier transform of distributions and the dominated convergence theorem, for every non-negative test function \(\phi \) and every \(p \in [n - 3, n) \),

\[
\langle (\|x\|^{-p})^\wedge, \phi \rangle = \int_{\mathbb{R}^n} \|x\|^{-p} \widehat{\phi}(x) \, dx = \\
\lim_{m \to -\infty} \int_{\mathbb{R}^n} \|x\|_m^{-p} \widehat{\phi}(x) \, dx = \lim_{m \to -\infty} \langle (\|x\|_m^{-p})^\wedge, \phi \rangle \geq 0
\]

because we have already proved that the distributions \(\|x\|_m^{-p} \) are positive definite.

Finally, let us show that the statement of Theorem 2 is true for \(p = n - 3, n - 2, n - 1 \). Suppose that \(0 < p < n \) and \(p_i \) is a sequence of numbers that are not integers, belong to \((n - 3, n - 2, n - 1) \), and \(\lim_{i \to \infty} p_i = p \). We can assume that there exists \(\epsilon > 0 \) so that \(0 < p_i < p + \epsilon < n \) for every \(i \). Fix a non-negative test function \(\phi \). Then for every \(i \in \mathbb{N} \) we have \(\langle (\|x\|^{-p_i})^\wedge, \phi \rangle \geq 0 \). Define a function \(g \) on \(\mathbb{R}^n \) by \(g(x) = \|x\|^{-p_i} |\widehat{\phi}(x)| \) if \(|x| \leq 1 \), and \(g(x) = |\phi(x)| \) if \(|x| > 1 \). Since \(\|x\|^{-p} \) is a locally integrable function, the function \(g \) is integrable on \(\mathbb{R}^n \) and, for every \(i \in \mathbb{N}, x \in \mathbb{R}^n \), we have \(g(x) \geq \|x\|^{-p_i} |\widehat{\phi}(x)| \). By the dominated convergence
\[
\langle (\|x\|^{-p})^\wedge, \phi \rangle = \int_{\mathbb{R}^n} \|x\|^{-p} \hat{\phi}(x) \, dx = \\
\lim_{i \to \infty} \int_{\mathbb{R}^n} \|x\|^{-p} \hat{\phi}(x) \, dx = \lim_{i \to \infty} \langle (\|x\|^{-p})^\wedge, \phi \rangle \geq 0,
\]
so \((\|x\|^{-p})^\wedge\) is a positive distribution, since we have already proved that \((\|x\|^{-p})^\wedge\) is positive for every \(i\).

\[\square\]

Theorem 1 immediately follows from Theorems A and 2. If \(n = 2\) the statement of Theorem 1 remains valid for \(p \in (0, 2)\), and the inequality for the expectations reverses if \(p \in (-\min(1, q), 0)\). To see that, note that every two-dimensional normed space embeds isometrically in \(L_1\), and use [K, Corollary 2(ii)] and [K, Proposition 1]. Also, note that if \(p \geq n\) in Theorem 1, then the function \(\|x\|^{-p}\) is not locally integrable, and the expectations do not exist.

References

Department of Mathematics and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.

E-mail address: koldobsk@math.utsa.edu