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Abstract

Testing whether two parameters have the same sign is a nonstandard prob-
lem due to the non-convex shape of the parameter subspace satisfying the
composite null hypothesis, which is a nonlinear inequality constraint. We de-
scribe a simple example where the ordering of likelihood ratio (LR), Wald, and
Bayesian sign equality tests reverses the “usual” ordering: the Wald rejection
region is a subset of LR’s, as is the Bayesian rejection region (either asymp-
totically or with an uninformative prior). Under general conditions, we show
that non-convexity of the null hypothesis subspace is a necessary but not suffi-
cient condition for this asymptotic frequentist/Bayesian ordering. Since linear
inequalities only generate convex regions, a corollary is that frequentist tests
are more conservative than Bayesian tests in that setting. We also examine
a nearly similar-on-the-boundary, unbiased test of sign equality. Rather than
claim moral superiority of one statistical framework or test, we wish to clarify
the regrettably ineluctable tradeoffs.

JEL classification: C11, C12
Keywords: convexity, likelihood ratio, limit experiment, nonstandard infer-

ence, unbiased test, Wald

1 Introduction

Economic theory often concerns parameters’ signs, such as the negative cross-price

elasticity of complements. More generally, theory often predicts inequality constraints

∗Email: kaplandm@missouri.edu. Mail: Department of Economics, University of Missouri, 909
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Guggenberger for helpful comments and references.
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within a parameter space. We explore differences between Bayesian and frequentist

testing of such theoretical predictions, first in general, then in the case of testing sign

equality.

Under general conditions, we characterize the role of convexity of the null hypoth-

esis, H0. More properly, we mean “convexity of the parameter subspace where H0

is satisfied,” but we use “convexity of H0” as shorthand throughout. We show that

convexity of H0 is a sufficient but not necessary condition for frequentist testing to be

more conservative than the Bayesian test minimizing posterior expected loss, either

with an uninformative prior or asymptotically (assuming the prior’s influence disap-

pears). “More conservative” means that the Bayesian test rejects with probability

above the nominal level, α, given any true parameter value on the boundary of H0.

Equivalently, non-convexity of H0 is a necessary but not sufficient condition for the

Bayesian test to be more conservative.1 Since all linear inequality constraints lead

to convex H0, an immediate corollary is that frequentist tests are more conservative

than Bayesian tests of linear inequality constraints. This corollary seems to reflect

common belief, and Kline (2011) discusses such a result for a certain type of linear

inequality, but a general, formal proof appears absent in the literature.

Unfortunately, irrespective of the ordering, this Bayesian/frequentist difference

means no test can achieve both Bayesian “coherence” and frequentist “calibration”

in these settings, both of which are usually desirable properties. In decision-theoretic

terms, no decision rule can minimize both posterior expected loss and maximum (over

the parameter space) expected loss, using the common (implicit) loss function taking

value 1− α for type I error, α for type II error, and zero otherwise. The frequentist

test does not minimize posterior expected loss, and the Bayesian test can have up to

1In Lindley’s (1957) paradox, the frequentist test rejects while the Bayesian test does not, but
the mechanism is a prior with probability mass on the true point null hypothesis value θ = θ0 and
nowhere else.
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100% type I or II error rate.

One example of a nonlinear inequality constraint null hypothesis arises in testing

whether two scalar parameters, θ1 and θ2, have the same sign, i.e., H0 : θ1θ2 ≥ 0.

We examine this example in more detail. This null hypothesis includes whether a

parameter’s sign is stable over time or geography, where the subscripts on θ1 and θ2

indicate different time periods or places. Another application is the hypothesis that

a binary treatment T attenuates the effect of regressor X, i.e., that the sign of the

coefficient on X (θ1) is opposite that of the interaction term (θ2). If θ1 and θ2 are

point-identified reduced form parameters known to bound a structural parameter, but

it is unknown whether θ1 ≤ θ2 or θ2 ≤ θ1, then the inclusion of the value zero in the

identified set is equivalent to H0 : θ1θ2 ≤ 0. More generally, sign equality testing can

be applied to moment inequalities in the usual way (e.g., Andrews, 2012), but where

the two moments interact with each other, so m1m2 ≥ 0 rather than m1 ≥ 0, m2 ≥ 0.

We compare existing tests and a new test with improved frequentist properties.

The ordering among Wald, likelihood ratio (LR), and Lagrange multiplier (LM)

tests for linear equality (Berndt and Savin, 1977) and inequality (Gouriéroux et al.,

1982, eqn. (8)) constraint testing is usually given in terms of test statistic size, Wald ≥

LR ≥ LM. In terms of rejection regions, Wald ⊇ LR ⊇ LM. With a simple sign

equality testing DGP, we show Wald ⊆ LR = LM.

The Bayesian sign equality test’s rejection region is usually a subset of the fre-

quentist rejection region, although the opposite is true when the correlation between

estimators θ̂1 and θ̂2 is quite negative. This accords with our general result that

a non-convex H0 is necessary but not sufficient for the Bayesian test to be more

conservative.

Our general result also explains the contrast between sign equality testing and

other settings where frequentist testing is more conservative. For example, for testing
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linear inequality constraints of the form H0 : θ ≥ 0 with θ ∈ Rd, Kline (2011) finds

frequentist testing to be more conservative (e.g., his Figure 1). As another example,

frequentist inference is more conservative under set identification: asymptotically, the

frequentist confidence sets (Imbens and Manski, 2004; Stoye, 2009) are strictly larger

than the estimated identified set rather than strictly smaller like the Bayesian credible

sets, as shown by Moon and Schorfheide (2012, Cor. 1).2 Our setup is not directly

comparable to theirs since a Bayesian credible set cannot be inverted into a test (as the

frequentist framework permits). Our setup accommodates null hypothesis inequalities

on the point-identified (“reduced form”) parameters corresponding to “the identified

set contains zero,” which is different than “the set-identified parameter equals zero”:

with a continuous posterior distribution, the probability of the latter is always zero,

while that of the former can approach 100%.

Although the Bayesian sign equality test cannot be improved from a Bayesian

perspective, the LR test is biased and conservative from a frequentist perspective.

Under general conditions, we propose a new, nearly unbiased test with exact asymp-

totic size. This test can be derived primarily using the general setup of Chiburis

(2008), with the addition of some constraints and analytic results. We also compare

the test resulting from the discrete approximation method in Moreira and Moreira

(2013, p. 19). Despite its bias, the LR test may still be preferred for possessing a

type of “rejection monotonicity” similar to that in Section 4.2 of Kline (2011).

The existence of a nearly unbiased (and thus similar-on-the-boundary) sign equal-

ity test with good power highlights another important difference between H0 : θ1θ2 ≥

0 and the more commonly studied H0 : θ1 ≥ 0, θ2 ≥ 0. As Andrews (2012) says in

the title, “Similar-on-the-boundary tests for moment inequalities exist, but have poor

2There seems to be a typo in the statement of Corollary 1(ii), switching the frequentist and
Bayesian sets from their correct places seen in the Supplemental Material proof.
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power.” Specifically, he considers H0 : θ ≥ 0, H1 : θ 6≥ 0, θ ∈ Rd, as in his (1.1),

under a single draw of X ∼ N(θ,Σ). With θ = (θ1, θ2), his Theorem 3 states that a

similar-on-the-boundary test will have rejection probability α for all {θ : θ1θ2 = 0},

which is problematic with H0 : θ ≥ 0 since, for example, the point (0,−100) is very far

from H0. However, for sign equality, all points in {θ : θ1θ2 = 0} are on the boundary;

none are far from H0. Consequently, Theorem 3 in Andrews (2012) does not imply

poor power for similar-on-the-boundary tests of sign equality.

In higher dimensions, though, Theorem 3 of Andrews (2012) has bite even for sign

equality. Let H0 : θ ≥ 0 or θ ≤ 0, θ ∈ R3. The boundary of {θ : θ ≥ 0} is a subset of

the boundary of the sign equality H0, so any similar-on-the-boundary sign equality

test must also be similar on the boundary of {θ : θ ≥ 0}. Consequently, Theorem 3

of Andrews (2012) applies: any similar-on-the-boundary sign equality test must have

rejection probability α in set {θ : θ1 = 0, θ2 < 0, θ3 > 0} (among others), which is not

on the boundary.

The curse of dimensionality hinders the computational search for a similar-on-the-

boundary frequentist test, although casting the search for an optimal test as a linear

program as in Chiburis (2008) greatly speeds computation. Computationally, the

Bayesian approach is much simpler, e.g., with a Bayesian bootstrap (Rubin, 1981).

The important caveat is that the Bayesian test can be a poor decision rule from a

minimax risk perspective: it can have up to 100% type I or II error rate in some

cases.

A natural question is whether any method can attain a mix of (some) Bayesian

and frequentist properties, similar to the bet-proof confidence sets in Müller and

Norets (2014). An application of their method to testing sign equality would start

with a one-sided bet-proof confidence interval for θ1θ2, rejecting H0 : θ1θ2 ≥ 0 if

the interval is strictly negative. Since the interval must be a superset of a Bayesian
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credible interval with respect to some prior, the test is more conservative than the

corresponding Bayesian test. Given our result that the Bayesian sign equality test is

(usually) more conservative than the frequentist test, this initially suggests the bet-

proof approach simply sides with the Bayesian perspective here. However, our results

assume an asymptotically normal posterior, which excludes cases like Lindley’s (1957)

paradox that has prior probability mass on the true value. We leave investigation of

such methods to future work.

In the literature, Wolak (1991) discusses frequentist tests of nonlinear inequality

constraints in nonlinear models. His setting is more general than our sign equality

example, the result being that it is difficult even to find any test with asymptotically

exact size (though his Lemma 1 helps). Kodde and Palm (1986) also discuss a Wald

test of nonlinear inequalities; more recently, Donald and Hsu (2011) propose a simu-

lation method to find frequentist critical values without relying on the least favorable

null. This paper focuses instead on Bayesian/frequentist differences and on finding an

unbiased sign equality test. Inequality constraint testing also applies to specification

testing of moment inequality models as in Guggenberger et al. (2008), among others.

Section 2 characterizes the role of null hypothesis convexity in determining the

ordering of Bayesian and frequentist hypothesis tests. Section 3 compares existing sign

equality tests. Section 4 describes the new test. Proofs are collected in Appendix A.

Acronyms used include Lagrange multiplier (LM), likelihood ratio (LR), maximum

likelihood (ML) estimator (MLE), and rejection probability (RP), and Φ(·) is the

standard normal CDF with quantiles zα ≡ Φ−1(α).

2 Convex and non-convex null hypotheses

We first discuss testing in one dimension for intuition and then provide general results.
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2.1 One dimension

Let θ ∈ R be the parameter of interest. For illustration, consider a Gaussian shift

experiment where the sampling and posterior distributions are, respectively,

θ̂ ∼ N(θ, 1), θ ∼ N(θ̂, 1). (1)

This may be seen either as a scaled finite-sample problem with a normal likelihood or

as a limit experiment. Let α denote the test level, which for the Bayesian test means

rejecting if and only if P (H0) ≤ α.

The Bayesian/frequentist differences below may be framed in decision-theoretic

terms. The Bayesian test examined here is a generalized Bayes rule that minimizes

posterior expected loss when the loss function takes value 1−α for type I error, α for

type II error, and zero otherwise. The unbiased frequentist test minimizes maximum

(over θ) expected loss under the same loss function, as is often true of unbiased tests

(e.g., Lehmann and Romano, 2005, Problem 1.10). Ideally, a single decision rule

satisfies both properties.

If H0 : θ ≤ c0, then the frequentist and Bayesian tests are equivalent: both reject if

and only if θ̂ > c0 + z1−α. Given the least favorable null of θ = c0, P (θ̂ > c0 + z1−α) =

1− Φ(z1−α) = α. Given θ̂ = c0 + z1−α, P (H0) = P (θ ≤ c0) = Φ(−z1−α) = α.

Any convex one-dimensional set is an interval (−∞, b], [a, b], or [a,∞), or the

corresponding open intervals that are practically equivalent (for our purposes). These

are also the only possible sets generated by linear inequality constraints. The null

hypothesis H0 : θ ≤ c0 may be expressed as H0 : θ ∈ Θ0 with Θ0 = (−∞, c0]. By

symmetry, the frequentist/Bayesian equivalence also holds for Θ0 = [c0,∞). The only

remaining case is Θ0 = [a, c0].

Given Θ0 = [a, c0], the test of H0 : θ ≤ c0 still rejects with probability α if θ = c0.
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In contrast, given θ̂ = c0 + z1−α, P (θ ∈ Θ0) < P (θ ≤ c0) = α, so the Bayesian test

will now reject some θ̂ < c0 + z1−α. Without loss of generality, [a, c0] may be centered

to [−h, h].

Proposition 1. Given (1) and H0 : θ ∈ [−h, h], the frequentist and Bayesian rejec-

tion regions are respectively (−∞,−cf ] ∪ [cf ,∞) and (−∞,−cB] ∪ [cB,∞), where

Φ(h− cf ) + Φ(−cf − h) = α = Φ(h− cB)− Φ(−h− cB) (2)

and cB < h + z1−α < cf . If h < z0.5+α/2, then the second equality in (2) becomes an

inequality and cB = 0, i.e., the Bayesian test always rejects.

In Proposition 1, the frequentist test is too conservative by Bayesian standards,

and the Bayesian test has up to 100% type I error rate, which is bad from a minimax

perspective.

One non-convex example is the nonlinear inequality constraint test of

H0 : θ2 > h2 against H1 : θ2 ≤ h2 (3)

for h ≥ 0. Proposition 2 states that the Bayesian test is more conservative.

Proposition 2. Given (1) and (3), the frequentist and Bayesian rejection regions

are respectively (−cf , cf ) and (−cB, cB), where

Φ(cf − h)− Φ(−cf − h) = α = Φ(cB − h) + Φ(−cB − h) (4)

and cB < h + zα < cf . If h < z1−α/2, then the second inequality in (4) becomes an

inequality and cB = 0, i.e., the Bayesian test never rejects.

In Proposition 2, the frequentist test rejects too often when judged by posterior

probability, while the Bayesian test has up to 100% type II error rate, which is bad

from a minimax perspective.
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However, there are non-convex H0 besides (3) for which the frequentist test is

still more conservative than the Bayesian test. Consider H0 : θ ∈ {0, ε}, a set of

two points. The Bayesian test always rejects since P (H0) = 0 given any θ̂, while

the frequentist test does not always reject. In light of this, Corollary 3 summarizes

Propositions 1 and 2.

Corollary 3. Given (1), non-convexity of H0 is a necessary but not sufficient con-

dition for Bayesian testing to be more conservative than frequentist testing.

2.2 General results

We now present formal results under more general assumptions.

Assumption 1. As the sample size n → ∞, the asymptotic distribution of θ̂, an

estimator of interior point θ ∈ Θ ⊆ Rk, is
√
n(θ̂ − θ) d→ N(0, V ), and there exists a

conistent estimator V̂
p→ V . The asymptotic Bayesian posterior distribution is the

same, but interpreting θ as random and θ̂ as fixed. The
√
n rate may be replaced by

any rate an →∞.

Lower-level conditions sufficient for the sampling and posterior distributions’ asymp-

totic equivalence in Assumption 1, including semiparametric models like GMM and

quantile regression, are given and discussed in Hahn (1997, Thm. G and footnote

13), Kwan (1999, Thm. 2), Kim (2002, Prop. 1), and Sims (2010, Sec. III.2), among

others. Results for posterior asymptotic normality in parametric models date back

to 1847 (per Johnson, 1970), with many more in the 20th century.

Simpler to imagine than Assumption 1 is the limit experiment, a single draw of

X ∼ N(θ, V ) with known V , and an improper uninformative prior to yield posterior

θ ∼ N(X, V ).
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Assumption 2. Let α ∈ (0, 1/2). Define the Bayesian test to reject if and only if

P (H0) ≤ α, using the asymptotic posterior in Assumption 1. With respect to the

sampling distribution in Assumption 1, the frequentist test maintains asymptotic type

I error rate no greater than α given any θ satisfying H0, with asymptotically exact α

rejection probability at one or more θ satisfying H0.

Lemma 4 corresponds to the discussion of H0 : θ ≤ c0 in one dimension, and

Theorem 5 gives the main result.

Lemma 4. Let θ ∈ Rk, and let H0 : c′θ ≤ c0 for vector of constants c ∈ Rk and

c0 ∈ R. Equivalently, H0 : θ ∈ Θ0, where Θ0 is the half-space {t : c′t ≤ c0}. Then, the

Bayesian and frequentist tests in Assumption 2 are asymptotically equivalent, rejecting

if and only if
√
n(c′θ̂ − c0)/

√
c′V̂ c > z1−α. The asymptotic rejection probability is

exactly α for all θ solving c′θ = c0, and the asymptotic posterior probability of H0

given any θ̂ along the boundary of the rejection region is exactly α.

Theorem 5. Let H0 : θ ∈ Θ0 ⊂ Rk, where Θ0 is convex, and H1 : θ ∈ Θc
0 ≡ Rk\Θ0.

Under Assumptions 1 and 2, frequentist testing of H0 against H1 is asymptotically

“more conservative” than Bayesian testing: the (frequentist) rejection probability of

the Bayesian test given any θ on the boundary of Θ0 is at least as big as α.

An immediate implication of Theorem 5 is that non-convexity is a necessary but

not sufficient condition for Bayesian testing to be more conservative than frequen-

tist testing. Beyond Proposition 2, testing sign equality is another example where

Bayesian testing can be more conservative.

The fixed Θ0 in Theorem 5 could be modified to shrink with n so that smooth

(differentiable) Θ0 do not degenerate to half-spaces in the limit. For example, if

Θ0 = {θ = (θ1, θ2) : ‖θ‖2 ≤ 1}, then as n → ∞, restricting attention to a n−1/2
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neighborhood around (0, 1), the null simplifies to H0 : θ2 ≤ 1. Instead, Θ0 = {θ :

‖θ‖2 ≤ 1/
√
n} lets our asymptotic approximation capture a smooth, non-degenerate

(strictly convex) Θ0. Examples like Θ0 = {θ : θ1 ≥ 0, θ2 ≥ 0} do not degenerate

either way.

Corollary 6 states the implication of Theorem 5 for linear inequality testing.

Corollary 6. For any (joint) linear inequality constraint null hypothesis, under As-

sumptions 1 and 2, frequentist testing is asymptotically “more conservative” than

Bayesian testing in the sense given in Theorem 5.

For the important special case of H0 : θ ≥ 0 (elementwise) and H1 : θ 6≥ 0,

with θ ∈ Rd, Kline (2011, p. 3136) explains the possible divergence of Bayesian and

frequentist conclusions when the dimensionality d grows. He gives the example of

θ̂ = 0, where the Bayesian P (H0) ≈ 0 while the frequentist p-value is near one. If

instead H0 : θ 6≥ 0 and H1 : θ ≥ 0, then P (H0) ≈ 1 can occur inside a frequentist

rejection region for a test of level α ≈ 0. Theorem 11 states a less extreme version of

this phenomenon for testing sign equality.

3 Comparison of existing sign equality tests

In Section 3.1, we show that either Bayesian or frequentist testing may be more

conservative with the null hypothesis of sign equality. In Section 3.2, we compare a

variety of sign equality tests in a simple example where the “usual” test ordering is

reversed.
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3.1 Bayesian/frequentist ordering

Let θ1 ∈ R and θ2 ∈ R be the parameters of interest. The null hypothesis is H0 :

θ1θ2 ≥ 0, i.e., that θ1 and θ2 have the same sign (positive or negative). Similar to

the Gaussian shift experiment in Section 2.1, for illustration, let the sampling and

posterior distributions be θ̂1

θ̂2

 ∼ N


 θ1

θ2

,
 1 ρ

ρ 1


,

 θ1

θ2

 ∼ N


 θ̂1

θ̂2

,
 1 ρ

ρ 1


.

If ρ = 1, then a non-convex, one-dimensional null hypothesis results. Observing

θ̂2 − θ̂1 = b implies θ2 − θ1 = b, reducing the problem to one parameter with H0 :

θ1(θ1 + b) ≥ 0. If b > 0, then H0 : θ1 6∈ (−b, 0); if b ≤ 0, then H0 : θ1 6∈ (0,−b).

Proposition 2 says the Bayesian test is more conservative in this case.

If ρ = −1, then a convex, one-dimensional null hypothesis results. Observing

θ̂1 + θ̂2 = a implies θ1 + θ2 = a, reducing the problem to H0 : θ1(a− θ2) ≥ 0. If a > 0,

then H0 : θ1 ∈ [0, a]; if a ≤ 0, then H0 : θ1 ∈ [a, 0]. Proposition 1 says the frequentist

test is more conservative in this case.

As shown in Theorem 5, non-convexity is not sufficient for the Bayesian test to

be more conservative. For testing sign equality, the Bayesian/frequentist ordering

depends on ρ.

The frequentist rejection regions for ρ = −1 and ρ = 1 are seen in the top-left

and bottom-right graphs in Figure 4 for α = 0.05. Interestingly, the Bayesian test

when ρ = 1 is equivalent to the frequentist test when ρ = −1, and the Bayesian

test when ρ = −1 is equivalent to the frequentist test when ρ = 1 (unless θ̂1 = θ̂2).

For example, when ρ = −1, if a ≡ θ̂1 + θ̂2 < 0, the posterior P (H0) is Φ(−θ̂1) −

Φ(−θ̂1 + a) = Φ(−θ̂1) − Φ(θ̂2), and similarly Φ(θ̂2) − Φ(−θ̂1) if a ≥ 0, so for any a,

P (H0) =
∣∣∣Φ(θ̂2)− Φ(−θ̂1)

∣∣∣. With ρ = 1, if b ≡ θ̂2 − θ̂1 > 0 and θ̂1 ≥ −b/2, then the
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frequentist test rejects when

α ≥ Φ(θ̂1)− Φ
(
θ̂1 − 2[θ̂1 − (−b/2)]

)
= Φ(θ̂1)− Φ

(
−θ̂2

)
= Φ(θ̂2)− Φ(−θ̂1),

identical to the Bayesian rejection criterion when ρ = −1. Similar analysis shows the

equivalence in the other cases.

3.2 Ordering in simple example

We compare various tests of H0 : θ1θ2 ≥ 0 in a simple example:

yi1
iid∼ N(θ1, 1), 1 ≤ i ≤ n; yk2

iid∼ N(θ2, 1), 1 ≤ k ≤ n; yi1 ⊥⊥ yk2,∀i, k. (5)

Figure 1 depicts the rejection regions given in Lemmas 7–10.

−4 −2 0 2 4

−
4

−
2

0
2

4

y1 n

y 2
n

Figure 1: Rejection regions for different sign equality tests under model (5), α = 0.05.
The shaded area is the LR region from Lemma 8, which is also the rejection region for
LM and LR-type GMM tests. The solid curved line is the boundary of the Bayesian
region from Lemma 7. The dashed line is the boundary of the Wald region from
Lemma 9. The horizontal and vertical axes show

√
nȳ1 and

√
nȳ2, respectively.
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With normal priors on θ1 and θ2, specifically

θ1 ∼ N(m1, τ
2
1 ), θ2 ∼ N(m2, τ

2
2 ), (6)

the posteriors and asymptotic posteriors are

θ1 | ȳ1 ∼ N

(
τ 21 ȳ1 +m1/n

τ 21 + 1/n
,

τ 21
nτ 21 + 1

)
, θ2 | ȳ2 ∼ N

(
τ 22 ȳ2 +m2/n

τ 22 + 1/n
,

τ 22
nτ 22 + 1

)
, (7)

√
n(θ1 − ȳ1)

d→ N(0, 1),
√
n(θ2 − ȳ2)

d→ N(0, 1), (8)

assuming τ 21 , τ
2
2 6= 0. Equation (8) is also the limit of (7) as τ 21 , τ

2
2 → ∞, i.e., the

finite-sample posterior given improper uninformative priors. Equation (8) is also ob-

tained by nonparametric Bayesian methods that do not assume a correctly specified

likelihood; see, for example, Theorem 4.1 of Lo (1987) for the special case of Ru-

bin’s (1981) Bayesian bootstrap and Theorem 2.1 of Weng (1989), which includes

general Dirichlet process priors. See also Kline (2011) for discussion of these different

interpretations. Lemma 7 characterizes the asymptotic Bayesian test.

Lemma 7. For the model in (5) and priors in (6) with τ1, τ2 6= 0, the region where

the asymptotic posterior probability of H0 is α or less is

{
(ȳ1, ȳ2) :

[
1− Φ(−

√
nȳ2)

][
1− Φ(−

√
nȳ1)

]
+ Φ(−

√
nȳ1)Φ(−

√
nȳ2) ≤ α

}
.

From (5), iso-likelihood curves are concentric circles around (ȳ1, ȳ2), so the likeli-

hood ratio (LR) is equivalent to the Euclidean distance from (ȳ1, ȳ2) to the H0 region.

The critical value is pinned down by considering θ2 → ±∞ (the least favorable null),

and Lemma 8 results.

Lemma 8. Under (5), with z1−α ≡ Φ−1(1− α), the level-α LR rejection region is

{
(ȳ1, ȳ2) : max{min{ȳ1,−ȳ2},min{−ȳ1, ȳ2}} ≥ z1−α/

√
n
}
.
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Arguably the most natural3 Wald statistic for H0 : θ1θ2 ≥ 0 is

Ŵn =

√
nθ̂1θ̂2√
θ̂22 + θ̂21

, (9)

where the denominator is from the Delta method when (θ1, θ2) 6= (0, 0). Using Ŵn

is equivalent to using Wn on page 984 of Wolak (1991) or D in (2.16) of Kodde and

Palm (1986), where Wn = Ŵ 2
n if Ŵn < 0 and Wn = 0 if Ŵn ≥ 0.

Lemma 9. For model (5), the rejection region for a level-α Wald test using (9) is{
(ȳ1, ȳ2) :

√
nȳ1ȳ2√
ȳ21 + ȳ22

≤ zα

}
.

Given (5), the Lagrange multiplier (LM) test (or “score test”) and LR-type GMM

test have the same test statistic, infθ∈H0 n‖ȳ − θ‖22, where ‖x‖2 =
√
x21 + x22 is the

Euclidean (L2) vector norm. This is equivalent to the LR statistic and thus generates

the same rejection region as LR, even in finite samples.

Lemma 10. For model (5), the rejection region for a level-α LM test and that for a

level-α LR-type GMM test are identical to the LR region in Lemma 8.

The Wald test is strictly worse than the LR (and others) by frequentist criteria.

The Wald rejection region is a subset of LR’s, so LR has greater power against any

alternative while still controlling size.

The Bayesian test is similarly worse than LR by frequentist criteria, but the LR

test is worse by Bayesian criteria. This is the same incompatibility seen in Section 2.

Even the LR test, which is uniformly most powerful for testing a single parameter’s

sign, is a conservative sign equality test by frequentist standards. Theorem 11 states

that all tests considered have rejection probability strictly below α when θ1 = θ2 = 0.

3We ignore the multiplicity of Wald tests from equivalent null hypotheses H0 : (θ1θ2)r ≥ 0 for
odd r.
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Theorem 11. For model (5) and test level α ∈ (0, 0.5), if θ1 = θ2 = 0, then the

asymptotic rejection probabilities of the Bayesian, LR, Wald, LM, and LR-type GMM

tests from Lemmas 7–10 satisfy

α > RPLR = RPLR-GMM = RPLM > max{RPBayes,RPWald}.

The Bayesian/frequentist ordering in Theorem 11 is possible due to the non-

convexity of the sign equality null hypothesis, according to Theorem 5. Also, the

LR/Wald ordering in Theorem 11 reverses the ordering for linear equality (Berndt

and Savin, 1977) and linear inequality (Gouriéroux et al., 1982, eqn. (8)) constraint

testing.

Changing a test’s critical value to solve the issue highlighted in Theorem 11 would

introduce size distortion; the rejection region shape itself must change. We investigate

this question of shape in Section 4, wherein we propose a new, nearly unbiased test

under general conditions.

4 New sign equality test

We propose a new, nonrandomized, frequentist sign equality test that is asymptoti-

cally nearly unbiased (up to simulation/discretization error), unlike any existing test.

We do not propose a new Bayesian test since it already minimizes posterior expected

loss. Code for both deriving the test and running the test is available either online

or upon request.
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4.1 Setup and search methods

We observe a single draw of (t̂1, t̂2)
′ from t̂1

t̂2

 ∼ N


 d1

d2

,
 1 ρ

ρ 1


, (10)

where d1 and d2 are unknown but ρ is known. We wish to test

H0 : d1d2 ≥ 0, H1 : d1d2 < 0. (11)

This is a general limit experiment applicable to a variety of settings. The t̂1

and t̂2 could be sample moments, as in Andrews (2012) and others. Alternatively,

they could be asymptotically bivariate normal t-statistics whose correlation has a

consistent estimator, ρ̂, with (10) providing the limit distribution under drifting (to

zero) sequences of parameters of interest θ1 and θ2, so that d1d2 ≥ 0 ⇐⇒ θ1θ2 ≥ 0.

Sampling dependence is not restricted, and nonparametric rates of convergence are

allowed.

The primary difficulty is structuring a search over candidate tests. We use numer-

ical integration to compute rejection probabilities for different (d1, d2), given a candi-

date rejection region approximated by small squares on the (t̂1, t̂2) plane.4 Without

structure, the problem grows exponentially: with only 10 × 10 = 100 squares in the

t-statistic plane, there are 2100 ≈ 1030 candidates. If 109 candidates can be assessed

each second, then an exhaustive search requires over 40 trillion years.

Chiburis (2008) casts this search as a linear program (LP) by allowing randomized

tests and using weighted average power (WAP) as the objective function. Squares are

4The approach of Gouriéroux et al. (1982, p. 69) for linear inequality constraint testing and Wolak
(1991, p. 987) for (locally linearized) nonlinear inequalities is to apply an affine transformation
A so that, in this case, A(t̂1, t̂2)′ is standard bivariate normal. However, computationally, it is
easier to evaluate probabilities of correlated normals over rectangles than independent normals over
parallelograms.
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labeled j = 1, 2, . . ., and the test rejects with probability 0 ≤ xj ≤ 1 if the observed

(t̂1, t̂2) is inside the square. Given (10) and xj, we can compute the contribution to

WAP of square j; denote this rj, and let r = (r1, . . . , rJ)′. Let aij be the contribution

of xj to rejection probability given d1 = 0 and any d2 = vi, vi ≤ 0. For grid {vi}ni=1,

size is controlled if Ax ≤ α, where aij is the row i, column j element of matrix A. For

ε > 0, a nearly similar-on-the-boundary constraint is Ax ≥ α − ε. Thus, the linear

program chooses x = (x1, . . . , xJ)′ to maximize r′x subject to Ax ≤ α and Ax ≥ α−ε,

i.e., maximize WAP subject to a nearly similar-on-the-boundary constraint.

Allowing randomized tests is critical. Solving the integer LP restricting xj ∈ {0, 1}

is intractable with the degree of precision we use below. However, converting the

randomized LP solution to a nonrandomized test by simple thresholding often makes

negligible difference.

Moreira and Moreira (2013, p. 19) propose a method that can solve a discrete

approximation of the LP given an iid sample {Yj}Jj=1 from known density m(·).5

Here, xj is the probability of randomized rejection of Yj, rather than rectangle j.

For WAP, we use the improper weighting function that equals one for every point

in H1, i.e., π(θ1, θ2) = 1{θ1θ2 < 0} in the notation of Chiburis (2008, eqn. (6)). Using

the finite grid of point alternatives

{(θ1, θ2) : θ1 ∈ {±0.5,±1.0, . . . ,±3.0, θ2 ∈ {±0.5, . . . ,±3.0}, θ1θ2 < 0}

yields a similar but noticeably different test, especially without Constraint 3 below.

We include additional constraints:

1. By symmetry, the point (t̂1, t̂2), where t̂1 > 0 and −t̂1 < t̂2 < 0, should have the

same xj as the points (−t̂1,−t̂2), (t̂2, t̂1), and (−t̂2,−t̂1). This ensures invariance

5Alternatively, a low-discrepancy sequence like the Halton sequence could be used in place of
pseudorandom draws of Yj to improve the convergence rate, but for the present case, a good ap-
proximation of the test is achieved in only a few seconds anyway.
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among tests of H0 : d1d2 ≥ 0, H0 : d2d1 ≥ 0, and H0 : (−d1)(−d2) ≥ 0.

2. Away from the origin, we use a one-sided test (i.e., the LR-type rejection region);

for example, letting z = Φ−1(1− α), if t̂1 > 2z, then the test rejects if t̂2 < −z.

3. Optional: any square in Quadrant IV (II) must have xj at least as great as a)

the square diagonally up and left (down and right) of it and b) the adjacent

square in the direction of the closest part of Θ0 (e.g., to the left for a square at

(2,−4)).

We used additional structure to derive tests in a non-LP framework. As seen in

Figure 4 for α = 0.05, the rejection regions for different ρ nest within each other: the

region for ρ is a subset of that for ρ′ if ρ < ρ′. There is also monotonicity in α, as

seen in Figure 5.

Regardless of derivation, the monotonicity in ρ means that tests can be computed

and stored ahead of time (for α = 0.05, etc.), running in under a second in practice.

We use ρ = −1,−0.95, . . . , 0.95. In practice, using the test for the grid ρ just below

the actual ρ̂ errs slightly on the conservative side.

4.2 Properties of new tests

The LP methods of Chiburis (2008) and Moreira and Moreira (2013) and our non-

LP method yield comparable tests, shown for ρ = 0 in Figure 2. The runtime for

Chiburis (2008) was under two minutes on a personal computer (8GB RAM, 3.2GHz

i5 processor), and that for Moreira and Moreira (2013) was a few seconds; the non-LP

method took much longer, including multiple starts. The bottom row of the figure

shows that the two LP methods differ by a noticeable but small amount near the

origin, without Constraint 3. The top row shows that, in turn, our non-LP method
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Figure 2: New rejection regions, ρ = 0, α = 0.05, Constraints 1 and 2, equal-weighted
WAP, threshold xj = 0.5 used to convert randomized to nonrandomized tests. Top
left: non-LP search, with additional Constraint 3 and constrained to be a proper
superset of the LR-type region. Top right: Chiburis (2008) LP method, block width
z1−α/100, vi = 0,−0.5, . . . ,−7, with additional Constraint 3. Bottom left: same
as top right but without Constraint 3. Bottom right: Moreira and Moreira (2013)
discrete approximation LP, vi = 0,−0.25, . . . ,−4, Yj ∼ Unif(−6, 6), J = 105; the
colored/gray dots are the Yj, with black circles around those in the rejection region.

and Chiburis (2008) differ by a noticeable but small amount, with Constraint 3. The

rejection probabilities of the nonrandomized6 (thresholded) Chiburis (2008) test along

the boundary ranges from 0.0480 to 0.0500, while the boundary rejection probabilities

of the non-LP test are within [0.0499, 0.0500]. Due to the general similarity, non-LP

results are the focus hereafter.

6It is easy to shrink the range for the randomized Chiburis (2008) test, but such improvement
can actually make the nonrandomized version worse.
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The rejection region shown in Figure 2 (top left) for ρ = 0 and α = 0.05 corre-

sponds to the power function in Figure 3, which also shows the power function of

the LR test. As seen, the new test achieves RPs between 0.0499 and 0.0500 at all

(grid) points along the boundary of H0, whereas the LR-type test with the shape from

Figure 1 has RPs ranging from 0.005 (at θ1 = θ2 = 0) to 0.05 (beyond the graph’s

limits). Similarly, for α = 0.1, the new test’s RPs range between 0.0996 and 0.1000.

Figure 3 also shows the nearly unbiasedness and asymptotic power improvement over

the LR-type test.

Figure 3: Asymptotic power functions of new (color/solid) and LR-type (black/wire
mesh) tests, 0 ≤ θ1 ≤ 2/

√
n, 0 ≥ θ2 ≥ −2/

√
n, ρ = 0, α = 0.05. The parallel flat

surfaces are zero and α rejection probabilities.

Figure 4 contains additional examples of rejection regions for various ρ.

A decision-theoretic framework also distinguishes the new and LR-type tests in

terms of minimax risk. We use the loss function that takes value α for type II error,

1 − α for type I error, and zero otherwise. Risk (i.e., expected loss) under H0 is

1− α times the type I error rate, and under H1 is α times the type II error rate. An

unbiased level-α test is a minimax risk decision rule, achieving α(1 − α) max risk.

Max risk of the LR-type level-α test is α(1 − 2α2) at (θ1, θ2) = limε→0+(ε,−ε). For
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Figure 4: Rejection regions for new test, α = 0.05, t̂1 on horizontal axis,
t̂2 on vertical axis. From left to right within rows, top to bottom: ρ =
−1,−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9, 1.

example, for α = 0.05, the LR-type level-α test has max risk of 0.04975, whereas the

new test’s max risk is 5% lower, (nearly) 0.0475; if α = 0.1, the max risk improvement

is 8%.

Although the new test improves upon many properties of the LR-type test, it

loses a type of rejection monotonicity similar to that in Section 4.2 of Kline (2011),

so there is a trade-off. Specifically, the new test may reject (t̂1, t̂2) but not (t̂′1, t̂
′
2)

even if |t̂′1| ≥ |t̂1| and |t̂′2| ≥ |t̂2|. The rationale for this type of rejection monotonicity

is to avoid any samples where H0 is accepted but would have been rejected if (t̂1, t̂2)
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were closer to H0. A Bayesian perspective finds a violation of this property to be

egregious, whereas a strict frequentist perspective does not. Imposing such a rejection

monotonicity constraint leads back to the rectangular LR-type region. Any level-α

region is pinned down away from the origin at (z1−α,−∞). If it were to contain

point (t1, t2) with t1 < z1−α, rejection monotonicity would require the inclusion of

(t1, c) for all c < t2, but this would violate the size constraint. Thus, the LR-type

rejection region is the largest possible subject to size control and this type of rejection

monotonicity.

This type of rejection monotonicity differs from power monotonicity. Comparing

points with |θ′1| ≥ |θ1| and |θ′2| ≥ |θ2|, both the LR-type and new tests satisfy power

monotonicity, as seen in Figure 3.

Rejection monotonicity in α is yet a different property and is achieved by the new

test. A level-α test rejects if (but not only if) a level-α′ test rejects, for any α > α′.

Figure 5 shows that the new test’s α = 0.05 rejection region is a subset of the α = 0.1

rejection region when ρ = 0.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Rejection region(s)

t̂ 1

t̂ 2 ●●

Figure 5: Overlay of α = 0.05 rejection region on α = 0.10 region, showing mono-
tonicity in α; ρ = 0.

One open question is whether the new sign equality test may be represented (or
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approximated) more elegantly as an LR-type test with data-dependent critical values.

5 Conclusion

We have explored the difference between Bayesian and frequentist inequality con-

straint tests, providing a formal result on the role of convexity of the null hypothesis

parameter subspace. The Bayesian/frequentist test ordering reversal that can occur

with non-convexity is shown to arise when testing sign equality of two parameters,

unless the estimators are strongly negatively correlated. In either case, no test can

achieve both Bayesian and frequentist optimality. We also contribute a new sign

equality test that is nearly unbiased (unlike existing tests) and has strictly better

power than the LR-type test.

Investigation of approaches like Müller and Norets (2014) applied to nonlinear

inequality testing and extension of our results to cases without asymptotic (sampling

and/or posterior) normality remain for future work.
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A Mathematical proofs

A.1 Proof of Proposition 1

The least favorable null is θ = h (or θ = −h), so

α = P (θ̂ < −cf | θ = h) + P (θ̂ > cf | θ = h) > P (θ̂ > cf | θ = h) = 1− Φ(cf − h),

and cf − h > z1−α. For the Bayesian test,

α = P (−h < θ < h | θ̂ = cB) = Φ(h− cB)− Φ(−h− cB) < Φ(h− cB),

so h− cB > zα and cB < h+ z1−α < cf . If P (H0 | θ̂ = 0) = Φ(h)− Φ(−h) ≤ α, then
cB = 0 and the Bayesian test always rejects.

A.2 Proof of Proposition 2

Denote the frequentist and Bayesian rejection regions [−cf , cf ] and [−cB, cB]. The
value cf is determined by7

α = P (θ̂ ∈ [−cf , cf ] | θ = h) = Φ(cf − h)− Φ(−cf − h) < Φ(cf − h),

so cf − h > zα. In contrast, cB is determined by

α = P (H0 | θ̂ = cB) = P (θ > h | θ̂ = cB) + P (θ < −h | θ̂ = cB)

> P (θ > h | θ̂ = cB) = 1− Φ(h− cB) = Φ(cB − h),

so cB − h < zα. Altogether, cB < h + zα < cf , so the Bayesian rejection region is a
subset of the frequentist region.

A.3 Proof of Lemma 4

Even though θ is k-dimensional, the test is essentially one-dimensional, where c′θ̂ has
a normal sampling distribution and c′θ has an equivalent normal posterior. The

√
n

below may be replaced by any an →∞ rate.
For the frequentist test, from the sampling distribution in Assumption 1 and the

continuous mapping theorem,

√
n(c′θ̂ − c′θ)/

√
c′V̂ c

d→ N(0, 1).

7Technically, θ = h is not in H0, but this yields the supremum RP over H0 due to continuity of
the RP in θ.
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The least favorable null is any θ satisfying c′θ = c0, on the boundary of Θ0. If c′θ = c0,
then

√
n(c′θ̂ − c0)/

√
c′V̂ c

d→ N(0, 1),

so the test in Lemma 4 has exactly α rejection probability. For any other θ ∈ Θ0,
c′θ < c0, so c′θ−c0 < 0, and the test statistic diverges to −∞, leading to zero rejection
probability.

For the Bayesian test, we can check P (H0) = α everywhere on the boundary
of the rejection region from Lemma 4. The boundary is equivalent to c′θ̂ = c0 +

n−1/2z1−α
√
c′V̂ c, so

P
(
c′θ ≤ c0 | c′θ̂ = c0 + n−1/2z1−α

√
c′V̂ c

)
= P

(√
n(c′θ − c′θ̂ + n−1/2z1−α

√
c′V̂ c) ≤ 0

)
= P

(√
n(c′θ − c′θ̂)/

√
c′V̂ c ≤ −z1−α

)
→ Φ(−z1−α) = α,

using the asymptotic posterior from Assumption 1. Similar calculations show the
probability to be below α for larger c′θ̂ − c0 and above α for smaller c′θ̂ − c0.

A.4 Proof of Theorem 5

Let θb be any point on the boundary of Θ0. Since Θ0 is convex, there exists at least
one hyperplane containing θb such that Θ0 is entirely on one side of the hyperplane.
Let Θ0,b be the subspace containing all points on the Θ0 side of this hyperplane, so
Θ0 ⊆ Θ0,b. Define c ∈ Rk and c0 ∈ R such that Θ0,b = {θ : c′θ ≤ c0}.

If Θ0 = Θ0,b, then Lemma 4 applies, which gives the desired conclusion.
Even if Θ0 ⊂ Θ0,b strictly, Lemma 4 says that the test defined therein has exact

α rejection probability if θ = θb since c′θb = c0 by construction. We now show that
each point on the boundary of that test’s rejection region is in the interior of the
Bayesian rejection region for H0 : θ ∈ Θ0. Consequently, the Bayesian rejection
region for H0 : θ ∈ Θ0 is a superset of the rejection region for H0 : θ ∈ Θ0,b, so the
(frequentist) rejection probability (given θb) of the former Bayesian test is larger than
α (the rejection probability of the latter test).

Consider any point θ̂b on the boundary of the rejection region for H0 : θ ∈ Θ0,b.

From Lemma 4, the asymptotic posterior probability P (θ ∈ Θ0,b | θ̂b) = α exactly.

Since Θ0 ⊂ Θ0,b, P (θ ∈ Θ0 | θ̂b) < α, so θ̂b is an interior point of the Bayesian
rejection region.
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A.5 Proof of Corollary 6

Any individual linear inequality constraint generates a convex subset of the parameter
space (specifically, a half-space). The intersection of any number of convex sets is
convex. Thus, any (joint) linear inequality constraint null hypothesis is equivalent
to H0 : θ ∈ Θ0 for some convex Θ0 ⊂ Rk, so the assumptions of Theorem 5 are
satisfied.

A.6 Proof of Lemma 7

Using the assumed independence and the asymptotic posteriors in (8),

Pa(H0 | ȳ1, ȳ2) =
[
1− Φ(−

√
nȳ2)

][
1− Φ(−

√
nȳ1)

]
+ Φ(−

√
nȳ1)Φ(−

√
nȳ2).

(12)

A.7 Proof of Lemma 8

Given (5), the unrestricted MLE is (θ̂1, θ̂2) = (ȳ1, ȳ2), the sample averages. If this
satisfies H0, then the likelihood ratio (LR) is one. If not, the restricted (to H0) MLE
sets either θ̂1 or θ̂2 to zero since ȳ1 ⊥⊥ ȳ2. Since Var(ȳ1) = Var(ȳ2), the LR is a function
of the Euclidean distance from (ȳ1, ȳ2) to H0, which forms L-shaped iso-LR curves in
quadrants II and IV of the (ȳ1, ȳ2) plane as in Figure 1.

By the sufficiency of the sample average ȳ1 for θ1 and ȳ2 for θ2, we can use the
likelihoods for ȳ1 ∼ N(θ1, 1/n) and ȳ2 ∼ N(θ2, 1/n). Using ȳ1 ⊥⊥ ȳ2, the joint
likelihood factors into

L(θ1, θ2 | ȳ1, ȳ2) = L(θ1, θ2 | ȳ1)L(θ1, θ2 | ȳ2) = L(θ1 | ȳ1)L(θ2 | ȳ2).

For j = 1, 2,

L(θj | ȳj) = (2π/n)−1/2 exp{−n(ȳj − θj)2/2}, (13)

∂

∂θj
L(θj | ȳj) = (2π/n)−1/2 exp{−n(ȳj − θj)2/2}n(ȳj − θj),

and the unrestricted maximum likelihood estimator (MLE) is (θ̂1, θ̂2) = (ȳ1, ȳ2).
If the unrestricted MLE does not satisfy H0, then the restricted (to H0) MLE is

either (0, ȳ2) or (ȳ1, 0). For example, if ȳ1 > 0 and ȳ2 < 0, then by (13), L(0 | ȳ1) >
L(θ1 | ȳ1) for any θ1 < 0, and L(0 | ȳ2) > L(θ2 | ȳ2) for any θ2 > 0. Since (13) is the
same for j = 1 and j = 2, the restricted MLE is (0, ȳ2) if |ȳ1| < |ȳ2|, otherwise (ȳ1, 0).

The likelihood ratio if the MLE is in quadrant II or IV and |ȳ1| < |ȳ2| is

L(0 | ȳ1)L(θ̂2 | ȳ2)
L(θ̂1 | ȳ1)L(θ̂2 | ȳ2)

=
L(0 | ȳ1)
L(θ̂1 | ȳ1)

= exp{−nȳ21/2},
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and similarly exp{−nȳ22/2} if |ȳ2| < |ȳ1|. For critical value c, the LR rejection region
is

{(ȳ1, ȳ2) : max{min{ȳ1,−ȳ2},min{−ȳ1, ȳ2}} ≥ c}.

It remains to derive the critical value, c. The rejection probability (RP) is

P (max{min{ȳ1,−ȳ2},min{−ȳ1, ȳ2}} > c)

= P (ȳ1 > c, ȳ2 < −c) + P (ȳ1 < −c, ȳ2 > c)

= P (ȳ1 > c)P (ȳ2 < −c) + P (ȳ1 < −c)P (ȳ2 > c).

Under H0, this is maximized at (θ1, θ2) = (0,m) as m → −∞, or symmetrically at
(m, 0) as m → ∞. (The case θ1 = 0 and θ2 → −∞ for fixed n produces the same
results as θ2 < 0 fixed as n → ∞.) This is the least favorable null. In the case of
(0,m),

P (ȳ2 > c) = P
(√

n(ȳ2 −m) >
√
n(c−m)

)
= 1− Φ

(√
n(c−m)

)
,

where Φ(·) is the standard normal CDF. As m → −∞, c − m → ∞, so Φ(
√
n(c −

m)) → 1 and P (ȳ2 > c) → 0. Similarly, P (ȳ2 < −c) → 1. The RP thus reduces to
P (ȳ1 > c), where ȳ1 ∼ N(0, 1/n). Setting the RP equal to α yields c = z1−α/

√
n,

where z1−α ≡ Φ−1(1− α). For θ1 = 0 and general θ2 = m ≤ 0, the RP with this c is

P (ȳ1 > c)P (ȳ2 < −c) + P (ȳ1 < −c)P (ȳ2 > c)

= αΦ
(√

n(−c−m)
)

+ α
[
1− Φ

(√
n(c−m)

)]
= αΦ

(
−z1−α −m

√
n
)

+ αΦ
(
−z1−α +m

√
n
)

= α
[
Φ
(
zα −m

√
n
)

+ Φ
(
zα +m

√
n
)]
.

The derivative of the term in square brackets with respect to m is
√
n[φ(zα+m

√
n)−

φ(zα −m
√
n)] ≤ 0 for m ≤ 0, so the global maximum is at m → −∞. That is, the

rejection probability will be strictly smaller than α with c = z1−α/
√
n when θ1 = 0

and θ2 ∈ (−∞, 0]. By symmetry, a similar conclusion is reached for θ2 = 0 and
θ1 ∈ [0,∞).

A.8 Proof of Lemma 9

When θ1 = 0 and θ2 < 0 is fixed as n→∞ (the least favorable null), the probability

limit of the denominator of Ŵn is |θ2|, so Ŵn
d→ N(0, 1). (The same distribution

arises if θ2 → −∞ with fixed n.) Rejecting when Ŵn < zα thus has α probability. A
similar argument when θ1 > 0 and θ2 = 0 yields the same zα critical value, and the
rejection probability with this critical value is below α when θ1 = θ2 = 0.
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A.9 Proof of Lemma 10

For the LM test, the log likelihood and score are, using (13),

lnL(θ1, θ2 | ȳ1, ȳ2) = lnL(θ1 | ȳ1) + lnL(θ2 | ȳ2)
= − ln(2π/n)− n(ȳ1 − θ1)2/2− n(ȳ2 − θ2)2/2, (14)

∂

∂θ1
lnL(θ1, θ2 | ȳ1, ȳ2) = n(ȳ1 − θ1),

∂

∂θ2
lnL(θ1, θ2 | ȳ1, ȳ2) = n(ȳ2 − θ2). (15)

The Fisher information and score

I(θ1, θ2) =

(
n 0
0 n

)
, (16)

The LM test statistic is thus S ′I−1S = n(ȳ1 − θ1)2 + n(ȳ2 − θ2)2 = n‖ȳ − θ‖22, where
‖x‖2 =

√
x21 + x22 + · · · is the Euclidean (L2) vector norm. Since H0 is not a point,

the smallest value infθ∈H0 n‖ȳ − θ‖22 is taken, as usual; i.e., the Euclidean distance
from (ȳ1, ȳ2) to H0. Consequently, the shape of the LM rejection region is identical
to that of LR, so they must be completely identical for LM to control size.

For the LR-type GMM test, the moment conditions are E(y1 − θ1) = 0 and
E(y2 − θ2) = 0. Since the optimal weighting matrix is the identity matrix I2, and
since the criterion function at (θ̂1, θ̂2) is zero since the model is exactly identified, the
test statistic is n times the quadratic form of the sample moments n−1

∑n
i=1(yik− θk)

(again, then minimized over H0):

J(θ) = n(ȳ1 − θ1, ȳ2 − θ2)I2(ȳ1 − θ1, ȳ2 − θ2)′ = n‖ȳ − θ‖22, (17)

matching LM exactly.

A.10 Proof of Theorem 11

We first show that the (asymptotic) Bayesian and Wald tests exclude the boundary
of the LR rejection region. Without loss of generality (by symmetry), consider the
LR boundary point (z1−α/

√
n, zγ/

√
n) for some zα > zγ > −∞. Using (12),

Pa(H0 | zα/
√
n, zγ/

√
n) = [1− Φ(−

√
nzγ/
√
n)][1− Φ(−

√
nz1−α/

√
n)]

+ Φ(−
√
nz1−α/

√
n)Φ(−

√
nzγ/
√
n)

= γ(1− α) + α(1− γ) = α + γ(1− 2α) > α

if α < 1/2. At the same LR boundary point, the Wald statistic value is

Ŵn =

√
n(z1−α/

√
n)(zγ/

√
n)√

(z1−α/
√
n)2 + (zγ/

√
n)2

= zα
z1−γ√

z21−α + z21−γ

> zα
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if α < 1/2. Thus, the Bayesian and Wald rejection regions are strict subsets of the
LR region.

It remains to calculate the RP of the LR test when θ1 = θ2 = 0. Let Z1 ∼ N(0, 1),
Z2 ∼ N(0, 1), Z1 ⊥⊥ Z2. The RP is

P (Z1 < zα,Z2 > z1−α) + P (Z1 > z1−α,Z2 < zα)

= Φ(zα)[1− Φ(z1−α)] + [1− Φ(z1−α)]Φ(zα) = 2α2.

For any α ∈ (0, 0.5), 2α2 < α, so the tests are all conservative. If α = 0.5, then the
LR rejection region includes all of quadrants II and IV, and the Bayesian and Wald
rejection regions are identical.
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