Inference on Consensus Ranking of Distributions

David M. Kaplan
University of Missouri

BU Econometrics Seminar
23 October 2020
“Better”

Definitions and Consensus
“Better”?

Two distributions (of earnings, productivity, …)

Which is “better”?
“Better”?

Two distributions (of earnings, productivity, ...)

Which is “better”?

► Would you prefer to (live there, buy this, use that, ...)
“Better”? 2 PDFs
“Better”?

2 CDFs
Expected Utility

\[I \text{ prefer } Y \succeq Z \iff E[u(Y)] \geq E[u(Z)] \text{ for my } u(\cdot) \]
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$
Expected Utility

I prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for all $u(\cdot)$

Most prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for $u \in \mathcal{D}$
Expected Utility

I prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for my $u(\cdot)$

You prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for your $u(\cdot)$

All prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for all $u(\cdot)$

Most prefer $Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)]$ for $u \in \mathcal{D}$

All: first-order stochastic dominance (SD$_1$)

Most: utility restricted stochastic dominance (SD$_D$)
Expected Utility

I prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for my $u(\cdot)$
You prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for your $u(\cdot)$
All prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for all $u(\cdot)$
Most prefer $Y \succeq Z \iff E[u(Y)] \geq E[u(Z)]$ for $u \in \mathcal{D}$

All: first-order stochastic dominance (SD$_1$)
Most: utility restricted stochastic dominance (SD$_\mathcal{D}$)
includes second-order SD (etc.)
Expected Utility

\[\text{I prefer } Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)] \text{ for my } u(\cdot) \]

\[\text{You prefer } Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)] \text{ for your } u(\cdot) \]

\[\text{All prefer } Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)] \text{ for all } u(\cdot) \]

\[\text{Most prefer } Y \succeq Z \iff \mathbb{E}[u(Y)] \geq \mathbb{E}[u(Z)] \text{ for } u \in \mathcal{D} \]

All: first-order stochastic dominance (SD\(_1\))

Most: utility restricted stochastic dominance (SD\(_{\mathcal{D}}\)) includes second-order SD (etc.)

“Deductive”: fix \(\mathcal{D} \), test SD\(_{\mathcal{D}}\)

“Inductive”: learn about the true \(\mathcal{D} \)
CDFs (Atkinson, 1987, §1)

- Poverty line: v
- Headcount poverty: $F_Y(v)$ and $F_Z(v)$
CDFs (Atkinson, 1987, §1)

Poverty line: v

Headcount poverty: $F_Y(v)$ and $F_Z(v)$

Me: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for my v

You: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for your v

All: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for all v

Most: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for $v \in \mathcal{V}$
CDFs (Atkinson, 1987, §1)

Poverty line: \(v \)

Headcount poverty: \(F_Y(v) \) and \(F_Z(v) \)

Me: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for my \(v \)
You: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for your \(v \)
All: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for all \(v \)
Most: \(Y \succeq Z \iff F_Y(v) \leq F_Z(v) \) for \(v \in \mathcal{V} \)

All: first-order stochastic dominance (SD\(_1\))
Most: **CDF restricted stochastic dominance (SD\(_V\))**

Condition I of Atkinson (1987, p. 751)
CDFs (Atkinson, 1987, §1)

Poverty line: v

Headcount poverty: $F_Y(v)$ and $F_Z(v)$

Me: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for my v

You: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for your v

All: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for all v

Most: $Y \succeq Z \iff F_Y(v) \leq F_Z(v)$ for $v \in \mathcal{V}$

All: first-order stochastic dominance (SD$_1$)

Most: CDF restricted stochastic dominance (SD$_\mathcal{V}$)

Condition I of Atkinson (1987, p. 751)

Deductive (Davidson and Duclos, 2013)

Inductive (Goldman and Kaplan, 2018)
Brief Tangent: Economic Inequality

Literature on measuring inequality, comparing distributions

Similar issue (me/you/all/most), like

- ϵ of Atkinson (1970, p. 257)
- α of Cowell and Flachaire (2017, §4.3)
Another Tangent (sorry): Quantiles

Expected Quantile utility maximization

Another Tangent (sorry): Quantiles

Expected Quantile utility maximization

Equivariance: $Q_\tau(u(Y)) = u(Q_\tau(Y))$

$\Rightarrow Q_\tau(u(Y)) \geq Q_\tau(u(Z)) \iff Q_\tau(Y) \geq Q_\tau(Z)$

$\Rightarrow u(\cdot)$ irrelevant (!?)

All (SD $1\leq\tau\leq1$) $Q_\tau(Y) \geq Q_\tau(Z)$ for all $\tau \in (0, 1)$

Consensus: $Q_\tau(Y) \geq Q_\tau(Z)$ for $\tau \in [0, 1]$
Another Tangent (sorry): Quantiles

Expected Quantile utility maximization

Equivariance: $Q_{\tau}(u(Y)) = u(Q_{\tau}(Y))$

- $Q_{\tau}(u(Y)) \geq Q_{\tau}(u(Z)) \iff Q_{\tau}(Y) \geq Q_{\tau}(Z)$
- $u(\cdot)$ irrelevant (!?)

My τ, your τ, ...

All (SD$_1$): $Q_{\tau}(Y) \geq Q_{\tau}(Z)$ for all $\tau \in (0, 1)$

Consensus: $Q_{\tau}(Y) \geq Q_{\tau}(Z)$ for $\tau \in \mathcal{T}$
Inference

Learning from Data
Two features in common:

- Single H_0: all-or-nothing
- CDF-based
Literature: Testing

Two features in common:

▶ Single H_0: all-or-nothing
▶ CDF-based

$H_0: Y \ SD_1 \ Z$ (or SD_2, \ldots)

▶ 1-sided Kolmogorov–Smirnov
▶ Barrett and Donald (2003), many others
▶ Good for testing economic theory that implies SD_1
Two features in common:

- Single H_0: all-or-nothing
- CDF-based

$H_0: Y \text{ SD}_1 Z$ (or SD_2, \ldots)

- 1-sided Kolmogorov–Smirnov
- Barrett and Donald (2003), many others
- Good for testing economic theory that implies SD_1

$H_0: Y \text{ nonSD}_1 Z$ ($H_1: Y \text{ SD}_1 Z$)

- Want stronger evidence for SD_1 (analog: $H_0: \beta = 0$)
- Actually $\text{SD}_{[v_1,v_2]}$
New Perspectives

Single H_0 Multiple testing

- Goldman and Kaplan (2018)
- $H_{0v} : F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- Learn about $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$ (Y SD \mathcal{V} Z)
New Perspectives

Single H_0 Multiple testing

- Goldman and Kaplan (2018)
- $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- Learn about $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$ ($Y \text{ SD}_\mathcal{V} Z$)

CDF-based Utility-based

- Draft circulated for this talk
- $H_{0u}: E[u(Y)] \leq E[u(Z)]$ for each $u \in \mathcal{U}$
- Learn about $\mathcal{D} \equiv \{u : E[u(Y)] > E[u(Z)]\}$ ($Y \text{ SD}_\mathcal{D} Z$)
New Perspectives

Single H_0 Multiple testing

- Goldman and Kaplan (2018)
- $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- Learn about $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$ ($Y \text{ SD}_\mathcal{V} Z$)

CDF-based Utility-based

- Draft circulated for this talk
- $H_{0u}: E[u(Y)] \leq E[u(Z)]$ for each $u \in \mathcal{U}$
- Learn about $\mathcal{D} \equiv \{u : E[u(Y)] > E[u(Z)]\}$ ($Y \text{ SD}_\mathcal{D} Z$)

Quantile: learn about $\mathcal{T} \equiv \{\tau : Q_\tau(Y) > Q_\tau(Z)\}$
Examples (\texttt{distcomp} in Stata)
Examples (distcomp RDD)
Examples (\texttt{distcomp experiment})
Examples (CDF)

Empirical CDF

Monthly earnings (1980 USD)

GK reject
Non–urban
Urban
Examples (utility, CRRA $u(x - s)$)

inner 95% CS for higher expected utility (urban > non-urban)
CDF vs. Utility: Complementary Strengths

- Economic interpretation
- Top-coding; tail measurement error
- Unified framework for SD variants

Choice of \mathcal{U}:
- Economic restrictions
- Donsker: Cor. 3.1 of van der Vaart (1996)
- Computational limits; “sieve”?
Multiple Testing Goal

Multiple testing procedure (MTP)

- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$
Multiple Testing Goal

Multiple testing procedure (MTP)

- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$

Familywise error rate (FWER)

- $\text{FWER} \equiv P(\text{reject any true } H_{0v})$
- “Strong control”: $\text{FWER} \leq \alpha$ regardless of \mathcal{V}
Multiple Testing Goal

Multiple testing procedure (MTP)

- Test $H_{0v}: F_Y(v) \geq F_Z(v)$ for each $v \in \mathbb{R}$
- $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$

Familywise error rate (FWER)

- FWER $\equiv P(\text{reject any true } H_{0v})$
- “Strong control”: FWER $\leq \alpha$ regardless of \mathcal{V}

Expected utility version

- Test $H_{0u}: E[u(Y)] \leq E[u(Z)]$ for each $u \in \mathcal{U}$
MTP vs. All-or-Nothing Test

If $H_0: Y SD_1 Z$ rejected:

- MTP shows where/why (which v or u)
MTP vs. All-or-Nothing Test

If $H_0: Y \ SD_1 \ Z$ rejected:
- MTP shows where/why (which v or u)

If $H_0: Y \ SD_1 \ Z$ not rejected:
- MTP shows evidence favoring $Y \ SD_1 \ Z$ vs. just uncertainty
- “Reject $H_0: Z \ SD_1 \ Y$” is a crude version of this idea
- Non-rejection may be type II error if small sample, etc.
“Outer Confidence Set” (CDF)

Usual

- Object of interest: $\mathbf{\theta} \in \mathbb{R}^k$
- Goal: $1 - \alpha \leq P(\mathbf{\theta} \in \hat{C})$
- Invert test: $\hat{C} = \{c \text{ : don’t reject } H_0 : \mathbf{\theta} = c\}$
Usual

- Object of interest: $\theta \in \mathbb{R}^k$
- Goal: $1 - \alpha \leq P(\theta \in \hat{C})$
- Invert test: $\hat{C} = \{c : \text{don’t reject } H_0: \theta = c\}$

Object of interest: $\mathcal{V} \equiv \{v : F_Y(v) \leq F_Z(v)\}$
“Outer Confidence Set” (CDF)

Usual

- Object of interest: $\theta \in \mathbb{R}^k$
- Goal: $1 - \alpha \leq P(\theta \in \hat{C})$
- Invert test: $\hat{C} = \{c : \text{don’t reject } H_0 : \theta = c\}$

Object of interest: $\mathcal{V} \equiv \{v : F_Y(v) \leq F_Z(v)\}$

“Outer CS”

- Goal: $1 - \alpha \leq P(\mathcal{V} \subseteq \hat{V})$
- Invert MTP: $\hat{V} = \{v : H_{0v} \text{ not rejected}\}$

 $H_{0v}: F_Y(v) \leq F_Z(v)$ \hspace{1em} ($H_{0v}: v \in \mathcal{V}$)

- $P(\mathcal{V} \subseteq \hat{V}) = P(\text{no true } H_{0v} \text{ rejected}) = 1 - \text{FWER} \geq 1 - \alpha$
“Inner Confidence Set” (CDF)

Object of interest: \(\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\} \)

“Outer CS”: \(1 - \alpha \leq P(\mathcal{V} \subseteq \hat{\mathcal{V}}) = P(\hat{\mathcal{V}}^c \subseteq \mathcal{V}^c) \)

“Inner CS”: \(1 - \alpha \leq P(\hat{\mathcal{V}} \subseteq \mathcal{V}) \)
“Inner Confidence Set” (CDF)

Object of interest: $\mathcal{V} \equiv \{v : F_Y(v) < F_Z(v)\}$

“Outer CS”: $1 - \alpha \leq P(\mathcal{V} \subseteq \hat{\mathcal{V}}) = P(\hat{\mathcal{V}}^c \subseteq \mathcal{V}^c)$

“Inner CS”: $1 - \alpha \leq P(\hat{\mathcal{V}} \subseteq \mathcal{V})$

- “Invert” MTP: $\hat{\mathcal{V}} = \{v : H_{0v} \text{ rejected}\}$
 $H_{0v}: F_Y(v) \geq F_Z(v) \quad (H_{0v}: v \notin \mathcal{V})$
- $P(\hat{\mathcal{V}} \subseteq \mathcal{V}) = P(\text{only reject false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha$
- Or: $\hat{\mathcal{V}}$ is a very conservative estimate of \mathcal{V}
“Inner Confidence Set” (CDF)

Object of interest: \(V \equiv \{ v : F_Y(v) < F_Z(v) \} \)

“Outer CS”: \(1 - \alpha \leq P(V \subseteq \hat{V}) = P(\hat{V}^C \subseteq V^C) \)

“Inner CS”: \(1 - \alpha \leq P(\hat{V} \subseteq V) \)
- “Invert” MTP: \(\hat{V} = \{ v : H_{0v} \text{ rejected} \} \)
 \(H_{0v}: F_Y(v) \geq F_Z(v) \) (\(H_{0v}: v \notin V \))
- \(P(\hat{V} \subseteq V) = P(\text{only reject false } H_{0v}) = 1 - \text{FWER} \geq 1 - \alpha \)
- Or: \(\hat{V} \) is a very conservative estimate of \(V \)

“2-sided CS”: \(1 - \alpha \leq P(\hat{V}_1 \subseteq V \subseteq \hat{V}_2) \)
- Combine \(1 - \alpha/2 \) inner & outer (Bonferroni)
Confidence Sets (Expected Utility)

Same arguments but with \mathcal{D} instead of \mathcal{V}

$\mathcal{D} \equiv \{ u : E[u(Y)] > E[u(Z)] \}$
Confidence Sets (Expected Utility)

Same arguments but with \mathcal{D} instead of \mathcal{V}

$\mathcal{D} \equiv \{ u : E[u(Y)] > E[u(Z)] \}$

Inner CS: $1 - \alpha \leq P(\hat{\mathcal{D}} \subseteq \mathcal{D})$

- “Invert” MTP: $\hat{\mathcal{D}} = \{ u : H_{0u} \text{ rejected} \}$
 - $H_{0u}: E[u(Y)] \leq E[u(Z)]$ \quad ($H_{0u}: u \notin \mathcal{D}$)
- $P(\hat{\mathcal{D}} \subseteq \mathcal{D}) = P(\text{only reject false } H_{0u}) = 1 - \text{FWER} \geq 1 - \alpha$

Outer CS: $1 - \alpha \leq P(\hat{\mathcal{D}} \supseteq \mathcal{D})$

- Invert MTP: $\hat{\mathcal{D}} = \{ u : H_{0u} \text{ not rejected} \}$
 - $H_{0u}: E[u(Y)] > E[u(Z)]$ \quad ($H_{0u}: u \in \mathcal{D}$)
- $P(\hat{\mathcal{D}} \supseteq \mathcal{D}) = P(\text{reject only false } H_{0u}) = 1 - \text{FWER} \geq 1 - \alpha$
Uniform confidence band for $\Delta(\cdot) \implies$ CS/MTP

$\Delta(v) \equiv F_Z(v) - F_Y(v) \quad \forall = \{v : \Delta(v) > 0\}$

$\Delta(u) \equiv E[u(Y)] - E[u(Z)] \quad \mathcal{D} = \{u : \Delta(u) > 0\}$

- Inner CS: values where lower band above zero
- Outer CS: values where upper band above zero
- MTP: equivalent to CS like before
Uniform confidence band for $\Delta(\cdot) \implies$ CS/MTP

$\Delta(v) \equiv F_Z(v) - F_Y(v) \quad V = \{v : \Delta(v) > 0\}$

$\Delta(u) \equiv E[u(Y)] - E[u(Z)] \quad D = \{u : \Delta(u) > 0\}$

- Inner CS: values where lower band above zero
- Outer CS: values where upper band above zero
- MTP: equivalent to CS like before

Information vs. comprehension

- EU band more informative, CS/MTP easier to comprehend

Availability

- CDF diff: asymptotic band, but finite-sample CS/MTP

Refinements

- Stepdown, pre-test, …
CDF-based CS/MTP
Utility-based CS/MTP

inner 95% CS for higher expected utility (urban > non-urban)
Details

Theoretical & Otherwise
CDF: KS vs. Probability Integral Transform

Kolmogorov–Smirnov MTP/CS
- Reject H_{0v} when $\hat{F}_Y(v) - \hat{F}_Z(v)$ exceeds KS critical value
- Prop. 3 of Goldman and Kaplan (2018)

KS: well-known low tail power
- `ks.test(c(1:15/21,10^6+1:5),punif)`
 - $D = 0.25$, p-value = 0.1376
CDF: KS vs. Probability Integral Transform

Kolmogorov–Smirnov MTP/CS
▶ Reject H_{0v} when $\hat{F}_Y(v) - \hat{F}_Z(v)$ exceeds KS critical value
▶ Prop. 3 of Goldman and Kaplan (2018)

KS: well-known low tail power
▶ ks.test(c(1:15/21,10^6+1:5),punif)
 D = 0.25, p-value = 0.1376

If cts, $F_Y(Y_i) \sim \text{Unif}(0, 1)$
▶ Retain finite-sample properties
▶ Power more even than KS across distribution
▶ Goldman and Kaplan (2018): two-sample MTP, RDD, computation
CDF: KS vs. Probability Integral Transform
CDF: KS vs. Probability Integral Transform
CDF: KS vs. Probability Integral Transform

![Graph showing CDF comparison of Dirichlet, KS, and weighted KS methods.](image)
CDF: KS vs. Probability Integral Transform

![Graph showing CDF for KS and Dirichlet distributions.](image-url)
CDF: KS vs. Probability Integral Transform

Pointwise type I error, $nx=ny=80$, $Fx=Fy=\text{Unif}(0,1)$

Rejection probability

Dirichlet KS
Expected Utility: Asymptotics

CDF:

\[\Delta(v) \equiv F_Z(v) - F_Y(v) = \mathbb{E}[1\{Z \leq v\}] - \mathbb{E}[1\{Y \leq v\}] \]

\[\Delta(f) = \mathbb{E}[f(Z)] - \mathbb{E}[f(Y)], \quad f(x) = 1\{x \leq v\} \]

\(\{f_v(\cdot) : f_v(t) = 1\{t \leq v\}, v \in \mathbb{R}\} \) is Donsker

\[\hat{\Delta}(\cdot) : \text{Gaussian limit} \]

EU:

\[\Delta(u) \equiv \mathbb{E}[u(Y)] - \mathbb{E}[u(Z)] \]

\[\hat{\Delta}(\cdot) : \text{Gaussian limit and bootstrap consistency if Donsker } \mathcal{U} \]
Expected Utility: Asymptotics

CDF:
- $\Delta(v) \equiv F_Z(v) - F_Y(v) = \mathbb{E}[\mathbb{1}\{Z \leq v\}] - \mathbb{E}[\mathbb{1}\{Y \leq v\}]$
- $\Delta(f) = \mathbb{E}[f(Z)] - \mathbb{E}[f(Y)], f(x) = \mathbb{1}\{x \leq v\}$
- $\{f_v(\cdot) : f_v(t) = \mathbb{1}\{t \leq v\}, v \in \mathbb{R}\}$ is Donsker
- $\hat{\Delta}(\cdot)$: Gaussian limit

EU:
- $\Delta(u) \equiv \mathbb{E}[u(Y)] - \mathbb{E}[u(Z)]$
- $\hat{\Delta}(\cdot)$: Gaussian limit and bootstrap consistency if Donsker \mathcal{U}

Cor. 3.1 of van der Vaart (1996): \mathcal{U} Donsker if
- non-decreasing
- bounded from below (or above)
- $2 + \delta$ moments of envelope function
Expected Utility: MTP

\[H_{0u}: \Delta(u) \equiv E[u(Y)] - E[u(Z)] \leq 0, \text{ each } u \in \mathcal{U} \]

Define pointwise t-statistics:

\[\hat{T}_u = (\hat{\Delta}(u) - \Delta(u))/\hat{SE}_u \]
\[\hat{T}^0_u = \hat{\Delta}(u)/\hat{SE}_u \]

Bootstrap cv: \(1 - \alpha\) quantile of \(\sup_{u \in \mathcal{U}} \hat{T}_u\)

FWER = \(P(\text{reject any true}) \leq P(\sup_u \hat{T}_u > cv) \rightarrow \alpha\)
Expected Utility: MTP

\[H_{0u} : \Delta(u) \equiv E[u(Y)] - E[u(Z)] \leq 0, \text{ each } u \in \mathcal{U} \]

Define pointwise \(t \)-statistics:
- \(\hat{T}_u = [\hat{\Delta}(u) - \Delta(u)]/\hat{SE}_u \)
- \(\hat{T}_u^0 = \hat{\Delta}(u)/\hat{SE}_u \)

Bootstrap cv: \(1 - \alpha \) quantile of sup \(u \in \mathcal{U} \) \(\hat{T}_u \)

FWER = P(reject any true) \(\leq P(\text{sup}_u \hat{T}_u > cv) \rightarrow \alpha \)

Stepdown (Holm, 1979)
- \(\leq \) maybe very conservative if many \(\Delta(u) > 0 \)
- Re-compute bootstrap cv using only non-rejected \(u \)
- Iterate: bounded by oracle test using true \(\{ u : H_{0u} \text{ true} \} \)

Can also pre-test to remove \(\hat{\Delta}(u) \ll 0 \), etc.
Expected Utility: CS

Invert MTP to get CS
Simulation

Performance of New Methods
Setup

\[Y_i \overset{iid}{\sim} \log N(0, 1) + 0.1, \ i = 1, \ldots, n \]

\[Z_i \overset{iid}{\sim} \log N(\mu, \sigma) + 0.1, \ i = 1, \ldots, n \]

\(\mathcal{U} \): CRRA w/ risk aversion \(\theta \in [0, 3] \)

Band for \(\Delta(u) = E[u(Y)] - E[u(Z)] \)

\(\uparrow \) Equivalently: \(\Delta(\theta) \) on \(\theta \in [0, 3] \)

CSs for \(\mathcal{D} \equiv \{ u : E[u(Y)] > E[u(Z)] \} \)

\(\uparrow \) Equivalently: \(\mathcal{D} \) is subset of \(\theta \in [0, 3] \)
Results: \(n = 40 \)

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(\mu)</th>
<th>({ \theta : u_\theta \in D })</th>
<th>band</th>
<th>2s CS</th>
<th>inner</th>
<th>outer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.873</td>
<td>0.960</td>
<td>0.968</td>
<td>0.992</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.865</td>
<td>0.972</td>
<td>0.990</td>
<td>0.982</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.855</td>
<td>0.998</td>
<td>0.998</td>
<td>1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.920</td>
<td>0.999</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.938</td>
<td>0.972</td>
<td>0.972</td>
<td>1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.922</td>
<td>0.995</td>
<td>0.995</td>
<td>1.000</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.896</td>
<td>0.965</td>
<td>0.967</td>
<td>0.998</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.883</td>
<td>0.976</td>
<td>0.988</td>
<td>0.988</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.861</td>
<td>0.962</td>
<td>0.994</td>
<td>0.968</td>
</tr>
</tbody>
</table>
Results: $n = 100$

<table>
<thead>
<tr>
<th>σ</th>
<th>μ</th>
<th>${ \theta : u_\theta \in D }$</th>
<th>Coverage ($1 - \alpha = 0.9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.907 0.968 0.975 0.993</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.897 0.977 0.993 0.984</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.908 0.999 0.999 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.934 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.929 0.965 0.965 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.922 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.901 0.974 0.979 0.995</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.900 0.983 0.987 0.996</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.887 0.964 0.992 0.972</td>
</tr>
</tbody>
</table>
Results: $n = 250$

<table>
<thead>
<tr>
<th>σ</th>
<th>μ</th>
<th>${\theta : u_\theta \in D}$</th>
<th>Coverage $(1 - \alpha = 0.9)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>-0.3</td>
<td>[0.0, 2.8]</td>
<td>0.920 0.978 0.983 0.995</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>[0.0, 1.1]</td>
<td>0.912 0.981 0.995 0.986</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>[]</td>
<td>0.893 0.998 0.998 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.3</td>
<td>[0.0, 3.0]</td>
<td>0.920 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>[]</td>
<td>0.937 0.968 0.968 1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>[]</td>
<td>0.942 1.000 1.000 1.000</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.3</td>
<td>[0.2, 3.0]</td>
<td>0.927 0.976 0.978 0.998</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0</td>
<td>[1.2, 3.0]</td>
<td>0.902 0.979 0.988 0.991</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>[2.5, 3.0]</td>
<td>0.892 0.974 0.994 0.980</td>
</tr>
</tbody>
</table>
Bonus Material

Time Permitting
Quantile Utility Maximization

Maximize $Q_\tau(u(X))$ instead of $E[u(X)]$

- Manski (1988)
- Rostek (2010): axiomatization
- de Castro and Galvao (2019): dynamic
Quantile Utility Maximization

Maximize $Q_\tau(u(X))$ instead of $E[u(X)]$

- Manski (1988)
- Rostek (2010): axiomatization
- de Castro and Galvao (2019): dynamic

$$Q_\tau(u(X)) = u(Q_\tau(X)) \implies u(\cdot) \text{ doesn’t matter (!?)}$$

Set of preferences \iff set of τ

- Learn about $\mathcal{T} = \{\tau : Q_\tau(Y) \geq Q_\tau(Z)\}$
Object of interest: $\Delta(u) = E[u(Y)] - E[u(Z)]$ over $u \in \mathcal{U}$

Goal: $1 - \alpha = P\{\hat{b}_1(u) \leq \Delta(u) \leq \hat{b}_2(u) \text{ for all } u \in \mathcal{U}\}$

Asymptotically: $\sqrt{n}(\hat{\Delta}(\cdot) - \Delta(\cdot))$ Gaussian

Alg. 3 of Chernozhukov, Fernández-Val, and Melly (2013):

- Bootstrap to get std dev and t-stat for each u
- Bootstrap absolute sup t-stat to get critical value
- Band: $\hat{\Delta}(u) \pm cv_{1-\alpha} \hat{\sigma}(u) / \sqrt{n}$
Test of Restricted (non)SD

\[H_0 : Z \ SD_D \ Y \iff E[u(Y)] - E[u(Z)] \leq 0 \text{ for all } u \in D \]
\[H_1 : Z \ nonSD_D \ Y \]

- Reject SD_D \implies reject SD
- Reject when sup t-stat exceeds bootstrap sup-t cv
- (Least favorable null: all zero)
Test of Restricted (non)SD

\[H_0: Z \text{ SD}_D Y \iff E[u(Y)] - E[u(Z)] \leq 0 \text{ for all } u \in D \]
\[H_1: Z \text{ nonSD}_D Y \]

- Reject SD_D \implies reject SD
- Reject when sup t-stat exceeds bootstrap sup-t cv
- (Least favorable null: all zero)

\[H_0: Z \text{ nonSD}_D Y \text{ vs. } H_1: Z \text{ SD}_D Y \]

- Utility version of Davidson and Duclos (2013)
- Reject when all t-stats below \(\Phi^{-1}(\alpha) < 0 \)
- Least favorable null: \(E[u^*(Y)] - E[u^*(Z)] \downarrow 0 \) for single \(u^* \in D \); for \(u \neq u^* \) \(E[u(Y)] - E[u(Z)] \ll 0 \)
Epilogue

Past & Future
Conclusion

“Better”: restricted stochastic dominance based on
- CDF
- Expected utility

Inference on set of:
- values with lower CDF
- utility functions with higher expected utility

Future:
- non-iid, improve power, implement richer utility family
- economic inequality
- restricted stochastic monotonicity
- other ideas?

Thank you / further questions & comments appreciated
Conclusion

“Better”: restricted stochastic dominance based on

- CDF
- Expected utility

Inference on set of:

- values with lower CDF
- utility functions with higher expected utility

Future:

- non-iid, improve power, implement richer utility family
- economic inequality
- restricted stochastic monotonicity
- other ideas?

Thank you / further questions & comments appreciated
Conclusion

“Better”: restricted stochastic dominance based on
▶ CDF
▶ Expected utility

Inference on set of:
▶ values with lower CDF
▶ utility functions with higher expected utility

Future:
▶ non-iid, improve power, implement richer utility family
▶ economic inequality
▶ restricted stochastic monotonicity
▶ other ideas?

Thank you / further questions & comments appreciated
References I

References III

