LOUKAS GRAFAKOS, LIGUANG LIU, DIEGO MALDONADO and
DACHUN YANG

Multilinear analysis on metric spaces
Loukas Grafakos
Department of Mathematics
University of Missouri
Columbia, MO 65211, USA
E-mail: grafakosl@missouri.edu

Liguang Liu
Department of Mathematics
School of Information
Renmin University of China
Beijing 100872, People’s Republic of China
E-mail: liuliguang@ruc.edu.cn

Diego Maldonado
Department of Mathematics
Kansas State University
Manhattan, KS 66506, USA
E-mail: dmaldona@math.ksu.edu

Dachun Yang
(corresponding author)
School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems
Ministry of Education
Beijing 100875, People’s Republic of China
E-mail: dcyang@bnu.edu.cn
Contents

1. Introduction .. 5
2. Real analysis on spaces of homogeneous type 8
 2.1. Spaces of homogeneous type and RD-spaces 8
 2.2. Dyadic cubes, covering lemmas, and the Calderón–Zygmund decomposition ... 10
 2.3. Space of test functions 14
 2.4. Approximations of the identity 15
 2.5. Singular integrals on spaces of homogeneous type 17
3. Multilinear Calderón–Zygmund theory 20
 3.1. Multilinear Calderón–Zygmund operators 20
 3.2. Multilinear weak type estimates 21
4. Weighted multilinear Calderón–Zygmund theory 27
 4.1. Multiple weights .. 27
 4.2. Weighted estimates for the multi-sublinear maximal function 29
 4.3. Weighted estimates for multilinear Calderón–Zygmund operators 35
 4.4. Weighted estimates for maximal multilinear singular integrals 42
5. A multilinear T_1-theorem on Lebesgue spaces 47
 5.1. Some lemmas on multilinear Calderón–Zygmund operators 47
 5.2. BMO-boundedness of multilinear singular integrals 50
 5.3. A multilinear T_1-theorem 51
6. Bilinear T_1-theorems on Triebel–Lizorkin and Besov spaces 54
 6.1. Bilinear weak boundedness property 54
 6.2. Bilinear molecules 60
 6.3. Bilinear T_1-theorem on Triebel–Lizorkin spaces 67
 6.4. Bilinear T_1-theorem on Besov spaces 80
7. Multilinear vector-valued T_1 type theorems 89
 7.1. A multilinear off-diagonal estimate 90
 7.2. Quadratic T_1 type theorems on Lebesgue spaces 97
 7.3. Quadratic T_1 type theorems on Besov and Triebel–Lizorkin spaces 102
8. Paraproducts as bilinear Calderón–Zygmund operators 108
 8.1. Paraproducts ... 108
 8.2. Almost diagonal estimates 109
 8.3. Paraproducts as bilinear Calderón–Zygmund operators 112
 8.4. Boundedness of paraproducts on Triebel–Lizorkin and Besov spaces 117
9. Bilinear multiplier operators on Triebel–Lizorkin and Besov spaces 119
 9.1. Bilinear multiplier operators 119
 9.2. Off-diagonal estimates for bilinear multiplier operators 120
 9.3. Boundedness of bilinear multiplier operators 122
References ... 124
Abstract

The multilinear Calderón–Zygmund theory is developed in the setting of RD-spaces which are spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderón–Zygmund theory in this context is also developed in this work. The bilinear T_1-theorems for Besov and Triebel–Lizorkin spaces in the full range of exponents are among the main results obtained. Multilinear vector-valued T_1 type theorems on Lebesgue spaces, Besov spaces, and Triebel–Lizorkin spaces are also proved. Applications include the boundedness of paraproducts and bilinear multiplier operators on products of Besov and Triebel–Lizorkin spaces.

Acknowledgements. Loukas Grafakos is supported by grant DMS 0900946 of the National Science Foundation of the USA. Liguang Liu is supported by the National Natural Science Foundation of China (grant No. 11101425). Diego Maldonado is supported by grant DMS 0901587 of the National Science Foundation of the USA. Dachun Yang (the corresponding author) is supported by the National Natural Science Foundation of China (grant nos. 11171027 & 11361020) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20120003110003). All authors would like to thank the copy editor, Jerzy Trzeciak, for his valuable remarks which made this article more readable.

2010 Mathematics Subject Classification: Primary 42B20, 42B25, 42B35; Secondary 35S50, 42C15, 47G30, 30L99.

Key words and phrases: space of homogeneous type, multilinear Calderón–Zygmund operator, multilinear weighted estimate, paraproduct, bilinear T_1-theorem, quadratic T_1 type theorem, bilinear multiplier, Besov space, Triebel-Lizorkin space.
1. Introduction

In this work we develop the theory of multilinear analysis related to the Calderón–Zygmund program within the framework of metric spaces. The impetus created by the recent developments in the theory of multilinear operators has naturally led us to consider its extension to the setting of metric spaces. Since the techniques involved in the proofs transcend the algebraic and differential structures of the underlying spaces, it is appropriate to undertake this study in a unified way. This setting is quite general and it includes graphs, fractals, Riemannian manifolds, Carnot-Carathéodory groups, anisotropic structures in \mathbb{R}^n, Ahlfors spaces, etc. As a consequence of this work, previously disconnected topics concerning multilinear operators are integrated and streamlined. These topics include bilinear Calderón–Zygmund operators, vector-valued bilinear operators (e.g., square-function-like operators), paraproducts, and Coifman–Meyer multipliers on Lebesgue spaces, Besov, and Triebel–Lizorkin function spaces.

One of the first examples of multilinear operators in Euclidean harmonic analysis are the commutators of Calderón which appear in a series representation of the Cauchy integral along Lipschitz curves. The sharpest possible (endpoint) results for the m-commutators of Calderón were obtained by Calderón [15] when $m = 1$, Coifman and Meyer [19] when $m \in \{1, 2\}$ and Duong, Grafakos, and Yan [29] for $m \geq 3$. In particular, the article of Coifman and Meyer [19] not only established delicate estimates for the commutators but also set a solid foundation for a comprehensive study of general multilinear operators; this work, together with [20], [21], has been both fundamental and pioneering in this subject and certainly inspiring in our own work. Another important example of a bilinear operator is the paraproduct of Bony [12], which has been studied extensively and has experienced remarkable development in recent years, in view of its important connections with partial differential equations. Section 8 is devoted to paraproducts and its introduction contains recent advances in the theory.

Among the main motivations for the multilinear analysis in this work, we mention the m-linear versions of the fractional Leibniz-type rules; namely, inequalities of the type

$$\left\| D^\alpha \left(\prod_{j=1}^m f_j \right) \right\|_{L^p(\mathbb{R}^n)} \leq C \sum_{j=1}^m \left\| D^\alpha(f_j) \right\|_{L^p_j(\mathbb{R}^n)} \prod_{k=1 \atop k \neq j}^m \left\| f_k \right\|_{L^p_k(\mathbb{R}^n)},$$

(1.1)

where C is a positive constant independent of $\{f_j\}_{j=1}^m$, the indices obey the Hölder scaling $1/p = 1/p_1 + \cdots + 1/p_m < 1$ and each $p_j \in [1, \infty)$. Indeed, inequalities like (1.1) are based on mapping properties of bilinear Coifman-Meyer multipliers, which, in turn, follow from paraproduct decompositions and mapping properties for such paraproducts. In [5], Bényi,
Maldonado, Nahmod, and Torres proved that paraproducts can be realized as bilinear singular integrals of Calderón–Zygmund type. Consequently, inequalities (1.1) are now best understood via the use of the powerful multilinear Calderón–Zygmund theory that was systematically developed by Grafakos and Torres [53] (see, for example, Grafakos [42] for a survey of these techniques).

In addition, it turns out that there is a rich weighted-norm theory for multilinear operators. In particular, multilinear Calderón–Zygmund operators obey vector-valued and weighted estimates, with respect to certain classes of weights. Very natural classes of multilinear weights surfaced in the work of Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [72]. These weights are intrinsically multilinear and they have brought into fruition a rich weighted theory for multilinear operators analogous to that of the classical A_p weighted theory for linear operators in Euclidean spaces. The metric-space implementation of this class of weights is carried out in the present work.

Besov spaces were originally introduced by Besov [10, 11] as the trace spaces of Sobolev spaces, and were later generalized by Taibleson [96, 97, 98]. These spaces also arise as the real interpolation intermediate spaces of Sobolev spaces. Around 1970, Triebel [100] and Lizorkin [73, 74] started to investigate the scale $F_{p,q}^s$, nowadays known as the Triebel–Lizorkin spaces. The scales of Besov and Triebel–Lizorkin spaces include fundamental function spaces such as Lebesgue spaces, Sobolev spaces, Hardy spaces, and the space BMO of functions with bounded mean oscillation. We refer to Frazier and Jawerth [33] for a survey of the theory of Besov and Triebel–Lizorkin spaces and to Triebel’s books [101, 102, 103] for a more comprehensive study. Over the last few decades, Besov and Triebel–Lizorkin spaces have consistently appeared in prominent parts of the literature and their usefulness has been exposed in different areas of mathematics and physics, such as partial differential equations, potential theory, the approximation theory, and fluid dynamics. The complete framework of the classical Besov and Triebel–Lizorkin theory was extended to the content of RD-spaces by Han, Müller and Yang [60, 84]. In this work, we establish the bilinear T^1-theorems for Besov and Triebel–Lizorkin spaces, in the full range of indices. Moreover, we obtain multilinear vector-valued T^1 type theorems on Lebesgue spaces, Besov spaces, and Triebel–Lizorkin spaces. As an application, we deduce the boundedness of paraproducts and bilinear multiplier operators on products of Besov and Triebel–Lizorkin spaces.

Some of our results, for example these contained in Sections 6, 7, 9 and Subsection 8.4 are new even in the Euclidean case. In particular, in Section 6 we establish T^1 theorems for bilinear Calderón–Zygmund operators on Triebel–Lizorkin spaces $F_{p,q}^s(X)$ and Besov spaces $\hat{B}_{p,q}^s(X)$ for the full admissible range of s, p, q, successfully answering an open problem posed by Grafakos and Torres [55, p. 85]. Appropriate contextual descriptions as well as references are included at the beginning of each section.

As a whole, our results complement, from the Littlewood–Paley and real-analysis side, the recent advances in analysis on metric spaces related to first-order calculus (e.g. Sobolev functions, see Hajlász and Koskela [56], Koskela and Saksman [69], Shanmugalingam [93 and the references therein), and the (weighted and unweighted) multilinear theory of potential operators in Grafakos and Kalton [43], Kenig and Stein, [68], Moen
1. Introduction

[33], and the references therein.

Notation. Let $\mathbb{N} := \{1, 2, \ldots\}$, $\mathbb{Z}^+ := \mathbb{N} \cup \{0\}$ and $\mathbb{R}_+ := [0, \infty)$. For any $p \in [1, \infty]$, we denote by p' the *conjugate index*, namely, $1/p + 1/p' = 1$; if $p = 1$, then $p' = \infty$ and, if $p = \infty$, then $p' = 1$.

For any $a, b \in \mathbb{R}$, let $(a \wedge b) := \min\{a, b\}$ and $(a \vee b) := \max\{a, b\}$.

For any ball $B \subset \mathcal{X}$ and $\kappa > 0$, denote by κB the ball contained in \mathcal{X} with the same center as B but radius dilated by the factor κ.

Let $C_b(\mathcal{X})$ be the set of all continuous functions on \mathcal{X} with bounded support (namely, contained in a ball of (\mathcal{X}, d)).

Let $L^\infty_b(\mathcal{X})$ be the set of all bounded functions on \mathcal{X} with bounded support.

We use $L^1_{\text{loc}}(\mathcal{X})$ to represent the collection of all locally integrable functions on (\mathcal{X}, d, μ). Moreover, for $q \in (0, \infty)$,

$$L^q_{\text{loc}}(\mathcal{X}) := \{f : |f|^q \in L^1_{\text{loc}}(\mathcal{X})\}.$$

Let

$$p(s, \epsilon) := \max\{n/(n + \epsilon), n/(n + s + \epsilon)\},$$

where $n \in \mathbb{N}$, $\epsilon > 0$ and $s \in \mathbb{R}$.

For any set E of \mathcal{X}, we define

$$d(x, E) := \inf\{d(x, y) : y \in E\}.$$

We use $\|T\|_{\mathcal{X} \to \mathcal{Y}}$ to denote the *operator norm* of $T : \mathcal{X} \to \mathcal{Y}$.

Denote by C a positive constant independent of main parameters involved, which may vary at different occurrences. Constants with subscripts do not change through the whole paper. Occasionally we use $C_{\alpha, \beta, \ldots}$ or $C(\alpha, \beta, \ldots)$ to indicate that the positive constant C depends only on parameters α, β, \ldots. Denote $f \leq Cg$ and $f \geq Cg$ by $f \lesssim g$ and $f \gtrsim g$, respectively. If $f \lesssim g \lesssim f$, we then write $f \sim g$. ■
2. Real analysis on spaces of homogeneous type

Spaces of homogeneous type provide a general framework where the real-variable approach in the study of singular integrals of Calderón and Zygmund can be carried out. It turns out that classical analysis topics such as the Littlewood–Paley theory and function spaces can be introduced and developed in this context without resorting to the differential or algebraic structure of the underlying space.

This section provides necessary notions and results related to the spaces of homogeneous type and the so-called RD-spaces; see [22, 23, 75, 76, 27, 64, 61, 59, 60, 65] and the references therein. The readers who are familiar with these basic knowledge can directly proceed to the next section.

2.1. Spaces of homogeneous type and RD-spaces. Let X be a set. A function $d : X \times X \to \mathbb{R}_+$ is called a quasi-metric if

(i) $d(x, y) = d(y, x)$ for all $x, y \in X$;
(ii) $d(x, y) = 0$ if and only if $x = y$; and
(iii) there exists a constant $K \in [1, \infty)$ such that $d(x, y) \leq K(d(x, z) + d(z, y))$ for all $x, y, z \in X$.

In this case we call (X, d) a quasi-metric space. In particular, when $K = 1$, we call d a metric and (X, d) a metric space. For all $x \in X$ and $r > 0$, set

$$B(x, r) := \{y \in X : d(x, y) < r\}.$$

Next we recall the notions of spaces of homogeneous type in the sense of Coifman and Weiss [22, 23] and of RD-spaces introduced in [59, 60].

Definition 2.1. Let (X, d) be a metric space and the balls $\{B(x, r) : r > 0\}$ form a basis of open neighborhoods of the point $x \in X$. Suppose that μ is a regular Borel measure defined on a σ-algebra which contains all Borel sets induced by the open balls $\{B(x, r) : x \in X, r > 0\}$, and that $0 < \mu(B(x, r)) < \infty$ for all $x \in X$ and $r > 0$. The triple (X, d, μ) is called a space of homogeneous type if there exists a constant $C_1 \in [1, \infty)$ such that, for all $x \in X$ and $r > 0$,

$$\mu(B(x, 2r)) \leq C_1 \mu(B(x, r)) \quad \text{(doubling condition)}. \quad (2.1)$$

The triple (X, d, μ) is called an RD-space if it is a space of homogeneous type and there exist constants $\kappa \in (0, \infty)$ and $C_2 \in (0, 1]$ such that, for all $x \in X$, $0 < r < 2 \text{diam}(X)$ and $1 \leq \lambda < 2 \text{diam}(X)/r$,

$$C_2 \lambda^\kappa \mu(B(x, r)) \leq \mu(B(x, \lambda r)), \quad (2.2)$$

[8]
where above and in what follows,
\[
diam(\mathcal{X}) := \sup_{x, y \in \mathcal{X}} d(x, y).
\]

RD-spaces have become the underlying context in numerous areas of analysis and PDEs, we refer the reader to [22, 23], [59, 60, 84], [70, 71, 39], [104, 106, 105] and references therein.

Remark 2.2. (i) For a space \(\mathcal{X} \) of homogeneous type, by (2.1), there exist \(C_3 \in [1, \infty) \) and \(n \in (0, \infty) \) such that, for all \(x \in \mathcal{X} \), \(r > 0 \) and \(\lambda \geq 1 \),
\[
\mu(B(x, \lambda r)) \leq C_3 \lambda^n \mu(B(x, r)).
\]
Indeed, we can choose \(C_3 := C_1 \) and \(n := \log_2 C_1 \). In some sense, \(n \) measures the “dimension” of \(\mathcal{X} \). When \(\mathcal{X} \) is an RD-space, we obviously have \(n \in [\kappa, \infty) \).

(ii) For a space of homogeneous type \((\mathcal{X}, d, \mu)\), if \(\mu(\mathcal{X}) < \infty \), then there exists a positive constant \(R_0 \) such that \(\mathcal{X} = B(x, R_0) \) for all \(x \in \mathcal{X} \); see Nakai and Yabuta [86, Lemma 5.1]. It follows that \(\mu(\mathcal{X}) < \infty \) if and only if \(\text{diam}(\mathcal{X}) < \infty \).

(iii) \(\mathcal{X} \) is an RD-space if and only if \(\mathcal{X} \) is a space of homogeneous type with the additional property that there is a constant \(a_0 > 1 \) such that for all \(x \in \mathcal{X} \) and \(0 < r < \text{diam}(\mathcal{X})/a_0 \), \(B(x, a_0 r) \setminus B(x, r) \neq \emptyset \); see, for instance, [60, Remark 1.1], [104] and [86]. Consequently, any connected space of homogeneous type is an RD-space.

(iv) For any space of homogeneous type \((\mathcal{X}, d, \mu)\), the set
\[
\text{Atom}(\mathcal{X}, d, \mu) := \{ x \in \mathcal{X} : \mu(\{x\}) > 0 \}
\]
is countable and, for every \(x \in \text{Atom}(\mathcal{X}, d, \mu) \), there exists \(r > 0 \) such that \(B(x, r) = \{x\} \); see Macías and Segovia [75, Theorem 1]. From (iii) or (2.2), it follows that any RD-space \((\mathcal{X}, d, \mu)\) is non-atomic, i.e., \(\mu(\{x\}) = 0 \) for all \(x \in \mathcal{X} \).

(v) Throughout this paper, we always assume that \((\mathcal{X}, d, \mu)\) is an RD-space and \(\mu(\mathcal{X}) = \infty \), unless it is clearly stated that \((\mathcal{X}, d, \mu)\) is a space of homogeneous type.

Remark 2.3. For any quasi-metric space \((\mathcal{X}, d)\), Macías and Segovia [75, Theorem 2] proved that there exists an equivalent quasi-metric \(\rho \) such that all balls corresponding to \(\rho \) are open in the topology induced by \(\rho \), and there exist constants \(C > 0 \) and \(\theta \in (0, 1) \) such that, for all \(x, y, z \in \mathcal{X} \),
\[
|\rho(x, z) - \rho(y, z)| \leq C[\rho(x, y)]^\theta[\rho(x, z) + \rho(y, z)]^{1-\theta}.
\]
If the metric \(d \) in Definition 2.1 is replaced by \(\rho \), then all results in this paper have corresponding analogues on \((\mathcal{X}, \rho, \mu)\). In order to simplify the presentation, in this work we always assume that \(d \) is a metric and the balls corresponding to \(d \) are open sets in the topology induced by \(d \).

Set
\[
V_\delta(x) := \mu(B(x, \delta)) \quad \text{and} \quad V(x, y) := \mu(B(x, d(x, y)))
\]
for all \(x, y \in \mathcal{X} \) and \(\delta > 0 \). It follows from (2.1) that \(V(x, y) \sim V(y, x) \). Here we present some estimates regarding the space of homogeneous type; see, for example, [60, Lemma 2.1] or [59].
Lemma 2.4. Let \((\mathcal{X}, d, \mu) \) be a space of homogeneous type, \(r > 0, \delta > 0, \alpha > 0, \eta \geq 0 \) and \(\gamma \in (0,1) \).

(a) For all \(x, y \in \mathcal{X} \) and all \(r > 0 \), it holds true that
\[
\mu(B(x, r + d(x, y))) \sim \mu(B(y, r + d(x, y))) \sim V_r(x) + V(x, y) \\
\sim V_r(y) + V(x, y) \sim V_r(x) + V_r(y) + V(x, y),
\]
with implicit constants depending only on \(C_1 \).

(b) If \(x, x', x_1 \in \mathcal{X} \) satisfy \(d(x, x') \leq \gamma(r + d(x, x_1)) \), then
\[
r + d(x, x_1) \sim r + d(x', x_1) \quad \text{and} \quad \mu(B(x, r + d(x, x_1))) \sim \mu(B(x', r + d(x', x_1))),
\]
with implicit constants depending only on \(\gamma \) and \(C_1 \).

(c) There exists a positive constant \(C \), depending only on \(C_1 \) and \(\alpha \), such that, for all \(x \in \mathcal{X} \) and \(\delta > 0 \),
\[
\int_{d(x, y) \leq \delta} \frac{d(x, y)^\alpha}{V(x, y)} \, d\mu(y) \leq C \delta^\alpha \quad \text{and} \quad \int_{d(x, y) \geq \delta} \frac{1}{V(x, y)} \frac{\delta^\alpha}{d(x, y)^\alpha} \, d\mu(y) \leq C.
\]

(d) If \(\alpha > \eta \geq 0 \), then there exists a positive constant \(C \), depending only on \(C_1 \), \(\alpha \) and \(\eta \), such that, for all \(x \in \mathcal{X} \) and \(\delta > 0 \),
\[
\int_{\mathcal{X}} \frac{1}{V_\delta(x) + V(x, y)} \left[\frac{\delta}{\delta + d(x, y)} \right]^\alpha d(x, y)^\eta \, d\mu(y) \leq C \delta^\eta.
\]

2.2. Dyadic cubes, covering lemmas, and the Calderón–Zygmund decomposition. Throughout this subsection we always assume that \((\mathcal{X}, d, \mu) \) is a space of homogeneous type.

Recall that in \(\mathbb{R}^n \) the dyadic cubes are defined, for all \(k \in \mathbb{Z} \) and \(\ell = (\ell_1, \ldots, \ell_n) \in \mathbb{Z}^n \), as
\[
Q_{k,\ell} := \{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : 2^{-k} \ell_i \leq x_i < 2^{-k}(\ell_i + 1), \forall i \in \{1, \ldots, n\} \}.
\]
Most of their properties are retained in the case of abstract spaces of homogeneous type. Indeed, a construction due to Christ (see [16]) allows the following version of the Euclidean dyadic cubes in a general space of homogeneous type \(\mathcal{X} \). It should be remarked that recently Hytönen et al. [1] [66] [67] constructed a randomized dyadic structure by only assuming that the underlying metric space is geometrically doubling.

Lemma 2.5. Let \(\mathcal{X} \) be a space of homogeneous type. Then there exists a collection \(Q = \{ Q_{\alpha}^k \subset \mathcal{X} : k \in \mathbb{Z}, \alpha \in I_k \} \) of open subsets, where \(I_k \) is some index set, and constants \(\delta \in (0,1) \) and \(C_5, C_6 > 0 \) such that

(i) for each fixed \(k \in \mathbb{Z} \), \(\mu(\mathcal{X} \setminus \cup_\alpha Q_{\alpha}^k) = 0 \) and \(Q_{\alpha}^k \cap Q_{\beta}^k = \emptyset \) if \(\alpha \neq \beta \);
(ii) for any \(\alpha, \beta, k, \ell \) with \(\ell \geq k \), either \(Q_{\beta}^k \subset Q_{\alpha}^k \) or \(Q_{\beta}^k \cap Q_{\alpha}^k = \emptyset \);
(iii) for each \((k, \alpha) \) and each \(\ell < k \), there is a unique \(\beta \) such that \(Q_{\alpha}^k \subset Q_{\beta}^\ell \);
(iv) \(\text{diam} (Q_{\alpha}^k) \leq C_5 \delta^k \) and each \(Q_{\alpha}^k \) contains some ball \(B(z_{\alpha}^k, C_6 \delta^k) \), where \(z_{\alpha}^k \in \mathcal{X} \).

One can think of \(Q_{\alpha}^k \) as being a dyadic cube centered at \(z_{\alpha}^k \) with diameter roughly \(\delta^k \). In what follows, for simplicity, we always assume that \(\delta = 1/2 \); see, for example, Han and Sawyer [01] pp. 96-98] on how to remove this restriction.
Regarding covering lemmas, we begin with the so-called basic covering lemma (see, for instance, Heinonen [64, p. 2]) on metric spaces, which is particularly useful.

Lemma 2.6. Every family \mathcal{F} of balls of uniformly bounded diameter in a metric space (\mathcal{X},d) contains a subfamily \mathcal{G} of pairwise disjoint balls such that

$$\bigcup_{B \in \mathcal{F}} B \subset \bigcup_{B \in \mathcal{G}} 5B.$$

Moreover, every ball B from \mathcal{F} meets a ball from \mathcal{G} with radius at least half that of B.

Two geometric facts about spaces of homogeneous type, the Vitali–Wiener type covering lemma and Whitney type covering lemma, play fundamental roles in establishing the Calderón–Zygmund theory on (\mathcal{X},d,μ); see [22, 23] as well as [76].

Lemma 2.7. (Vitali–Wiener type covering lemma) Let $E \subset \mathcal{X}$ be a bounded set (namely, contained in a ball). Consider any covering of E of the form $\{B(x,r_{x}) : x \in E\}$. Then there exists a sequence of points $x_{j} \in E$ such that $\{B(x_{j},r_{x_{j}})\}_{j}$ are pairwise disjoint and $\{B(x_{j},C_{0}r_{x_j})\}_{j}$ is a covering of E. Here C_{0} depends only on the doubling and quasi-triangle constants.

We remark that, when Ω is an open bounded set, the following Lemma [2.8 was proved in [22] pp. 70–71] and [23] Theorem 3.2. The current version was claimed in [22] p. 70] without a proof; see also [76] p. 277] for another variant that Ω is assumed to be an open set of finite measure strictly contained in \mathcal{X}. In fact, a detailed proof of Lemma 2.8 can be given by borrowing some ideas from [94] pp. 15–16]; see also [47].

Lemma 2.8. (Whitney type covering lemma) Let Ω be an open proper subset of \mathcal{X}. For $x \in \mathcal{X}$ define $d(x) := \text{dist}(x,\Omega^{c})$. For any given $c \geq 1$, let $r(x) := d(x)/(2c)$. Then there exist a positive number M, which depends only on c and C_{1} but independent of Ω, and a sequence $\{x_{k}\}_{k}$ such that, if denote $r(x_{k})$ by r_{k}, then

(i) $\{B(x_{k},r_{k}/4)\}_{k}$ are pairwise disjoint and $\cup_{k}B(x_{k},r_{k}) = \Omega$;
(ii) for every given k, $B(x_{k},cr_{k}) \subset \Omega$;
(iii) for every given k, $x \in B(x_{k},cr_{k})$ implies that $cr_{k} < d(x) < 3cr_{k}$;
(iv) for every given k, there exists a $y_{k} \notin \Omega$ such that $d(x_{k},y_{k}) < 3cr_{k}$;
(v) for every given k, the number of balls $B(x_{i},cr_{i})$ intersecting with the ball $B(x_{k},cr_{k})$ is at most M.

For any $f \in L^{1}_{\text{loc}}(\mathcal{X})$, the Hardy–Littlewood maximal function Mf is defined by

$$Mf(x) := \sup_{B \ni x} \frac{1}{\mu(B)} \int_{B} |f(y)| \, d\mu(y), \quad \forall x \in \mathcal{X}, \tag{2.3}$$

where the supremum is taken over all balls $B \subset \mathcal{X}$ containing x. It is easy to see that the function Mf is lower semi-continuous (hence μ-measurable) for every $f \in L^{1}_{\text{loc}}(\mathcal{X})$. Using the Vitali–Wiener type covering lemma, Coifman and Weiss [22] proved that M is bounded from $L^{1}(\mathcal{X})$ to $L^{1,\infty}(\mathcal{X})$ and bounded on $L^{p}(\mathcal{X})$ for all $p \in (1,\infty]$. Also, by an argument similar to Grafakos [40] Exercise 2.1.13], we know that M is bounded on $L^{p,\infty}(\mathcal{X})$ for $p \in (1,\infty)$. The operator norms

$$\|M\|_{L^{1}(\mathcal{X}) \to L^{1,\infty}(\mathcal{X})}, \quad \|M\|_{L^{p}(\mathcal{X}) \to L^{p}(\mathcal{X})} \quad \text{and} \quad \|M\|_{L^{p,\infty}(\mathcal{X}) \to L^{p,\infty}(\mathcal{X})}$$
all depend only on C_1 and p.

Denote by $C_b(\mathcal{X})$ the space of all continuous functions on \mathcal{X} with bounded supports (namely, contained in a ball of (\mathcal{X}, d)). As in Definition [2.1] we are assuming that μ is a regular Borel measure on the metric space (\mathcal{X}, d), which means that μ has the outer and inner regularity (see Heinonen [64]), so $C_b(\mathcal{X})$ is dense in $L^p(\mathcal{X})$ for all $p \in [1, \infty)$.

This, combined with the weak type $(1, 1)$ boundedness of M and a standard argument (see, for instance, [64, pp. 12–13]), implies the differentiation theorem for integrals: for all $f \in L^1_{\text{loc}}(\mathcal{X})$ and almost every $x \in \mathcal{X}$,

$$\lim_{B \ni x, \mu(B) \to 0} \frac{1}{\mu(B)} \int_B f(y) \, d\mu(y) = f(x)$$

and

$$\lim_{B \ni x, \mu(B) \to 0} \frac{1}{\mu(B)} \int_B |f(y) - f(x)| \, d\mu(y) = 0.$$

A consequence of the current Whitney covering lemma and the differentiation theorem for integrals on (\mathcal{X}, d, μ) as well as the weak-(1, 1) boundedness of M is the celebrated Calderón–Zygmund decomposition process for integrable functions; see Coifman and Weiss [22, 23].

Lemma 2.9. Let $f \in L^1(\mathcal{X})$. Then, for every $\lambda > \|f\|_{L^1(\mathcal{X})}/\mu(\mathcal{X})$, there exists a sequence of balls, $\{B_k\}_{k \in I}$, where I is some index set, such that

(i) $\{\frac{1}{4}B_k\}_{k \in I}$ are pairwise disjoint;

(ii) $|f(x)| \leq C\lambda$ for almost every $x \in \mathcal{X} \setminus \bigcup_{k \in I} B_k$;

(iii) for any $k \in I$,

$$\frac{1}{\mu(B_k)} \int_{B_k} |f| \, d\mu > C\lambda;$$

(iv)

$$\sum_{k \in I} \mu(B_k) \leq C\|f\|_{L^1(\mathcal{X})}/\lambda,$$

where the positive constant C depends only on C_1.

Lemma 2.10. Let $f \in L^1(\mathcal{X})$. For every $\lambda > \|f\|_{L^1(\mathcal{X})}/\mu(\mathcal{X})$, let $\{B_k\}_{k \in I}$ be the sequence of balls provided by Lemma 2.9. Then, there exist functions g and $\{b_k\}_{k \in I}$ such that

(i) $f = g + \sum_{k \in I} b_k$;

(ii) $\|g\|_{L^\infty(\mathcal{X})} \leq C\lambda$;

(iii) for every $k \in I$,

$$\int_{\mathcal{X}} b_k \, d\mu = 0;$$

(iv) for every $k \in I$, $\text{supp } b_k \subset B_k$;

(v)

$$\|g\|_{L^1(\mathcal{X})} \leq C\|f\|_{L^1(\mathcal{X})},$$

and

$$\sum_{k \in I} \|b_k\|_{L^1(\mathcal{X})} \leq C\|f\|_{L^1(\mathcal{X})},$$

where C is a positive constant depending only on C_1.
For any $\eta \in (0, 1]$, let $C^\eta_n(\mathcal{X})$ be the set of all functions $f : \mathcal{X} \to \mathbb{C}$ such that

$$\|f\|_{C^\eta_n(\mathcal{X})} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)\eta} < \infty.$$

Denote by $\text{supp} f$ the closure of the set $\{x \in \mathcal{X} : f(x) \neq 0\}$ in \mathcal{X}. Define

$$C^\eta_b(\mathcal{X}) := \{f \in C^\eta_n(\mathcal{X}) : f \text{ has bounded support}\}.$$

Then $C^\eta_b(\mathcal{X}) \subset L^\infty(\mathcal{X})$ and the norm on $C^\eta_b(\mathcal{X})$ is given by

$$\|f\|_{C^\eta_b(\mathcal{X})} := \|f\|_{L^\infty(\mathcal{X})} + \|\hat{f}\|_{C^\eta_n(\mathcal{X})}.$$

In what follows, we endow $C^\eta_b(\mathcal{X})$ with the strict inductive limit topology (see [76, p. 273]) arising from the sequence of spaces, $(C^\eta_n(B_n), \| \cdot \|_{C^\eta_n(\mathcal{X})})$, where $\{B_n\}_{n \in \mathbb{Z}}$ is any given increasing sequence of balls with the same center such that $\mathcal{X} = \bigcup_{n \in \mathbb{N}} B_n$ and

$$C^\eta_b(B_n) := \{f \in C^\eta_b(\mathcal{X}) : \text{ supp } f \subset B_n\}.$$

Denote by $(C^\eta_b(\mathcal{X}))'$ the dual space of $C^\eta_b(\mathcal{X})$, namely, the collection of all continuous linear functionals on $C^\eta_b(\mathcal{X})$. The space $(C^\eta_b(\mathcal{X}))'$ is endowed with the weak*-topology.

For functions in $C^\eta_b(\mathcal{X})$, we have a more elaborate version of the Calderón–Zygmund decomposition lemma when $\mu(\mathcal{X}) = \infty$.

Lemma 2.11. Let $\mu(\mathcal{X}) = \infty$, $\eta \in (0, 1]$ and $f \in C^\eta_b(\mathcal{X})$. For any $\lambda > 0$, f has the decomposition

$$f = g + \sum_{k \in I} b_k,$$

where g, $\{b_k\}_{k \in I}$ and $\sum_{k \in I} b_k$ are functions in $C^\eta_b(\mathcal{X})$ satisfying (i)-(v) of Lemma 2.10.

Proof. Suppose that $f \in C^\eta_b(\mathcal{X})$ with $\eta \in (0, 1]$ and $\lambda > 0$. Consider the level set

$$\Omega := \{x \in \mathcal{X} : Mf(x) > \lambda\}.$$

Without loss of generality, we may assume that $\text{ supp } f \subset B(y_0, R)$, where $y_0 \in \mathcal{X}$ and $R > 0$. Moreover, since $\mu(\mathcal{X}) = \infty$, we can choose R sufficiently large so that f, λ and $B(y_0, R)$ satisfy the assumptions of [23, p. 625, Lemma (3.9)]. From this, we deduce that Ω is contained in some ball. Then, we cover Ω by using balls $\{B_k\}_{k \in I} := \{B(x_k, r_k)\}_{k \in I}$ which satisfy (i)-(v) of Lemma 2.8. Take a radial function $h \in C^\infty_c(\mathbb{R})$ such that $0 \leq h \leq 1$, $h(t) = 1$ when $|t| \leq 1$, and $h(t) = 0$ when $|t| \geq 2$. For every B_k, define

$$\phi_k(x) := h \left(\frac{d(x, x_k)}{r_k}\right), \quad \forall x \in \mathcal{X}.$$

It is easy to show that every $\phi_k \in C^1_b(\mathcal{X})$ and $\phi_k(\cdot) = 1$ when $x \in B_k$. Moreover, if we take the constant c in Lemma 2.8 sufficiently large (for example, $c > 2$), then we have $\text{ supp } \phi_k \subset 2B_k \subset \Omega$ and $\{2B_k\}_{k \in I}$ has the bounded overlapping property. If we let

$$\Phi_k := \frac{\phi_k}{\sum_j \phi_j}, \quad k \in I,$$

then $\{\Phi_k\}_{k \in I}$ forms a partition of unity of \mathcal{X} with every $\Phi_k \in C^1_b(\mathcal{X})$. Now let

$$b_k := f\Phi_k - \frac{\int_{\mathcal{X}} f\Phi_k \, d\mu}{\int_{\mathcal{X}} \Phi_k \, d\mu} \Phi_k, \quad k \in I,$$
Then, it is a standard procedure to show that g and $\{b_k\}_{k \in I}$ satisfy (i)-(v) of Lemma 2.10.

By f, $\Phi_k \in C^0_b(\mathcal{X})$, we see that every $b_k \in C^0_b(\mathcal{X})$ and $\text{supp} b_k \subset 2B_k$. Since $\text{supp} f$ and Ω are both bounded sets, so $\sum_{k \in I} b_k$ and g have bounded supports. The finite overlap property of $\{2B_k\}_{k \in I}$ implies that $\sum_{k \in I} b_k(x)$ has only finitely many terms for any fixed $x \in \mathcal{X}$. From this and each $b_k \in C^0_b(\mathcal{X})$, it follows that $\sum_{k \in I} b_k \in C^0_{b}(\mathcal{X})$, so does g. This finishes the proof of the lemma.

2.3. Space of test functions. We recall the notion of the space of test functions on the RD-space (\mathcal{X}, d, μ) used in [59, 60].

Definition 2.12. Let $x_1 \in \mathcal{X}$, $r \in (0, \infty)$, $\beta \in (0, 1]$ and $\gamma \in (0, \infty)$. A function φ on \mathcal{X} is called a test function of type (x_1, r, β, γ) if there exists a positive constant C such that

(i) for all $x \in \mathcal{X}$,

$$|\varphi(x)| \leq C \frac{1}{V_r(x_1) + V_r(x) + V(x_1, x)} \left[\frac{r}{r + d(x_1, x)} \right]^\gamma;$$

(ii) for all $x, y \in \mathcal{X}$ satisfying that $d(x, y) \leq [r + d(x_1, x)]/2$,

$$|\varphi(x) - \varphi(y)| \leq C \left[\frac{d(x, y)}{r + d(x_1, x)} \right]^\beta \frac{1}{V_r(x_1) + V_r(x) + V(x_1, x)} \left[\frac{r}{r + d(x_1, x)} \right]^\gamma.$$

Denote by $\mathcal{G}(x_1, r, \beta, \gamma)$ the set of all test functions of type (x_1, r, β, γ). If $\varphi \in \mathcal{G}(x_1, r, \beta, \gamma)$, its norm is defined by

$$\|\varphi\|_{\mathcal{G}(x_1, r, \beta, \gamma)} := \inf \{C : \text{ (i) and (ii) hold} \}.$$

The space $\mathcal{G}(x_1, r, \beta, \gamma)$ is called the space of test functions. Set

$$\hat{\mathcal{G}}(x_1, r, \beta, \gamma) := \left\{ \varphi \in \mathcal{G}(x_1, r, \beta, \gamma) : \int_{\mathcal{X}} \varphi(x) \, d\mu(x) = 0 \right\}.$$

The space $\hat{\mathcal{G}}(x_1, r, \beta, \gamma)$ is called the space of test functions with mean zero.

It should be remarked that the prototype of such test functions on \mathbb{R}^n first appeared in the work of Meyer [80], where Definition 2.12(ii) is replaced by

$$|\varphi(x) - \varphi(y)| \leq C \left(\frac{|x - x'|}{r} \right)^\beta \left[\left(\frac{r}{r + |x - x_1|} \right)^\gamma + \left(\frac{r}{r + |y - x_1|} \right)^\gamma \right]. \tag{2.4}$$

Instead of imposing the condition that (2.4) holds for all $x, y \in \mathbb{R}^n$, Han [57] only required (2.4) for the points x, y satisfying $|x - y| \leq (r + |x - x_1|)/2$. The above definitions of $\mathcal{G}(x_1, r, \beta, \gamma)$ and $\hat{\mathcal{G}}(x_1, r, \beta, \gamma)$ for general RD-spaces were first introduced in [59, 60].

Following [60], fix $x_1 \in \mathcal{X}$ and let

$$\mathcal{G}(\beta, \gamma) := \mathcal{G}(x_1, 1, \beta, \gamma).$$
It is easy to see that, for any $x_2 \in \mathcal{X}$ and $r > 0$, we have $\mathcal{G}(x_2, r, \beta, \gamma) = \mathcal{G}(\beta, \gamma)$ with equivalent norms (but with constants depending on x_1, x_2 and r). The space $\mathcal{G}(\beta, \gamma)$ is a Banach space.

For any given $\epsilon \in (0, 1]$, let $\mathcal{G}_0^\epsilon(\beta, \gamma)$ be the completion of the space $\mathcal{G}(\epsilon, \epsilon)$ in $\mathcal{G}(\beta, \gamma)$ when $\beta, \gamma \in (0, \epsilon]$. Then, $\varphi \in \mathcal{G}_0^\epsilon(\beta, \gamma)$ if and only if $\varphi \in \mathcal{G}(\beta, \gamma)$ and there exists $\{\phi_j\}_{j \in \mathbb{N}} \subset \mathcal{G}(\epsilon, \epsilon)$ such that $\lim_{j \to \infty} \|\varphi - \phi_j\|_{\mathcal{G}(\beta, \gamma)} = 0$. If $\varphi \in \mathcal{G}_0^\epsilon(\beta, \gamma)$, we define

$$\|\varphi\|_{\mathcal{G}_0^\epsilon(\beta, \gamma)} := \|\varphi\|_{\mathcal{G}(\beta, \gamma)}.$$

For the above chosen $\{\phi_j\}_{j \in \mathbb{N}}$, we have

$$\|\varphi\|_{\mathcal{G}_0^\epsilon(\beta, \gamma)} = \lim_{j \to \infty} \|\phi_j\|_{\mathcal{G}(\beta, \gamma)}.$$

Similarly, the space $\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)$ is defined to be the completion of $\hat{\mathcal{G}}(\epsilon, \epsilon)$ in $\hat{\mathcal{G}}(\beta, \gamma)$ when $\beta, \gamma \in (0, \epsilon]$ and, for any $\varphi \in \hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)$, we define $\|\varphi\|_{\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)} := \|\varphi\|_{\hat{\mathcal{G}}(\beta, \gamma)}$. Both $\mathcal{G}_0^\epsilon(\beta, \gamma)$ and $\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)$ are Banach spaces.

Denote by $(\mathcal{G}_0^\epsilon(\beta, \gamma))'$ and $(\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma))'$, respectively, the sets of all bounded linear functionals on $\mathcal{G}_0^\epsilon(\beta, \gamma)$ and $\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)$. Define $\langle f, \varphi \rangle$ to be the natural pairing of elements $f \in (\mathcal{G}_0^\epsilon(\beta, \gamma))'$ and $\varphi \in \mathcal{G}_0^\epsilon(\beta, \gamma)$, or $f \in (\hat{\mathcal{G}}_0^\epsilon(\beta, \gamma))'$ and $\varphi \in \hat{\mathcal{G}}_0^\epsilon(\beta, \gamma)$. The space $\mathcal{G}_0^\epsilon(\beta, \gamma)$ plays the same role as that the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ and the space of all compactly supported functions with infinite differentiability do on \mathbb{R}^n.

Obviously, any function $f \in C_0^\epsilon(\mathcal{X})$ with $\eta \in (0, 1]$ is a test function of type (x_0, r, η, γ) for all $x_0 \in \mathcal{X}$, $r > 0$ and $\gamma > 0$; moreover, there exists a positive constant C, depending only on C_1, $\text{supp} f$, x_1, β and γ, such that

$$\|f\|_{\mathcal{G}(x_0, r, \eta, \gamma)} \leq C \|f\|_{C_0^\epsilon(\mathcal{X})}.$$

Conversely, if $f \in \mathcal{G}(x_1, 1, \beta, \gamma)$ for some $\beta \in (0, 1]$ and $\gamma > 0$, then $f \in C_0^\beta(\mathcal{X})$. Moreover, by the size condition of f (see Definition 2.12(i)), we see that

$$\|f\|_{L^\infty(\mathcal{X})} \leq \frac{1}{V_1(x_1)} \|f\|_{\mathcal{G}(x_1, 1, \beta, \gamma)}$$

and, by Definition 2.12(ii) when $d(x, y) \leq 1/2$ and Definition 2.12(i) when $d(x, y) > 1/2$,

$$\|f\|_{C^\beta(\mathcal{X})} = \max \left\{ \sup_{x \neq y, d(x, y) \leq 1/2} \frac{|f(x) - f(y)|}{d(x, y)\beta}, \sup_{x \neq y, d(x, y) > 1/2} \frac{|f(x) - f(y)|}{d(x, y)\beta} \right\} \leq \frac{2^{\beta+1}}{V_1(x_1)} \|f\|_{\mathcal{G}(x_1, 1, \beta, \gamma)}.$$

2.4. Approximations of the identity

Approximations of the identity on Ahlfors 1-regular metric measure spaces (\mathcal{X}, d, μ) satisfying with $\mu(\mathcal{X}) = \infty$ and $\mu(\{x\}) = 0$ for all $x \in \mathcal{X}$ first appeared in David, Journé and Semmes [26, Lemma 2.2] and Han [58] (see also [57, 61]). Also based on the ideas in [26], the corresponding versions in the context of RD-spaces were proved in [60, Definition 2.2]. The following definition is from [59, 60].

Definition 2.13. Let $\epsilon_1 \in (0, 1]$, $\epsilon_2 > 0$, and $\epsilon_3 > 0$. A sequence $\{S_k\}_{k \in \mathbb{Z}}$ of bounded linear integral operators on $L^2(\mathcal{X})$ is called an approximation of the identity of order $(\epsilon_1, \epsilon_2, \epsilon_3)$ (in short, $(\epsilon_1, \epsilon_2, \epsilon_3)$-ATI), if there exists a positive constant C such that, for...
all $k \in \mathbb{Z}$ and x, x', y and $y' \in \mathcal{X}$, the integral kernel, $S_k(x, y)$, of S_k is a measurable function, from $\mathcal{X} \times \mathcal{X}$ into \mathbb{C}, satisfying that

(i) $|S_k(x, y)| \leq C \frac{1}{V_{2^{-k}}(x) + V_{2^{-k}}(y) + V(x, y) [2^{-k} + d(x, y)]^{\epsilon_2}}$;

(ii) for all $d(x, x') \leq [2^{-k} + d(x, y)]/2$,

$$|S_k(x, y) - S_k(x', y)| \leq C \frac{d(x, x')^{\epsilon_1}}{[2^{-k} + d(x, y)]^{\epsilon_1}} \frac{1}{V_{2^{-k}}(x) + V_{2^{-k}}(y) + V(x, y) [2^{-k} + d(x, y)]^{\epsilon_2}}$$;

(iii) S_k satisfies (ii) with x and y interchanged;

(iv) for $d(x, x') \leq [2^{-k} + d(x, y)]/3$ and $d(y, y') \leq [2^{-k} + d(x, y)]/3$,

$$||S_k(x, y) - S_k(x, y') - [S_k(x', y) - S_k(x', y')|| \leq C \frac{d(x, x')^{\epsilon_1}}{[2^{-k} + d(x, y)]^{\epsilon_1}} \frac{d(y, y')^{\epsilon_1}}{[2^{-k} + d(x, y)]^{\epsilon_1}}$$

$$\times \frac{1}{V_{2^{-k}}(x) + V_{2^{-k}}(y) + V(x, y) [2^{-k} + d(x, y)]^{\epsilon_3}}$$;

(v)\[
\int_{\mathcal{X}} S_k(x, w) d\mu(w) = 1 = \int_{\mathcal{X}} S_k(w, y) d\mu(w).
\]

Remark 2.14. (i) If $\{S_k\}_{k \in \mathbb{Z}}$ is an $(\epsilon_1, \epsilon_2, \epsilon_3)$-ATI with bounded support, namely, there exists a positive constant C such that $S_k(x, y) = 0$ whenever $d(x, y) \geq C2^{-k}$, then $\{S_k\}_{k \in \mathbb{Z}}$ is an $(\epsilon_1, \epsilon_2, \epsilon_3)$-ATI for all $\epsilon'_2 > 0$ and $\epsilon'_3 > 0$. Such a sequence of operators, $\{S_k\}_{k \in \mathbb{Z}}$, is called an approximation of the identity of order ϵ_1 with bounded support (for short, ϵ_1-ATI with bounded support). The existence of 1-ATI with bounded support was shown in [67, Theorem 2.6] by using the ideas of David, Journé and Semmes [26].

(ii) Let $\{S_k\}_{k \in \mathbb{Z}}$ be an ϵ_1-ATI with bounded support. For any $\eta \in (0, \epsilon_1]$, there exists a positive constant C such that, for all $x, x', y, y' \in \mathcal{X}$ and all $k \in \mathbb{Z}$,

$$|S_k(x, y) - S_k(x', y)| \leq C \left[\frac{d(x, x')}{2^{-k}}\right]^{\eta} \frac{1}{V_{2^{-k}}(y)}.$$

(2.5) Indeed, (2.5) follows from the regular condition of S_k if $d(x, x') \leq 2^{-k-1}$ and the size condition of S_k if $d(x, x') > 2^{-k-1}$. Combining (2.5) and the size condition of S_k, we see that $S_k(\cdot, y) \in C^\eta_0(\mathcal{X})$ for all $k \in \mathbb{Z}$ and $y \in \mathcal{X}$. The same holds true for $S_k(y, \cdot)$.

Classical examples of operators satisfying Definition 2.13 for the special case $\mathcal{X} = \mathbb{R}^n$ can be built as follows. Let \mathbf{F}_{bass} (F stands for filter) be the collection of non-negative radial functions $\varphi \in \mathcal{S}(\mathbb{R}^n)$ such that $\text{supp} \hat{\varphi} \subset \{\xi \in \mathbb{R}^n : |\xi| \leq 2\}$ and $\hat{\varphi}(\xi) = 1$ if $|\xi| \leq 1$, where $\hat{\varphi}$ represents the Fourier transform of φ. Let \mathbf{F}_{band} be the collection of non-negative radial functions $\psi \in \mathcal{S}(\mathbb{R}^n)$ such that $\text{supp} \hat{\psi} \subset \{\xi \in \mathbb{R}^n : \frac{1}{2} \leq |\xi| \leq 4\}$ and $\hat{\psi}(\xi) = 1$ if $1 \leq |\xi| \leq 2$. Given $\varphi \in \mathbf{F}_{\text{bass}}$, define S_j by

$$S_j(f)(x) := \int_{\mathbb{R}^n} S_j(x, y) f(y) dy, \quad \forall f \in \mathcal{S}(\mathbb{R}^n) \text{ and } x \in \mathbb{R}^n,$$
where \(j \in \mathbb{Z} \) and \(S_j(x, y) := 2^{jn} \varphi(2^j(x - y)) \). Thus, \(S_j(f)(x) = \varphi_j * f(x) \), where we used the following convention: Given a function \(g \) and \(j \in \mathbb{Z} \), we define the dilations \(g_j \) as \(g_j(x) := 2^{jn}g(2^jx) \). Also, set \(D_j(x, y) := \psi_j(x - y) \), where \(\psi_j := \varphi_{j+1} - \varphi_j \) and \(\psi \) is such that
\[
\hat{\psi}(\xi) = \hat{\varphi}(\xi/2) - \hat{\varphi}(\xi), \quad \forall \xi \in \mathbb{R}^n.
\]
Notice that \(\psi \in \mathbf{F}_{\text{band}} \). The operators \(S_j \) and \(D_j \) are the basic tools to develop the Littlewood–Paley theory.

Finally, we summarize some properties concerning the size condition of such approximations of the identity; see [60, p. 16, Proposition 2.7].

Lemma 2.15. Suppose that a sequence \(\{S_k\}_{k \in \mathbb{Z}} \) of functions defined on \(\mathcal{X} \times \mathcal{X} \) and taking values in \(\mathbb{C} \) satisfies Definition 2.13. Then the following hold true:

(i) there exists a positive constant \(C \) such that, for all \(k \in \mathbb{Z} \) and \(x, y \in \mathcal{X} \),
\[
\int_{\mathcal{X}} |S_k(x, z)| \, d\mu(z) \leq C \quad \text{and} \quad \int_{\mathcal{X}} |S_k(z, y)| \, d\mu(z) \leq C;
\]

(ii) for all \(p \in [1, \infty) \), there exists a positive constant \(C_p \) such that, for all \(f \in L^p(\mathcal{X}) \),
\[
\|S_k(f)\|_{L^p(\mathcal{X})} \leq C_p \|f\|_{L^p(\mathcal{X})};
\]

(iii) for all \(p \in [1, \infty) \) and \(f \in L^p(\mathcal{X}) \),
\[
\lim_{k \to \infty} \|S_k f - f\|_{L^p(\mathcal{X})} = 0;
\]

(iv) there exists a positive constant \(C \) such that, for all \(k \in \mathbb{Z} \), \(f \in \mathcal{L}_{\text{loc}}^1(\mathcal{X}) \) and \(x \in \mathcal{X} \),
\[
|S_k(f)(x)| \leq C M f(x).
\]

2.5. Singular integrals on spaces of homogeneous type

In this subsection we follow the pioneer work of Coifman and Weiss [22, 23], and more recent results provided by Han, Müller and Yang [59, 60] to present the analogs of the boundedness for singular integrals on some classical function spaces on \(\mathbb{R}^n \) to develop the Littlewood–Paley theory.

Lemma 2.16. Let \(T \) be a continuous linear operator \(T : C^0_b(\mathcal{X}) \to (C^0_b(\mathcal{X}))' \) such that, for all \(f \in C^0_b(\mathcal{X}) \) and \(x \in \mathcal{X} \) away from \(\text{supp} f \),
\[
T(f)(x) = \int_{\mathcal{X}} K(x, y) f(y) \, d\mu(y),
\]

where the kernel \(K \) satisfies Hörmander’s condition
\[
\sup_{y, y' \in \mathcal{X}} \int_{d(y, y') \leq d(x,y)/2} \left[|K(x, y) - K(x, y')| + |K(y, x) - K(y', x)| \right] \, d\mu(x) \leq C_K < \infty
\]
for some positive constant \(C_K \). If \(T \) is bounded on \(L^p(\mathcal{X}) \) for some \(p \in (1, \infty) \), then

(i) \(T \) can be extended to a bounded linear operator on \(L^q(\mathcal{X}) \) for all \(q \in (1, \infty) \);

(ii) \(T \) can be extended to a bounded linear operator from \(L^1(\mathcal{X}) \) to \(L^{1, \infty}(\mathcal{X}) \).

The norm of \(T \) in (i) or (ii) is at most a positive constant multiple of
\[
C_K + \|T\|_{L^p(\mathcal{X}) \to L^p(\mathcal{X})}.
\]
The $T1$-Theorem gives necessary and sufficient conditions for the continuity of singular integral operators in $L^2(\mathcal{X})$. The first instance of such a theorem, in the Euclidean setting, was proved by David and Journé in [25]. The theorem also extends to RD-spaces in [59, 60].

Definition 2.17. Let $\delta \in (0, 1]$. A continuous complex-valued function $K(x, y)$ on

$$\Omega := \{(x, y) \in \mathcal{X} \times \mathcal{X} : x \neq y\}$$

is called a *Calderón–Zygmund kernel of type δ* if there is a positive constant C_K such that, for all $(x, y), (x', y) \in \Omega$,

$$|K(x, y)| \leq C_K \frac{V(x, y)}{d(x, y)}$$

and, when $d(x, x') \leq d(x, y)/2$,

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq C_K \left[\frac{d(x, x')}{d(x, y)}\right]^\delta \frac{1}{V(x, y)}.$$

In this case, write $K \in \text{Ker}(C_K, \delta)$.

Definition 2.18. Let $\eta \in (0, 1]$. A *Calderón–Zygmund singular integral operator* is a continuous operator $T : C^\eta_b(\mathcal{X}) \to (C^\eta_b(\mathcal{X}))'$ such that, for all $f \in C^\eta_b(\mathcal{X})$ and $x \notin \text{supp} \, f$,

$$T(f)(x) = \int_{\mathcal{X}} K(x, y) f(y) \, d\mu(y),$$

where the kernel $K \in \text{Ker}(C_K, \delta)$ for some $C_K > 0$ and $\delta \in (0, 1]$. The transpose T^* of T is defined by

$$\langle T^* f, g \rangle = \langle Tg, f \rangle$$

for all $f, g \in C^\eta_b(\mathcal{X})$. The kernel K^* of T^* is related to the one of T by $K^*(x, y) = K(y, x)$ for all $x, y \in \mathcal{X}$.

Definition 2.19. Given $\eta \in (0, 1]$, $x \in \mathcal{X}$ and $r > 0$, a function φ on \mathcal{X} is called a *normalized bump function* for the ball $B(x, r)$ if

(i) $\varphi \in C^\eta_b(\mathcal{X})$ and $\text{supp} \, \varphi \subset B(x, r)$;

(ii) $\|\varphi\|_{L^\infty(\mathcal{X})} \leq 1$;

(iii) $|\varphi(z) - \varphi(y)| \leq r^{-\eta} d(z, y)^\eta$ for all $z, y \in \mathcal{X}$.

Denote by $\mathcal{T}(\eta, x, r)$ the collection of all normalized bump functions for the ball $B(x, r)$.

Definition 2.20. Let $0 < \eta \leq \theta$. A singular operator $T : C^\eta_b(\mathcal{X}) \to (C^\eta_b(\mathcal{X}))'$ is said to have the *weak boundedness property* or (for short, WBP(η)) if there exists a positive constant C such that, for all $x \in \mathcal{X}, r > 0$ and $\varphi, \psi \in \mathcal{T}(\eta, x, r)$,

$$|\langle T\varphi, \psi \rangle| \leq C \mu(B(x, r)).$$

The smallest possible constant C in (2.6) is denoted by $\|T\|_{\text{WBP}(\eta)}$.

The following BMO-type spaces on spaces of homogeneous type (\mathcal{X}, d, μ) were introduced by Coifman and Weiss [23].
2.5. Singular integrals on spaces of homogeneous type

Definition 2.21. Let \(q \in [1, \infty) \). A function \(f \in L^q_{\text{loc}}(\mathcal{X}) \) is said to be in the space \(\text{BMO}_q(\mathcal{X}) \) if

\[
\|f\|_{\text{BMO}_q(\mathcal{X})} := \left\{ \sup_{B \subset \mathcal{X}} \frac{1}{\mu(B)} \int_B |f(x) - f_B|^q \, d\mu(x) \right\}^{1/q} < \infty,
\]

where

\[
f_B := \frac{1}{\mu(B)} \int_B f(y) \, d\mu(y).
\]

Remark 2.22. (i) If \(f_1, f_2 \in \text{BMO}_q(\mathcal{X}) \) and \(f_1 - f_2 \) is a constant, then we regard \(f_1 \) and \(f_2 \) as the same element in \(\text{BMO}_q(\mathcal{X}) \).

(ii) If \(q = 1 \), we write \(\text{BMO}(\mathcal{X}) \) instead of \(\text{BMO}_1(\mathcal{X}) \) for simplicity.

(iii) For any given \(q \in (1, \infty) \), the two spaces \(\text{BMO}_q(\mathcal{X}) \) and \(\text{BMO}(\mathcal{X}) \) coincide with equivalent norms; see [23, pp. 593-594].

For the following T1-theorem on spaces of homogeneous type, “(i) \(\iff \) (ii)” is due to [60, Theorem 5.56], and the proof of [60, Theorem 5.57] implies that “(i) \(\implies \) (iii) \(\implies \) (iv) \(\implies \) (ii)”.

Theorem 2.23. Let \(\epsilon \in (0, 1], \eta \in (0, \epsilon) \) and \(T \) be a continuous linear operator from \(C^\eta_b(\mathcal{X}) \) to \((C^\eta_b(\mathcal{X}))' \) as in Definition 2.18 associated with a kernel \(K \in \text{Ker}(C_K, \epsilon) \) for some \(C_K > 0 \). Then the following statements are equivalent:

(i) \(T \) extends to a bounded linear operator on \(L^2(\mathcal{X}) \);

(ii) \(T(1) \in \text{BMO}(\mathcal{X}) \), \(T^*(1) \in \text{BMO}(\mathcal{X}) \) and \(T \in \text{WBP}(\eta) \);

(iii) there exists a positive constant \(C \) such that, for all \(x \in \mathcal{X}, R > 0 \) and \(\phi \in \mathcal{T}(\eta, x, R) \),

\[
\|T(\phi)\|_{L^2(\mathcal{X})} + \|T^*(\phi)\|_{L^2(\mathcal{X})} < C \mu(B(x, R));
\]

(iv) for all \(x \in \mathcal{X}, R > 0 \) and \(\phi \in \mathcal{T}(\eta, x, R) \),

\[
\|T(\phi)\|_{\text{BMO}(\mathcal{X})} + \|T^*(\phi)\|_{\text{BMO}(\mathcal{X})} < \infty.
\]
3. Multilinear Calderón–Zygmund theory

This section is entirely devoted to the extension of the multilinear Calderón–Zygmund theory in the Euclidean case, as developed by Grafakos and Torres in [53], to the context of the RD-spaces \((\mathcal{X}, d, \mu)\). This theory stems from the work of Coifman and Meyer [19, 20, 21, 82]; see also Kenig and Stein [68].

3.1. Multilinear Calderón–Zygmund operators. Motivated by [53] we study the following multilinear singular integrals on \((\mathcal{X}, d, \mu)\).

Definition 3.1. Given \(m \in \mathbb{N}\), set

\[
\Omega_m := \mathcal{X}^{m+1} \setminus \{(y_0, y_1, \ldots, y_m) : y_0 = y_1 = \cdots = y_m\}.
\]

Suppose that \(K : \Omega_m \to \mathbb{C}\) is locally integrable. The function \(K\) is called a \(\text{Calderón–Zygmund kernel}\) if there exist constants \(C_K \in (0, \infty)\) and \(\delta \in (0, 1]\) such that, for all \((y_0, y_1, \ldots, y_m) \in \Omega_m,\)

\[
|K(y_0, y_1, \ldots, y_m)| \leq C_K \frac{1}{\left[\sum_{k=1}^{m} V(y_0, y_k)\right]^m} \tag{3.1}
\]

and that, for all \(k \in \{0, 1, \ldots, m\},\)

\[
|K(y_0, y_1, \ldots, y_k, \ldots, y_m) - K(y_0, y_1, \ldots, y'_{k}, \ldots, y_m)| \leq C_K \left[\frac{d(y_k, y'_k)}{\max_{0 \leq k \leq m} d(y_0, y_k)}\right]^\delta \frac{1}{\left[\sum_{k=1}^{m} V(y_0, y_k)\right]^m}, \tag{3.2}
\]

whenever \(d(y_k, y'_k) \leq \max_{0 \leq k \leq m} d(y_0, y_k)/2\). In this case, write \(K \in \text{Ker}(m, C_K, \delta)\).

Definition 3.2. Let \(\eta \in (0, 1]\). An \(m\)-linear \(\text{Calderón–Zygmund operator}\) is a continuous operator

\[
T : C_0^m(\mathcal{X}) \times \cdots \times C_0^m(\mathcal{X}) \to (C_0^m(\mathcal{X}'))^m
\]

such that, for all \(f_1, \ldots, f_m \in C_0^m(\mathcal{X})\) and \(x \notin \bigcap_{i=1}^m \text{supp } f_i,\)

\[
T(f_1, \ldots, f_m)(x) = \int_{\mathcal{X}^m} K(x, y_1, \ldots, y_m) \prod_{i=1}^{m} f_i(y_i) \, d\mu(y_1) \cdots d\mu(y_m), \tag{3.3}
\]

where the kernel \(K \in \text{Ker}(m, C_K, \delta)\) for some \(C_K > 0\) and \(\delta \in (0, 1]\). As an \(m\)-linear operator, \(T\) has \(m\) formal transposes. The \(j\)-th transpose \(T^{*j}\) of \(T\) is defined by

\[
\langle T^{*j}(f_1, \ldots, f_m), g \rangle = \langle T(f_1, \ldots, f_{j-1}, g, f_{j+1}, \ldots, f_m), f_j \rangle
\]

[20]
for all \(f_1, \ldots, f_m, g \) in \(C_b^n(\mathcal{X}) \). The kernel \(K^{*j} \) of \(T^{*j} \) is related to the one of \(T \) by

\[
K^{*j}(x, y_1, \ldots, y_{j-1}, y_j, y_{j+1}, \ldots, y_m) = K(y_j, y_1, \ldots, y_{j-1}, x, y_{j+1}, \ldots, y_m).
\]

To maintain uniform notation, we may occasionally denote \(T \) by \(T^{*0} \) and \(K \) by \(K^{*0} \).

3.2. Multilinear weak type estimates

We use the Calderón–Zygmund decomposition to obtain the endpoint weak-type boundedness for multilinear operators; see \cite{53} when \((\mathcal{X}, d, \mu) \) is the Euclidean space.

Theorem 3.3. Let \(T \) be an \(m \)-linear Calderón–Zygmund operator associated with a kernel \(K \in \text{Ker}(m, C_K, \delta) \). Assume that, for some \(1 \leq q_1, q_2, \ldots, q_m \leq \infty \) and some \(0 < q < \infty \) with \(\sum_{j=1}^{m} \frac{1}{q_j} = \frac{1}{q} \), \(T \) maps \(L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \to L^{q, \infty}(\mathcal{X}) \). Then \(T \) can be extended to a bounded \(m \)-linear operator from the \(m \)-fold product \(L^1(\mathcal{X}) \times \cdots \times L^1(\mathcal{X}) \to L^{1/m, \infty}(\mathcal{X}) \) and

\[
\|T\|_{L^1(\mathcal{X}) \times \cdots \times L^1(\mathcal{X}) \to L^{1/m, \infty}(\mathcal{X})} \leq C \left[C_K + \|T\|_{L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \to L^{q, \infty}(\mathcal{X})} \right]
\]

for some positive constant \(C \) that depends only on \(C_1, C_2, \delta \) and \(m \).

To show Theorem 3.3, we first establish the following lemma.

Lemma 3.4. For any \(\delta > 0 \), there exists positive constant \(C \), depending only on \(C_1, \delta \) and \(m \), such that, for all \(i \in \{1, \ldots, m\} \) and all \(x, y_k \in \mathcal{X} \) with \(k \neq i \),

\[
\int_{\mathcal{X}} \left[\max_{1 \leq k \leq m} d(x, y_k) \right]^{\delta} \frac{1}{\sum_{k=1}^{m} V(x, y_k)} \, d\mu(y_i) \leq C \left[\max_{1 \leq k \leq m, k \neq i} d(x, y_k) \right]^{\delta}.
\]

Proof. Let

\[
a := \max_{1 \leq k \leq m, k \neq i} d(x, y_k).
\]

By (a) and (b) of Lemma 2.4 and (2.1), we see that, when \(d(x, y_i) < 2a \),

\[
\sum_{k=1}^{m} V(x, y_k) \sim \mu(B(x, a)),
\]

which further implies that

\[
\int_{d(x, y_i) < 2a} \left[\max_{1 \leq k \leq m} d(x, y_k) \right]^{\delta} \frac{1}{\sum_{k=1}^{m} V(x, y_k)} \, d\mu(y_i) \leq C \left[\max_{1 \leq k \leq m, k \neq i} d(x, y_k) \right]^{\delta}.
\]

On the other hand, when \(d(x, y_i) \geq 2a \), we have

\[
\max_{1 \leq k \leq m} d(x, y_k) = d(x, y_i) \quad \text{and} \quad \sum_{k=1}^{m} V(x, y_k) \sim V(x, y_i);
\]

consequently, again using (2.1) implies that

\[
\int_{d(x, y_i) \geq 2a} \left[\max_{1 \leq k \leq m} d(x, y_k) \right]^{\delta} \frac{1}{\sum_{k=1}^{m} V(x, y_k)} \, d\mu(y_i)
\]
This finishes the proof of the lemma.

Applying Lemmas 2.11 and 3.4 we now show Theorem 3.3.

Proof of Theorem 3.3 Let

\[A := \|T\|_{L^{m_1}(\mathcal{X}) \times \cdots \times L^{m_m}(\mathcal{X}) \rightarrow L^\infty(\mathcal{X})}. \]

Since the space \(C_0^m(\mathcal{X}) \) is dense in \(L^1(\mathcal{X}) \) for any \(\eta \in (0, 1] \) (see [60, p. 22, Corollary 2.11]), it suffices to prove the theorem for functions \(\{f_j\}_{j=1}^m \subset C_0^m(\mathcal{X}) \). Fix \(\alpha > 0 \). By homogeneity, without loss of generality, we may assume that \(\|f_j\|_{L^1(\mathcal{X})} = 1 \). For any \(\alpha \in (0, \infty) \), let

\[E_\alpha := \{ x \in \mathcal{X} : |T(f_1, \ldots, f_m)(x)| > \alpha \}. \]

We only need to show that

\[\mu(E_\alpha) \lesssim (C_K + A)^{1/m} \alpha^{-1/m}. \]

Let \(\gamma > 0 \) be a constant to be determined later. For all \(j \in \{1, \ldots, m\} \), apply the Calderón–Zygmund decomposition (Lemma 2.11) to \(f_j \) at height \((\alpha \gamma)^{1/m} \) to obtain good and bad functions \(g_j \) and \(b_j \) and families of balls, \(\{B_{j,k}\}_{k \in I_j, j \in \{1, \ldots, m\}} \) with \(\{I_j\}_{1 \leq j \leq m} \) being index sets, such that \(f_j = g_j + b_j \), where \(b_j = \sum_{k \in I_j} b_{j,k} \) satisfying that, for all \(k \in I_j \) and \(s \in [1, \infty] \),

(i) \(\text{supp } b_{j,k} \subset B_{j,k} \) and

\[\int_{\mathcal{X}} b_{j,k}(y) \, d\mu(y) = 0; \]

(ii)

\[\|b_{j,k}\|_{L^1(\mathcal{X})} \lesssim (\alpha \gamma)^{1/m} \mu(B_{j,k}); \]

(iii)

\[\sum_{k \in I_j} \mu(B_{j,k}) \lesssim (\alpha \gamma)^{-1/m}; \]

(iv)

\[\|g_j\|_{L^s(\mathcal{X})} \lesssim (\alpha \gamma)^{\frac{m}{s}(1 - \frac{1}{2})} \quad \text{and} \quad \|b_j\|_{L^1(\mathcal{X})} \leq \sum_{k \in I_j} \|b_{j,k}\|_{L^1(\mathcal{X})} \lesssim 1. \]

Also, notice that \(g_j \) and \(b_j \) as above are functions in \(C_0^m(\mathcal{X}) \) by Lemma 2.11.

Now let

\[E_1 = \{ x : |T(g_1, g_2, \ldots, g_m)(x)| > \alpha/2^m \}, \]
\[E_2 = \{ x : |T(b_1, g_2, \ldots, g_m)(x)| > \alpha/2^m \}, \]
\[E_3 = \{ x : |T(g_1, b_2, \ldots, g_m)(x)| > \alpha/2^m \}, \]
the bad functions occur at the entries j exactly ℓ. Consider a set E_r.

\[E_{2^m} = \{ x : |T(b_1, b_2, \ldots, b_m)(x)| > \alpha/2^m \}. \]

Since

\[\mu(\{ x : |T(f_1, \ldots, f_m)(x)| > \alpha \}) \leq \sum_{r=1}^{2^m} \mu(E_r), \]

we only need to prove that, for all $r \in \{1, \ldots, 2^m\}$,

\[\mu(E_r) \lesssim (C_K + A)^{1/m} \alpha^{-1/m}. \quad (3.4) \]

Chebychev’s inequality and the $L^q_1(\mathcal{X}) \times \cdots \times L^q_m(\mathcal{X}) \to L^{q,\infty}(\mathcal{X})$ boundedness of T give

\[\mu(E_1) \leq \left(\frac{2^m A}{\alpha} \right)^q \| g_1 \|_{L^{q_1}(\mathcal{X})} \cdots \| g_m \|_{L^{q_m}(\mathcal{X})} \]

\[\lesssim \left(\frac{A}{\alpha} \right)^q \prod_{j=1}^m (\alpha \gamma)^{m/q_j} \sim \left(\frac{A}{\alpha} \right)^q (\alpha \gamma)^{m-1/2}/m \sim A^q \alpha^{-1/m} \gamma^{-1/m}. \]

Consider a set E_r as above with $2 \leq r \leq 2^m$. Suppose that, for some $1 \leq \ell \leq m$, we have exactly ℓ bad functions appearing in $T(h_1, \ldots, h_m)$ where $h_j \in \{b_j, g_j\}$ and assume that the bad functions occur at the entries j_1, \ldots, j_ℓ. The next step is to show that

\[\mu(E_r) = \mu(\{ x : |T(h_1, \ldots, h_m)(x)| > \alpha/2^m \}) \lesssim \alpha^{-1/m} \left[\gamma^{-1/m} + \gamma^{-1/m}(\gamma C_K)^{1/\ell} \right]. \quad (3.5) \]

Let $r_{j,k}$ and $c_{j,k}$ be the radius and the center of the ball $B_{j,k}$, respectively. Set

\[(B_{j,k})^* := B(c_{j,k}, 5r_{j,k}). \]

Since

\[\mu \left(\bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^* \right) \lesssim (\alpha \gamma)^{-1/m}, \]

(3.5) is a consequence of

\[\mu \left(\left\{ x \notin \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^* : |T(h_1, \ldots, h_m)(x)| > \alpha/2^m \right\} \right) \lesssim (\alpha \gamma)^{-1/m}(\gamma C_K)^{1/\ell}. \quad (3.6) \]

Fix $x \notin \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^*$. Then,

\[|T(h_1, \ldots, h_m)(x)| \leq \sum_{k_1 \in I_{j_1}} \cdots \sum_{k_\ell \in I_{j_\ell}} \left| \int_{\mathcal{X}^m} K(x, y_1, \ldots, y_m) \prod_{i \notin \{j_1, \ldots, j_\ell\}} g_i(y_i) \prod_{i=1}^\ell b_{j_i, k_i}(y_{j_i}) \, d\mu(y_1) \cdots d\mu(y_m) \right| \]

\[=: \sum_{k_1 \in I_{j_1}} \cdots \sum_{k_\ell \in I_{j_\ell}} H_{k_1, \ldots, k_\ell}. \]
Fix, for the moment, the balls \(B^*_{j_1, k_1}, \ldots, B^*_{j_\ell, k_\ell}\) and, without loss of generality, we may suppose that \(B^*_{j_1, k_1}\) has the smallest radius among them. Notice that

\[
\left| \int_{B^*_{j_1, k_1}} K(x, y_1, \ldots, y_m) b_{j_1, k_1}(y_{j_1}) \, d\mu(y_{j_1}) \right|
\]

\[
= \left| \int_{B^*_{j_1, k_1}} \left[K(x, y_1, \ldots, y_m) - K(x, y_1, \ldots, c_{j_1, k_1}, \ldots, y_m) \right] b_{j_1, k_1}(y_{j_1}) \, d\mu(y_{j_1}) \right|
\]

\[
\leq C_K \int_{B^*_{j_1, k_1}} \left[\frac{d(y_{j_1}, c_{j_1, k_1})}{\max_{1 \leq k \leq m} d(x, y_k)} \right]^\delta \frac{1}{(\sum_{k=1}^m V(x, y_k))^m} \left| b_{j_1, k_1}(y_{j_1}) \right| \, d\mu(y_{j_1}),
\]

Integrating with respect to every \(y_i\) with \(i \notin \{j_1, \ldots, j_\ell\}\) and using Lemma 3.4 \(m - \ell\) times, we obtain

\[
\int_{X^{m-\ell}} \int_{B^*_{j_1, k_1}} K(x, y_1, \ldots, y_m) b_{j_1, k_1}(y_{j_1}) \, d\mu(y_{j_1}) \prod_{i \notin \{j_1, \ldots, j_\ell\}} \mu(y_i)
\]

\[
\leq C_K \int_{B^*_{j_1, k_1}} \left| b_{j_1, k_1}(y_{j_1}) \right| \left(\int_{X^{m-\ell}} \left[\frac{d(y_{j_1}, c_{j_1, k_1})}{\max_{1 \leq k \leq m} d(x, y_k)} \right]^\delta \frac{1}{(\sum_{k=1}^m V(x, y_k))^m} \prod_{i \notin \{j_1, \ldots, j_\ell\}} \mu(y_i) \right) \, d\mu(y_{j_1})
\]

\[
\lesssim C_K \int_{B^*_{j_1, k_1}} \left| b_{j_1, k_1}(y_{j_1}) \right| \left[\frac{d(y_{j_1}, c_{j_1, k_1})}{\max_{1 \leq k \leq m} d(x, c_{j_1, k_1})} \right]^\delta \frac{1}{(\sum_{i=1}^\ell V(x, c_{j_1, k_1}))^\ell} \, d\mu(y_{j_1})
\]

\[
\lesssim C_K \left[\frac{r_{j_1, k_1}}{\max_{1 \leq i \leq \ell} d(x, c_{j_1, k_1})} \right]^\delta \frac{1}{(\sum_{i=1}^\ell V(x, c_{j_1, k_1}))^\ell} \, d\mu(x, c_{j_1, k_1}),
\]

where, in the last step, we used the fact that \(y_{j_1} \in B_{j_1, k_1}\) and \(x \notin \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j, k})^{**}\) imply that

\[
d(x, y_{j_1}) \sim d(x, c_{j_1, k_1}) \quad \text{and} \quad V(x, y_{j_1}) \sim V(x, c_{j_1, k_1}).
\]

By the arithmetic-geometric mean inequality and since we are assuming that \(r_{j_1, k_1}\) is the smallest among \(\{r_{j_i, k_i}\}_{i=1}^\ell\), we have

\[
\left[\frac{r_{j_1, k_1}}{\max_{1 \leq i \leq \ell} d(x, c_{j_1, k_1})} \right]^\delta \frac{1}{(\sum_{i=1}^\ell V(x, c_{j_1, k_1}))^\ell} \leq \prod_{i=1}^\ell \left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i})} \right]^\delta \frac{1}{V(x, c_{j_i, k_i})}.
\]

Then, by the fact that, for all \(i \in \{1, \ldots, m\},\)

\[
\|g_i\|_{L^\infty(X)} \lesssim (\alpha \gamma)^{1/m},
\]

we have

\[
H_{k_1, \ldots, k_\ell} \leq \int_{X^{m-1}} \int_{B^*_{j_1, k_1}} K(x, y_1, \ldots, y_m) b_{j_1, k_1}(y_{j_1}) \, d\mu(y_{j_1})
\]

\[
\times \prod_{i \notin \{j_1, \ldots, j_\ell\}} |g_i(y_i)| \prod_{i=2}^\ell |b_{j_i, k_i}(y_{j_i})| \prod_{i \notin \{j_1, \ldots, j_\ell\}} \mu(y_i)
\]
We now bound \(|T(h_1, \ldots, h_m)(x)| \) as follows: for any \(x \notin \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^* \),
\[
|T(h_1, \ldots, h_m)(x)| \lesssim C_K(\alpha \gamma)^{\frac{m-\ell}{m}} \|b_{j_1, k_1}\|_{L^1(\mathcal{X})} \int_{\mathcal{X}} \prod_{i=2}^{\ell} |b_{j_i, k_i}(y_{j_i})|
\times \prod_{i=1}^\ell \left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i})} \right]^{\delta/\ell} \frac{1}{V(x, c_{j_i, k_i})} \frac{1}{d\mu(y_{j_2})d\mu(y_{j_3}) \cdots d\mu(y_{j_\ell})}
\lesssim C_K(\alpha \gamma)^{\frac{m-\ell}{m}} \prod_{i=1}^\ell \left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i})} \right]^{\delta/\ell} \frac{\|b_{j_i, k_i}\|_{L^1(\mathcal{X})}}{V(x, c_{j_i, k_i})}
\lesssim C_K(\alpha \gamma)^{\frac{m-\ell}{m}} \prod_{i=1}^\ell \left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i})} \right]^{\delta/\ell} \frac{(\alpha \gamma)^{1/m} \mu(B_{j_i, k_i})}{V(x, c_{j_i, k_i})}.
\]
where, in the last step, the doubling condition ([2.1]) and \(x \notin (B_{j_i, k_i})^* \) imply that
\[
\left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i})} \right]^{\delta/\ell} \frac{\mu(B_{j_i, k_i})}{V(x, c_{j_i, k_i})} \sim \left[\frac{r_{j_i, k_i}}{d(x, c_{j_i, k_i}) + r_{j_i, k_i}} \right]^{\delta/\ell} \frac{\mu(B_{j_i, k_i})}{\mu(B(x, d(x, c_{j_i, k_i}) + r_{j_i, k_i}))}
\lesssim \left[\frac{\mu(B_{j_i, k_i})}{\mu(B(x, d(x, c_{j_i, k_i}) + r_{j_i, k_i}))} \right]^{1+\delta/(n\ell)}
\lesssim \mathcal{M} \left(\chi_{B_{j_i, k_i}} \right)(x)^{1+\delta/(n\ell)}.
\]
By this, the \(L^{1+\delta/(n\ell)}(\mathcal{X}) \)-boundedness of \(\mathcal{M} \) and H"older’s inequality, we conclude that
\[
\mu \left(\left\{ x \notin \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^* : |T(h_1, \ldots, h_m)(x)| > \alpha/2^m \right\} \right)
\lesssim \alpha^{-1/\ell} \int_{\mathcal{X} \setminus \bigcup_{j=1}^m \bigcup_{k \in I_j} (B_{j,k})^*} |T(h_1, \ldots, h_m)(x)|^{1/\ell} \, d\mu(x)
\lesssim (C_K \gamma)^{1/\ell} \int_{\mathcal{X}} \left\{ \prod_{i=1}^\ell \sum_{k_i \in I_{j_i}} \mathcal{M} \left(\chi_{B_{j_i, k_i}} \right)(x) \right\}^{1+\delta/(n\ell)} \, d\mu(x)
\lesssim (C_K \gamma)^{1/\ell} \prod_{i=1}^\ell \left\{ \sum_{k_i \in I_{j_i}} \int_{\mathcal{X}} \mathcal{M} \left(\chi_{B_{j_i, k_i}} \right)(x) \right\}^{1+\delta/(n\ell)} \, d\mu(x)^{1/\ell}.
\[\lesssim (C_K \gamma)^{1/\ell} \prod_{i=1}^{\ell} \left\{ \sum_{k_i \in I_{j_i}} \mu(B_{j_i, k_i}) \right\}^{1/\ell} \]

\[\lesssim (C_K \gamma)^{1/\ell} (\alpha \gamma)^{-1/m}. \]

This proves (3.6). Selecting \(\gamma = (C_K + A)^{-1} \), we see that all the sets \(E_r \) satisfy (3.4), which completes the proof of Theorem 3.3 \(\blacksquare \).
4. Weighted multilinear Calderón–Zygmund theory

Weighted estimates for multilinear Calderón–Zygmund operators first appear in the article of Grafakos and Torres [53]. Weighted estimates for multilinear commutators via the sharp maximal function were subsequently obtained by Pérez and Torres [91]. One of the main motivations for the results in this section comes from the article by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [72], where a very natural multiple-weight theory adapted to the multilinear Calderón–Zygmund theory was developed. It should be mentioned the recent work by Bui and Duong [13], in which multiple weighted norm inequalities of the multilinear Calderón–Zygmund operators on \mathbb{R}^n were studied, but with kernels satisfying some mild regularity condition which is weaker than the usual Hölder’s continuity.

Given a measure ρ absolutely continuous with respect to the measure μ, that is, there is a non-negative locally integrable function w such that $d\rho(x) = w(x)d\mu(x)$ for all $x \in \mathcal{X}$, then ρ is called a weighted measure with respect to μ and w is called a weight. A weight w is said to belong to the Muckenhoupt class A_p for $p \in (1, \infty)$ if

$$[w]_{A_p} := \sup_B \left[\frac{1}{\mu(B)} \int_B w(y) d\mu(y) \right] \left[\frac{1}{\mu(B)} \int_B w^{1-p'} d\mu(y) \right]^{p-1} < \infty,$$

where the supremum is taken over all balls B contained in \mathcal{X}. When $p = 1$, a weight w is said to belong to the Muckenhoupt class A_1 if

$$[w]_{A_1} := \sup_B \left[\frac{1}{\mu(B)} \int_B w(y) d\mu(y) \right] \left[\inf_B w(x) \right]^{-1} < \infty.$$

Set

$$A_\infty := \bigcup_{1 \leq p < \infty} A_p.$$

For more details on the A_p weights on spaces of homogeneous type, see for instance [95]; for the Muckenhoupt class on \mathbb{R}^n, see for example [41, 36].

As part of results in this section we extend the multiple-weight Calderón–Zygmund theory of [72] to the context of spaces of homogeneous type. Multiple-weight norm inequalities for maximal truncated operators of multilinear singular integrals are also obtained.

4.1. Multiple weights. In the context of RD-spaces, motivated by [72], we consider the following multiple weights.

Definition 4.1. For m exponents p_1, \ldots, p_m, write p for the exponent defined by

$$\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}.$$
and $\vec{P} := (p_1, \ldots, p_m)$.

Definition 4.2. Let $1 \leq p_1, \ldots, p_m < \infty$ and $p \in (0, \infty)$ such that $\frac{1}{p} = \sum_{j=1}^{m} \frac{1}{p_j}$. Suppose that ν is a weight and $\vec{w} := (w_1, \ldots, w_m)$ with every w_j a weight. We say that $(\nu; \vec{w})$ satisfies the $A_\vec{P}$ condition if

$$\sup_B \left[\frac{1}{\mu(B)} \int_B \nu(x) \, d\mu(x) \right]^{1/p} \prod_{j=1}^{m} \left[\frac{1}{\mu(B)} \int_B w_j(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j'} < \infty, \quad (4.1)$$

where, when $p_j = 1$,

$$\left[\frac{1}{\mu(B)} \int_B w_j(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j'}$$

is understood as $(\inf_B w_j)^{-1}$. The expression in the left-hand side of (4.1) is referred to as the $A_\vec{P}$ constant of $(\nu; \vec{w})$ and denoted by $[(\nu; \vec{w})]_{A_\vec{P}}$.

In particular, if ν is taken to be the weight

$$\nu_{\vec{w}} := \prod_{j=1}^{m} w_j^{p/p_j}, \quad (4.2)$$

then $(\nu_{\vec{w}}; \vec{w})$ and $[(\nu_{\vec{w}}; \vec{w})]_{A_\vec{P}}$ are respectively written by \vec{w} and $[\vec{w}]_{A_\vec{P}}$.

Proposition 4.3. Let $1 \leq p_1, \ldots, p_m < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$ and $\vec{P} = (p_1, \ldots, p_m)$. For any given weights $\vec{w} := (w_1, \ldots, w_m)$ and $\nu_{\vec{w}}$ as in (4.2), the following hold true:

(i) If every $w_j \in A_{p_j}$, then $\vec{w} \in A_{\vec{P}}$ and

$$[\vec{w}]_{A_{\vec{P}}} \leq \prod_{j=1}^{m} [w_j]_{A_{p_j}}^{1/p_j}. \quad (4.2)$$

(ii) If $\vec{w} \in A_{\vec{P}}$, then $\nu_{\vec{w}} \in A_{mp}$ and $w_j^{1-p_j'} \in A_{mp_j'}$ for all $j \in \{1, \ldots, m\}$, where the condition $w_j^{1-p_j'} \in A_{mp_j'}$ in the case $p_j = 1$ is understood as $w_j^{1/m} \in A_1$. Moreover,

$$[\nu_{\vec{w}}]_{A_{mp}} \leq [\vec{w}]_{A_{\vec{P}}}^{p_j'} \quad \text{if } p_j > 1 \quad \text{or} \quad [w_j^{1/m}]_{A_1} \leq [\vec{w}]_{A_{\vec{P}}}^{1/m} \quad \text{if } p_j = 1.$$

(iii) If $\nu_{\vec{w}} \in A_{mp}$ and $w_j^{1-p_j'} \in A_{mp_j'}$ for all $j \in \{1, \ldots, m\}$, then $\vec{w} \in A_{\vec{P}}$ and

$$[\vec{w}]_{A_{\vec{P}}} \leq [\nu_{\vec{w}}]_{A_{mp}} \left\{ \prod_{1 \leq j \leq m, p_j > 1} [w_j^{-p_j'/p_j}]_{A_{mp_j'}}^{1/p_j'} \right\} \left\{ \prod_{1 \leq j \leq m, p_j = 1} [w_j^{1/m}]_{A_1} \right\},$$

where the condition $w_j^{1-p_j'} \in A_{mp_j'}$ in the case $p_j = 1$ is understood as $w_j^{1/m} \in A_1$.

Proof. To see (i), if each $w_j \in A_{p_j}$, then by $\frac{1}{p} = \sum_{j=1}^{m} \frac{1}{p_j}$ and Hölder’s inequality, we have

$$[\vec{w}]_{A_{\vec{P}}} = \sup_B \left[\frac{1}{\mu(B)} \int_B \nu_{\vec{w}}(x) \, d\mu(x) \right]^{1/p} \prod_{j=1}^{m} \left[\frac{1}{\mu(B)} \int_B w_j(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j'}$$

and

$$\vec{w} := (w_1, \ldots, w_m).$$
4.2. Weighted estimates for the multi-sublinear maximal function

\[
\leq \sup_B \prod_{j=1}^m \left[\frac{1}{\mu(B)} \int_B w_j(x) d\mu(x) \right]^{1/p_j} \left[\frac{1}{\mu(B)} \int_B w_j(x)^{1-p_j'} d\mu(x) \right]^{1/p_j'} \\
\leq \prod_{j=1}^m [w_j]_{A_{p_j}}.
\]

The proofs for (ii) and (iii) were indeed given in [72, Theorem 3.6], the details being omitted.

4.2. Weighted estimates for the multi-sublinear maximal function. Given \(\vec{f} = (f_1, \ldots, f_m) \) with every \(f_i \) being a locally integrable function on \(X \), we define the maximal operator \(M \) by

\[
M(\vec{f})(x) := \sup_{B \ni x} \prod_{i=1}^m \frac{1}{\mu(B)} \int_B |f_i(y_i)| d\mu(y_i), \quad \forall x \in \mathbb{R}^n,
\]

where the supremum is taken over all balls \(B \subset X \) containing \(x \).

We use the following notation. For \(p \in (0, \infty] \) and weight \(w \in A_\infty \), denote by \(L^p(w) \) the collection of all functions \(f \) satisfying that

\[
\|f\|_{L^p(w)} := \left[\int_X |f(y)|^p w(y) d\mu(y) \right]^{1/p} < \infty.
\]

Analogously, we denote by \(L^{p, \infty}(w) \) the weak space with norm

\[
\|f\|_{L^{p, \infty}(w)} := \sup_{t>0} t \left[w(\{x \in X : |f(x)| > t\}) \right]^\frac{1}{p},
\]

where

\[
w(E) := \int_E w(x) d\mu(x)
\]

for all sets \(E \) contained in \(X \).

Theorem 4.4. Let \(1 \leq p_1, \ldots, p_m < \infty \) and \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m} \). Suppose that \(\nu \) and all \(w_j, j \in \{1, \ldots, m\} \), are weights. Then \((\nu; \vec{w}) \in A_B \) if and only if the inequality

\[
\|M(\vec{f})\|_{L^{p, \infty}(\nu)} \leq C \prod_{j=1}^m \|f_j\|_{L^{p_j}(w_j)}
\]

holds true for all \(\vec{f} = (f_1, \ldots, f_m) \in L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m) \).

Proof. Suppose that (4.3) holds. Let

\[
\|M\| := \|M\|_{L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m) \to L^{p, \infty}(\nu)}.
\]

Then, for any \(\vec{f} \in L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m) \), by the differentiation theorem for integrals on \((X, d, \mu) \), we see that, for all \(\epsilon \in (0, 1) \),

\[
\left[\int_B \nu(x) d\mu(x) \right]^{1/p} \prod_{j=1}^m |f_j|_B \\
\leq \left\{ \nu \left(\{x \in B : M(f_1 \chi_B, \ldots, f_m \chi_B)(x) > \epsilon \prod_{j=1}^m |f_j|_B\} \right) \right\}^{1/p} \prod_{j=1}^m |f_j|_B
\]
where
\[
|f_j|_B := \frac{1}{\mu(B)} \int_B |f_j(y)| \, d\mu(y)
\]
for all \(j \in \{1, \ldots, m\}\), and \(\nu\) denotes the measure given by
\[
\nu(E) := \int_E \nu(z) \, d\mu(z)
\]
for all sets \(E \subset \mathcal{X}\).

For \(j \in \{1, \ldots, m\}\), we set \(f_j := w_j^{1-p_j'}\) if \(p_j > 1\) and \(f_j := \chi_{S_j,\eta}\) if \(p_j = 1\), where
\[
S_{j,\eta} := \{x \in B : w_j(x) < \eta + \inf_B w_j\},
\]
\(\eta\) is a positive sufficient small constant, and \(\inf\) is the essential infimum. Then, by (4.4), we see that
\[
\left[\int_B \nu(x) \, d\mu(x) \right]^{1/p} \prod_{\{j : p_j = 1\}} \frac{\mu(S_{j,\eta})}{\mu(B)} \prod_{\{j : p_j > 1\}} \frac{1}{\mu(B)} \int_B w_j(x)^{1-p_j'} \, d\mu(x)
\]
\[
\leq \frac{1}{\epsilon} ||\mathcal{M}|| \prod_{\{j : p_j = 1\}} \int_{S_{j,\eta}} w_j(x) \, d\mu(x) \prod_{\{j : p_j > 1\}} \left[\int_B w_j(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j}
\]
\[
\leq \frac{1}{\epsilon} ||\mathcal{M}|| \prod_{\{j : p_j = 1\}} \mu(S_{j,\eta})(\eta + \inf_B w_j) \prod_{\{j : p_j > 1\}} \left[\int_B w_j(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j}.
\]
Letting \(\epsilon \to 1\) and \(\eta \to 0\), we then conclude that \((\nu; \vec{w}) \in A_{\mathcal{B}}\) and
\[
[(\nu; \vec{w})]_{A_{\mathcal{B}}} \leq ||\mathcal{M}||.
\]

Now assume that \((\nu; \vec{w}) \in A_{\mathcal{B}}\), that is, \((\nu; \vec{w})\) satisfies (4.1). Applying Hölder’s inequality, we obtain
\[
\mathcal{M}(\vec{f})(x) \leq \sup_{B \ni x} \prod_{j=1}^m \left[\frac{1}{\mu(B)} \int_B |f_j(y)|^{p_j} w_j(y) \, d\mu(y) \right]^{1/p_j} \prod_{j=1}^m \left[\frac{1}{\mu(B)} \int_B w_j(y)^{-p_j'/p_j} \, d\mu(y) \right]^{1/p_j'}
\]
\[
\leq \left[(\nu; \vec{w})\right]_{A_{\mathcal{B}}} \prod_{j=1}^m [M_{\nu}(|f_j|^{p_j} w_j/\nu)(x)]^{1/p_j}.
\]

Here we remark that, when \(p_j = 1\), to obtain the second inequality, we just need to replace
\[
\left[\frac{1}{\mu(B)} \int_B w_j(y)^{-p_j'/p_j} \, d\mu(y) \right]^{1/p_j'}
\]
by \((\inf_B w_j)^{-1}\). The operator \(\mathcal{M}_{\nu}\) denotes the weighted Hardy–Littlewood maximal function, namely,
\[
\mathcal{M}_{\nu}(f)(x) := \sup_{B \ni x} \frac{1}{\nu(B)} \int_B f(y) \, d\mu(y) \int_B |f(y)| \nu(y) \, d\mu(y), \quad \forall x \in \mathcal{X},
\]
where the supremum is taking over all balls B of \mathcal{X} containing x. Since ν is an A_∞ weight, it follows that $\nu(x)d\mu(x)$ is a doubling measure (see \cite{95} p. 8, Lemma 12) and \mathcal{M}_ν is bounded from $L^1(\nu)$ to $L^{1,\infty}(\nu)$. From this and Hölder’s inequality for weak spaces (see \cite{40} p. 10, Exercise 1.1.2), we deduce that

$$
\|\mathcal{M}(\tilde{f})\|_{L^{p,\infty}(\nu)} \leq \left[(\nu; \tilde{w}) A_\beta \right] \frac{1}{p} \prod_{j=1}^{m} \frac{1}{p_j} \left\| M_\nu(\langle f_j \rangle_{p_j \nu})^{1/p_j} \right\|_{L^{p_j,\infty}(\nu)} =: \left[(\nu; \tilde{w}) A_\beta \right] \frac{1}{p} \prod_{j=1}^{m} \frac{1}{p_j} \left\| f_j \right\|_{L^{p_j}(w_j)}.
$$

This concludes the proof of Theorem 4.4.

The following theorem shows that hypothesis $(\nu; \tilde{w}) \in A_\beta$ is not strong enough to imply the boundedness of \mathcal{M} from $\prod_{j=1}^{m} L^{p_j}(w_j)$ to $L^p(\nu)$. The proof here is partly motivated by the work of Pérez \cite{88}.

Theorem 4.5. For $1 < p_1, \ldots, p_m < \infty$ and $0 < p < \infty$ such that $\frac{1}{p} = \sum_{j=1}^{m} \frac{1}{p_j}$, the assumption $(\nu, \tilde{w}) \in A_\beta$ does not imply that \mathcal{M} is bounded from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^p(\nu)$.

Proof. We prove the conclusion by contradiction. Assume that, for all weights ν and $\{w_j\}_{j=1}^{m}$ satisfying

$$
\sup_{B \subset \mathcal{X}} \left\{ \frac{1}{\mu(B)} \int_B \nu(x) \, d\mu(x) \right\}^{1/p} \prod_{j=1}^{m} \left\{ \frac{1}{\mu(B)} \int_B w_j(x)^{-p_j/p_j} \, d\mu(x) \right\}^{1/p_j} =: K < \infty, \quad (4.5)
$$

and for all $f_j \in L^{p_j}(w_j)$ with $j \in \{1, \ldots, m\}$, we have

$$
\int_{\mathcal{X}} \left[\mathcal{M}\tilde{f}(x) \right]^p \nu(x) \, d\mu(x) \lesssim \prod_{j=1}^{m} \left(\int_{\mathcal{X}} |f_j(x)|^{p_j} w_j(x) \, d\mu(x) \right)^{p/p_j}. \quad (4.6)
$$

Fix $x_0 \in \mathcal{X}$. For any $1 \leq j \leq m$ and $N \in \mathbb{N}$, set

$$
w_j^N := \chi_{B(x_0,1)} + N\chi_{\mathbb{R}^n \setminus B(x_0,1)}
$$

and

$$
\nu_N := \prod_{j=1}^{m} \left[\mathcal{M}(w_j^N)^{-p_j/p_j} \right]^{-p/p_j}.
$$

Obviously, all ν_N and w_j^N are weights, and $(\nu_N; \tilde{w}_N)$ with $\tilde{w}_N := (w_1^N, \ldots, w_m^N)$ satisfies (4.5) with constant $K = 1$. If we now choose $f_j := \chi_{B(x_0,1)}$, then (4.6) becomes

$$
\int_{\mathcal{X}} \left[\mathcal{M}(\chi_{B(x_0,1)}(x)) \right]^{mp} \prod_{j=1}^{m} \sup_{B \subset \mathcal{X}, B \ni x} \left\{ \frac{1}{\mu(B)} \int_R w_j^N(y)^{-p_j/p_j} \, d\mu(y) \right\}^{p/p_j} \, d\mu(x) \lesssim \mu(B(x_0,1)). \quad (4.7)
$$
Obviously, the left side of (4.7) is not less than
\[
\int_{\mathcal{X}} \frac{[\mathcal{M}(\chi_{B(x_0,1)})(x)]^{m_p}}{\mathcal{M}(\chi_{B(x_0,1)})(x)} \frac{1}{\sum_{j=1}^{m_p} \frac{1}{r_j^p}} \, d\mu(x) = \int_{\mathcal{X}} \mathcal{M}(\chi_{B(x_0,1)})(x) \, d\mu(x)
\]
\[
\geq \int_{d(x,x_0)\geq 10} \sup_{B \subset \mathcal{X}, B \ni x} \frac{\mu(B \cap B(x_0,1))}{\mu(B)} \, d\mu(x)
\]
\[
\geq \int_{d(x,x_0)\geq 10} \frac{\mu(B(x_0,1))}{\mu(B(x_0,2d(x,x_0)))} \, d\mu(x)
\]
\[
= \infty;
\]
but the right hand side of (4.7) is finite. This contradiction implies that (4.6) fails. This proves Theorem 4.5.

To obtain the strong boundedness of \(\mathcal{M} \), we assume that \((\nu; \vec{w})\) satisfies some power bump conditions as in (4.8) below. For \(m = 1 \) and \(\mathcal{X} = \mathbb{R}^n \), this type of power bump conditions appears for the first time in the work of Neugebauer \[87\] but with an extra power bump in the weight \(\nu \). Pérez \[88\] then removed the power from the weight \(\nu \) and replaced the power bump in \(w \) by a logarithmic bump or a more general type of bump (see also \[89, 90\] and the book \[24\]). In \[45\], it was proved that, if \((\nu, \vec{w})\) satisfies a certain power bump condition, which is defined by replacing balls with rectangles of \(\mathbb{R}^n \) in (4.8), then the multilinear strong maximal function satisfies the corresponding strong type multipule weighted estimates. Also, Moen \[83\] used such bump conditions to study weighted inequalities for multilinear fractional integral operators.

Theorem 4.6. Let \(1 < p_1, \ldots, p_m < \infty \) and \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m} \). Suppose that \(\nu \) and all \(w_j, j \in \{1, \ldots, m\} \), are weights. If, for some \(r \in (1, \infty) \),
\[
[(\nu; \vec{w})]_{A_{p,r}} := \sup_{\text{balls } B \subset \mathcal{X}} \left[\frac{1}{\mu(B)} \int_B \nu \, d\mu \right]^{1/p} \prod_{j=1}^{m} \left[\frac{1}{\mu(B)} \int_B w_j^{-r p_j/p_j} \, d\mu \right]^{r p_j/p_j}
\] (4.8)
is finite, then there exists a positive constant \(C \) such that, for all \(\vec{f} \) with each \(f_j \in L^{p_j}(w_j) \),
\[
\| \mathcal{M}(\vec{f}) \|_{L^p(\nu)} \leq C[(\nu; \vec{w})]_{A_{p,r}} \prod_{j=1}^{m} \| f_j \|_{L^{p_j}(w_j)}.
\] (4.9)

Proof. For any \(N \in \mathbb{N} \) and \(x \in \mathcal{X} \), set
\[
\mathcal{M}_N(\vec{f})(x) := \sup_{B \ni x, r_B \leq N} \prod_{j=1}^{m} \frac{1}{\mu(B)} \int_B \| f_j(y) \| \, d\mu(y),
\]
where, for any ball \(B \) of \(\mathcal{X} \), we use \(r_B \) to denote the radius of \(B \). It suffices to show that there exists a positive constant \(C \), independent of \(N \), such that, for all \(\vec{f} \) with each \(f_j \in L^{p_j}(w_j) \),
\[
\| \mathcal{M}_N(\vec{f}) \|_{L^p(\nu)} \lesssim [(\nu; \vec{w})]_{A_{p,r}} \prod_{j=1}^{m} \| f_j \|_{L^{p_j}(w_j)},
\] (4.10)
since once (4.10) holds then (4.9) follows by letting \(N \to \infty \) and applying the monotone convergence lemma. Moreover, by the density of \(L^\infty_b(\mathcal{X}) \) in \(L^{p_j}(w_j) \) for each \(j \in \).
\{1, \ldots, m\}, it suffices to show that (4.10) holds true under the assumption that each
\(f_j \in L_b^\infty(\mathcal{X})\).

To this end, we assume that every \(f_j \in L_b^\infty(\mathcal{X}).\) Fix \(N \in \mathbb{N}.\) For any \(k \in \mathbb{Z},\) we set

\[\Omega_k := \{x \in \mathcal{X} : \mathcal{M}_N(f)(x) > 2^k\}. \]

If \(x \in (\Omega_k \setminus \Omega_{k+1}),\) then there exists a ball \(B_x \subset \mathcal{X}\) satisfying that \(r_{B_x} \leq N, B_x \ni x\) and

\[2^{k+1} \geq \prod_{j=1}^m \frac{1}{\mu(B_x)} \int_{B_x} |f_j(y)| \, d\mu(y) > 2^k. \]

This implies that \(B_x \subset (\Omega_k \setminus \Omega_{k+1}),\) and hence

\[(\Omega_k \setminus \Omega_{k+1}) = \bigcup_{x \in \Omega_k \setminus \Omega_{k+1}} B_x. \]

Applying the basic covering lemma (see Lemma 2.6) to the family of balls,

\[\{B_x : x \in \Omega_k \setminus \Omega_{k+1}\}, \]

we obtain the existence of a sequence of pairwise disjoint balls \(\{B^k_\alpha\}_{\alpha \in I_k}\) contained in \(\Omega_k \setminus \Omega_{k+1}\) such that

\[(\Omega_k \setminus \Omega_{k+1}) \subset \bigcup_{\alpha \in I_k} 5B^k_\alpha \]

and

\[2^{k+1} \geq \prod_{j=1}^m \frac{1}{\mu(B^k_\alpha)} \int_{B^k_\alpha} |f_j(y)| \, d\mu(y) > 2^k. \]

Notice that balls in \(\{B^k_\alpha : k \in \mathbb{Z}, \alpha \in I_k\}\) are pairwise disjoint. Therefore,

\[
\|\mathcal{M}_N(f)\|_{L_p(\nu)}^p = \sum_{k \in \mathbb{Z}} \int_{\Omega_k \setminus \Omega_{k+1}} [\mathcal{M}(f)(x)]^p \nu(x) \, d\mu(x) \\
\leq \sum_{k \in \mathbb{Z}} 2^{p(k+1)} \nu(\Omega_k \setminus \Omega_{k+1}) \\
\leq 2^p \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \nu(5B^k_\alpha) \left[\prod_{j=1}^m \frac{1}{\mu(B^k_\alpha)} \int_{B^k_\alpha} |f_j(y)| \, d\mu(y) \right]^p.
\]

By the bump condition of \((\nu; \vec{w})\), Hölder’s inequality and the doubling property of \(\mu,\) we see that

\[
\nu(5B^k_\alpha) \left[\prod_{j=1}^m \frac{1}{\mu(B^k_\alpha)} \int_{B^k_\alpha} |f_j(y)| \, d\mu(y) \right]^p \\
\leq \nu(5B^k_\alpha) \prod_{j=1}^m \left[\frac{1}{\mu(B^k_\alpha)} \int_{B^k_\alpha} |f_j(y)|^{(rp_j')'} \left[w_j(y) \right]^{(r'p_j')/p_j} \, d\mu(y) \right]^{p/(rp_j')'} \\
\times \left[\frac{1}{\mu(B^k_\alpha)} \int_{B^k_\alpha} \left[w_j(y) \right]^{-rp_j'/p_j} \, d\mu(y) \right]^{p/(rp_j')}
\]

(4.11)
\[
\lesssim [(\nu; \tilde{w})]_{A_{p, r}, \mu(B^k_{\alpha})}^p \inf_{x \in B^k_{\alpha}} \prod_{j=1}^m \left[\mathcal{M}(|f_j|^{(rp_j)'} w_j^{(rp_j)'/p_j})(x) \right]^{p/(rp_j)'}.
\]

Inserting this into (4.11) and using the disjointness of \(\{B^k_{\alpha}\}_{k \in \mathbb{Z}, \alpha \in I_k} \) and Hölder’s inequality, we obtain
\[
\|\mathcal{M}(\tilde{f})\|_{L^p(\nu)} \lesssim [(\nu; \tilde{w})]_{A_{p, r}, \mu}^p \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \left[\mathcal{M}(|f_j|^{(rp_j)'} w_j^{(rp_j)'/p_j})(y) \right]^{p/(rp_j)'} d\mu(y)
\]
\[
\lesssim [(\nu; \tilde{w})]_{A_{p, r}, \mu}^p \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \left[\mathcal{M}(|f_j|^{(rp_j)'} w_j^{(rp_j)'/p_j})(y) \right]^{p/(rp_j)'} d\mu(y)
\]
\[
\lesssim [(\nu; \tilde{w})]_{A_{p, r}, \mu}^p \prod_{j=1}^m \left\{ \int_X \left[\mathcal{M}(|f_j|^{(rp_j)'} w_j^{(rp_j)'/p_j})(y) \right]^{p_j/(rp_j)'} d\mu(y) \right\}^{p/p_j}
\]
\[
\lesssim [(\nu; \tilde{w})]_{A_{p, r}, \mu}^p \prod_{j=1}^m \|f_j\|_{L^{p_j}(|w_j|)}^p,
\]
where, in the last step, we used \(p_j/(rp_j)' > 1 \) and the fact that \(\mathcal{M} \) is bounded on \(L^q(\mathcal{X}) \) for all \(q \in (1, \infty] \). This proves (4.10) and finishes the proof of (4.9). \(\blacksquare \)

As a corollary of Theorem 4.6 and Proposition 4.3(ii) the following conclusion holds.

Theorem 4.7. Let \(\vec{P} := (p_1, \ldots, p_m) \) with \(1 < p_1, \ldots, p_m < \infty \) and \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m} \). Then \(\vec{w} := (w_1, \ldots, w_m) \in A_{\vec{P}} \) if and only if there exists a positive constant \(C \) such that, for all \(\vec{f} := (f_1, \ldots, f_m) \) with each \(f_j \in L^1_{\text{loc}}(\mathcal{X}) \),
\[
\|\mathcal{M}(\vec{f})\|_{L^p(\nu_{\vec{w}})} \leq C \prod_{j=1}^m \|f_j\|_{L^{p_j}(|w_j|)}.
\] \hspace{1cm} (4.12)

Proof. The necessity follows from Theorem 4.4, so it remains to prove the sufficiency. Assume that \(\vec{w} \in A_{\vec{P}} \). By Proposition 4.3(ii), each \(w_j^{-p_j/p_j} \) is in the Muckenhoupt class \(A_{mp_j} \), we thus apply the reverse Hölder inequality, that is, there exists \(r_j > 1 \) such that, for all \(r \in [1, r_j] \) and all balls \(B \),
\[
\left[\frac{1}{\mu(B)} \int_B w_j(x)^{-r p_j/p_j} d\mu(x) \right]^{1/r} \lesssim \frac{1}{\mu(B)} \int_B w_j(x)^{-r p_j/p_j} d\mu(x).
\]
This implies that \((\nu_{\vec{w}}, \vec{w})\) satisfies the bump condition (4.8) with respect to \(r \). Therefore, (4.12) is a consequence of Theorem 4.6. \(\blacksquare \)

We conclude this subsection by showing that \(\prod_{j=1}^m \mathcal{M}(f_j) \) satisfies weighted weak-type estimates by means of the mixed weak-type inequalities. By the Calderón–Zygmund decomposition and the Marcinkiewicz interpolation, we proceed as the classical arguments (see [28, p. 37]) and conclude that, for any non-negative measurable function \(w \) and \(p \in (1, \infty) \), there exists a positive constant \(C \), depending only on \(p \) and the doubling constant \(C_1 \), such that, for all \(f \in L^p(\mathcal{M}(w), d\mu) \),
\[
\int_\mathcal{X} \mathcal{M}(f)(x)^p \, d\mu(x) \leq C \int_\mathcal{X} |f(x)|^p \mathcal{M}(w)(x) \, d\mu(x)
\] \hspace{1cm} (4.13)
and, for all \(f \in L^1(w, d\mu) \),
\[
\int_{\{x \in X : \mathcal{M}(f)(x) > \lambda\}} w(x) \, d\mu(x) \leq \frac{C}{\lambda} \int_X |f(x)| \mathcal{M}(w)(x) \, d\mu(x), \quad \forall \lambda > 0.
\]
Applying \((4.13) \) and Hölder’s inequality, we see that, for \(1 < p_1, \ldots, p_m < \infty \) and \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m} \), there exists a positive constant \(C \) such that, for all \(\mathbf{f} = (f_1, \ldots, f_m) \) in the \(m \)-fold product \(L^{p_1}(\mathcal{M}(w_1), d\mu) \times \cdots \times L^{p_m}(\mathcal{M}(w_m), d\mu) \),
\[
\left\| \prod_{j=1}^m \mathcal{M}(f_j) \right\|_{L^{p/(\nu_{\mathbf{w}})}} \leq C \prod_{j=1}^m \| \mathcal{M}(f_j) \|_{L^{p_j}(w_j)} \leq C \prod_{j=1}^m \| f_j \|_{L^{p_j}(\mathcal{M}(w_j), d\mu)},
\]
where \(\nu_{\mathbf{w}} := \prod_{j=1}^m w_j^{p/p_j} \). If there exists some \(p_j = 1 \), we have the following weak-type conclusion for the operator \(\mathcal{M} \) by means of Theorem 4.4.

Corollary 4.8. Let \(1 \leq p_1, \ldots, p_m < \infty \) and \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m} \). Then there exists a constant \(C > 0 \) such that, for all \((f_1, \ldots, f_m) \in L^{p_1}(\mathcal{M}(w_1), d\mu) \times \cdots \times L^{p_m}(\mathcal{M}(w_m), d\mu) \),
\[
\left\| \prod_{j=1}^m \mathcal{M}(f_j) \right\|_{L^{p/(\nu_{\mathbf{w}})}} \leq C \prod_{j=1}^m \| f_j \|_{L^{p_j}(\mathcal{M}(w_j), d\mu)},
\]
where \(\nu_{\mathbf{w}} := \prod_{j=1}^m w_j^{p/p_j} \).

Proof. By Hölder’s inequality, we have
\[
\sup_B \left[\frac{1}{\mu(B)} \int_B \nu_{\mathbf{w}}(x) \, d\mu(x) \right]^{1/p} \prod_{j=1}^m \left[\frac{1}{\mu(B)} \int_B \mathcal{M}(w_j)(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j'} \leq \prod_{j=1}^m \left[\frac{1}{\mu(B)} \int_B w_j(x) \, d\mu(x) \right]^{1/p} \left[\frac{1}{\mu(B)} \int_B \mathcal{M}(w_j)(x)^{1-p_j'} \, d\mu(x) \right]^{1/p_j'} \leq \prod_{j=1}^m \left[\inf_{x \in B} \mathcal{M}(w_j)(x) \right]^{1/p_j} \left[\sup_{x \in B} \mathcal{M}(w_j)(x)^{1-p_j'} \right]^{1/p_j'} \leq 1
\]
with a usual modification made if \(p_j = 1 \). This, together with Theorem 4.4, implies the desired conclusion of Proposition 4.8.

4.3. Weighted estimates for multilinear Calderón–Zygmund operators

In this subsection and the following two subsections, we assume that \(T \) is an \(m \)-linear operator with a kernel \(K \in \text{Ker}(m, C_K, \delta) \) for some \(C_K > 0 \) and \(\delta \in (0, 1) \), and that \(T \) maps \(L^{q_1}(X) \times \cdots \times L^{q_m}(X) \) to \(L^q(X) \) with norm \(\| T \|_{L^{q_1}(X) \times \cdots \times L^{q_m}(X) \to L^q(X)} \), where \(1 \leq q_1, \ldots, q_m < \infty \) and \(\frac{1}{q} = \frac{1}{q_1} + \cdots + \frac{1}{q_m} \). Based on Theorem 3.3, \(T \) is bounded from the \(m \)-fold product space \(L^1(X) \times \cdots \times L^1(X) \) to \(L^{1/m, \infty}(X) \).

Our main goal in this subsection is to prove the multiple-weight boundedness of the multilinear Calderón–Zygmund operator \(T \). This indeed follows from a Cotlar-type inequality (see Theorem 4.12 below) and the Fefferman-Stein type inequalities related to sharp maximal functions (see Lemma 4.11 below).
DEFINITION 4.9. For any given locally integrable function \(f \) on \((\mathcal{X}, d, \mu) \) and for all \(x \in \mathcal{X} \), the sharp maximal function \(\mathcal{M}^\# f(x) \) is defined by

\[
\mathcal{M}^\# f(x) := \sup_{B \subset \mathcal{X}, B \ni x} \frac{1}{\mu(B)} \int_B |f(y) - f_B| \, d\mu(y),
\]

where above and in what follows

\[
f_B = \frac{1}{\mu(B)} \int_B f(y) \, d\mu(y).
\]

Moreover, for any \(\delta \in (0, \infty) \), set

\[
\mathcal{M}^\delta \psi f(x) = \{ \mathcal{M}^\# (f^\delta)(x) \}^{1/\delta}, \quad x \in \mathcal{X}.
\]

REMARK 4.10. Observe that, for \(\delta \in (0, \infty) \), by the inequality

\[
\min\{1, 2^{\delta-1}\} \leq (a + b)^\delta \leq \max\{1, 2^{\delta-1}\} (a + b)^\delta, \quad a > 0, \ b > 0,
\]

we have

\[
\mathcal{M}^\delta \psi f(x) \sim \sup_{B \ni x} \inf_{c \in \mathbb{C}} \left[\frac{1}{\mu(B)} \int_B |f(y)|^\delta - |c|^\delta \, d\mu(y) \right]^{1/\delta}.
\]

The following lemma serves as an analog of the classical Fefferman-Stein inequalities in [31] [18]. It should be remarked that, in the setting of spaces of homogeneous type, Martell [79, Corollary 4.3] proved a kind of the Fefferman-Stein inequality for another sharp maximal function defined via certain approximations of the identity of Duong and McIntosh [30]. Our proof here invokes some ideas from [79].

LEMMA 4.11. Let \(0 < p_0 \leq p < \infty \) and \(w \in A_\infty \). Then, there exists a positive constant \(C := C([w]_{A_\infty}, C_1, p) \) such that, for all \(f \in L^1\text{loc} (\mathcal{X}) \) satisfying that \(Mf \in L^{p_0, \infty}(w) \),

(i) if \(p_0 < p \) and \(\mu(\mathcal{X}) = \infty \), then

\[
\|Mf\|_{L^p(w)} \leq C\|\mathcal{M}^\# (f)\|_{L^p(w)};
\]

(ii) if \(p_0 \leq p \) and \(\mu(\mathcal{X}) = \infty \), then

\[
\|Mf\|_{L^{p, \infty}(w)} \leq C\|\mathcal{M}^\# (f)\|_{L^{p, \infty}(w)};
\]

(iii) if \(p_0 < p \) and \(\mu(\mathcal{X}) < \infty \), then

\[
\|Mf\|_{L^p(w)} \leq C\|f\|_{L^1(\mathcal{X})} + \|\mathcal{M}^\# (f)\|_{L^p(w)};
\]

(iv) if \(p_0 \leq p \) and \(\mu(\mathcal{X}) < \infty \), then

\[
\|Mf\|_{L^{p, \infty}(w)} \leq C\|f\|_{L^1(\mathcal{X})} + \|\mathcal{M}^\# (f)\|_{L^{p, \infty}(w)}.
\]

Proof. Using the Calderón–Zygmund decomposition, we obtain the “good-\(\lambda \)” inequality: for any given \(\gamma > 0 \), there exist positive constants \(\theta_0 \) and \(\tilde{C} \), depending only on \(C_1, \gamma \) and \(w \), such that, for all \(f \in L^1(\mathcal{X}) \) and \(\lambda \gg \|f\|_{L^1(\mathcal{X})}/\mu(\mathcal{X}) \),

\[
\nu(\{x \in \mathcal{X} : Mf(x) > 2C^3_1\gamma, \mathcal{M}^\# f(x) \leq \gamma \lambda\})
\leq \tilde{C} C^3_1\gamma \nu(\{x \in \mathcal{X} : Mf(x) > \lambda\}),
\]

(4.14)

where we recall that, for any set \(E \subset \mathcal{X} \),

\[
w(E) = \int_E w(x) \, d\mu(x).
\]
To prove (4.14), for every \(f \in L^1(\mathcal{X}) \) and \(\lambda > \| f \|_{L^1(\mathcal{X})} / \mu(\mathcal{X}) \), we set
\[
\Omega_\lambda := \{ x \in \mathcal{X} : \mathcal{M} f(x) > \lambda \}.
\]
Then, \(\Omega_\lambda \) is an open proper set of \(\mathcal{X} \) with finite measure. Applying Lemma 2.8 with \(\Omega = \Omega_\lambda \) and the constant \(c \) therein equals to 10, we obtain a sequence \(\{ x_k \}_k \subset \mathcal{X} \) and \(\{ r_k \}_k := \{ \text{dist}(x_k, \Omega^c)/20 \}_k \) such that
\[
\Omega_\lambda := \bigcup_k B(x_k, r_k),
\]
\(\{ B(x_k, r_k/4) \}_k \) are pairwise disjoint, \(B(x_k, 30r_k) \cap \Omega_\lambda \neq \emptyset \) and \(\{ B(x_k, r_k) \}_k \) has the finite overlap property. This implies that the proof for (4.14) can be reduced to the following estimate:
\[
w(\{ x \in B(x_k, r_k) : \mathcal{M} f(x) > 2C_1^3 \lambda, \mathcal{M}^2 f(x) \leq \gamma \lambda \}) \lesssim \gamma^{\theta_0} w(B(x_k, r_k)), \quad \forall \ k.
\]
To prove this, it suffices to show that, for all \(k \),
\[
\mu(\{ x \in B(x_k, r_k) : \mathcal{M} f(x) > 2C_1^3 \lambda, \mathcal{M}^2 f(x) \leq \gamma \lambda \}) \lesssim \gamma \mu(B(x_k, r_k)). \tag{4.15}
\]
Indeed, the hypothesis \(w \in A_\infty \) implies the existence of constants \(C_0 \geq 1 \) and \(\theta_0 > 0 \) such that
\[
\frac{w(E)}{w(B)} \leq C_0 \left[\frac{\mu(E)}{\mu(B)} \right]^{\theta_0}
\]
for every ball \(B \) and every measurable set \(E \subset B \).

Set \(B_k := B(x_k, r_k) \). We may assume that there exists \(x_0 \in B_k \) such that
\[
\mathcal{M}^2 f(x_0) \leq \gamma \lambda;
\]
otherwise, (4.15) trivially holds true. We may assume that \(B(x_k, 30r_k) \cap \Omega_\lambda \neq \emptyset \) contains certain point \(y_k \), then
\[
|f|_{30B_k} \leq \mathcal{M} f(y_k) < \lambda
\]
and hence
\[
\mathcal{M}(\{ f \} \chi_{32B_k}) \leq |f|_{32B_k} < \lambda.
\]
For every \(x \in B_k \) satisfying \(\mathcal{M} f(x) > 2C_1^3 \lambda \), there exists a ball \(B \ni x \) with radius \(r_B \) such that
\[
2C_1^3 \lambda < \frac{1}{\mu(B)} \int_B |f(y)| \, d\mu(y) \leq C_1^2 \frac{1}{\mu(B(x, 2r_B))} \int_{B(x, 2r_B)} |f(y)| \, d\mu(y),
\]
which, combined with \(\mathcal{M} f(y_k) < \lambda \), gives that \(y_k \notin B(x, 2r_B) \). Thus, \(2r_B < 31r_k \) and therefore \(B(x, 2r_B) \subset 32B_k \); moreover, \(\mathcal{M}(\{ f \} \chi_{32B_k})(x) > 2C_1 \lambda \) and
\[
\mathcal{M}(|f| - |f|_{32B_k}) \chi_{32B_k})(x) \geq \mathcal{M}(\{ f \} \chi_{32B_k})(x) - \mathcal{M}(\{ f \} \chi_{32B_k})(x) > C_1 \lambda.
\]
Summarizing all these we conclude that the left hand side of (4.15) is bounded by
\[
\mu(\{ x \in B(x_k, r_k) : \mathcal{M}(\{ f | - |f|_{32B_k}) \chi_{32B_k})(x) > C_1 \lambda \}) \leq \frac{\| \mathcal{M} \|_{L^1(\mathcal{X}) \to L^{1, \infty}(\mathcal{X})}}{C_1 \lambda} \int_{32B_k} \| f(y) \| - |f|_{32B_k} \, d\mu(y) \lesssim \mu(32B_k) \mathcal{M}^2 f(x_0) \lesssim \mu(B_k) \gamma.
\]
This proves (4.15) and hence (4.14).
4. Weighted multilinear Calderón–Zygmund theory

Let $A := 2C^3$. To prove (i), for each $N \in \mathbb{N}$, we set

$$H_N := 2^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(f)(x) > 2\lambda\}) \, d\lambda.$$

Fix $x_0 \in \mathcal{X}$ and $R > 0$. Write $f = g_R + h_R$, where $g_R := f\chi_{B(x_0,R)}$ and $h_R := f\chi_{B(x_0,R)^c}$. Then,

$$H_N \leq 2^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(g_R)(x) > \lambda\}) \, d\lambda$$

$$+ 2^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(h_R)(x) > \lambda\}) \, d\lambda$$

$$:= H_{N,R} + \tilde{H}_{N,R}.$$

We claim that

$$\lim_{R \to \infty} \tilde{H}_{N,R} = 0. \quad (4.16)$$

Assume for the moment that (4.16) holds true. Since $p > p_0$ and $\mathcal{M}(f) \in L^{p_0,\infty}(w)$, it follows that $\mathcal{M}(g_R) \in L^{p_0,\infty}(w)$ and hence

$$H_{N,R} \leq 2^p \int_0^N p\lambda^{p-1}\lambda^{-p_0}\|\mathcal{M}(g_R)\|_{L^{p_0,\infty}(w)}^{p_0} \, d\lambda < \infty.$$

By this fact and (4.16), one finds that H_N is finite for large R. Since $g_R \in L^1(\mathcal{X})$ and it has bounded support, we apply (4.14) to obtain

$$H_{N,R} = (2A)^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(g_R)(x) > A\lambda\}) \, d\lambda$$

$$\leq (2A)^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(g_R)(x) > A\lambda, \mathcal{M}^2(g_R)(x) \leq \gamma\lambda\}) \, d\lambda$$

$$+ (2A)^p \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}^2(g_R)(x) > \gamma\lambda\}) \, d\lambda$$

$$\leq \tilde{C}(2A)^p \gamma^{\theta_0} \int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(g_R)(x) > \lambda\}) \, d\lambda + (2A)^p\|\mathcal{M}^2(f)\|_{L^p(w)}^p$$

$$\leq \tilde{C}(2A)^p \gamma^{\theta_0} H_N + (2A)^p\|\mathcal{M}^2(f)\|_{L^p(w)}^p. \quad (4.17)$$

Notice that (4.16) implies that $H_N = \lim_{R \to \infty} H_{N,R}$. Thus, in (4.17), by letting $R \to \infty$ and choosing γ small enough such that $\tilde{C}(2A)^p \gamma^{\theta_0} < \frac{1}{2}$, we conclude that $H_N \lesssim \|\mathcal{M}^2(f)\|_{L^p(w)}^p$. Then letting $N \to \infty$, we obtain (i).

Now it remains to prove (4.16). Since $\mathcal{M}(h_R)(x) \leq \mathcal{M}(f)(x)$ for all $x \in \mathcal{X}$, $p > p_0$ and $\mathcal{M}(f) \in L^{p_0,\infty}(w)$, then

$$\int_0^N p\lambda^{p-1}w(\{x \in \mathcal{X} : \mathcal{M}(h_R)(x) > \lambda\}) \, d\lambda < \infty.$$

Thus, (4.16) follows from the dominated convergence theorem and the fact that

$$\lim_{R \to \infty} \mathcal{M}(h_R)(x) = 0, \quad \forall x \in \mathcal{X}. \quad (4.18)$$
Thus, with \(\lambda \) Theorem\(\lambda \) holds true, observe that, for any fixed \(x \in X \), \(\mathcal{M}(h_R)(x) \) is decreasing as \(R \to \infty \). Assume that (4.18) fails, that is, there exists \(x_1 \in X \) such that
\[
\lim_{R \to \infty} \mathcal{M}(h_R)(x_1) = c_0 > 0.
\]
For \(x \in X \), set
\[
R_x := \max\{d(x_1, x_0), d(x, x_0)\} + 1.
\]
Then, \(x, x_1 \in B(x_0, R_x) \). For all \(x \in X \) and \(R > 4R_x \),
\[
c_0 \leq \mathcal{M}(h_R)(x_1) = \sup_{B \ni x_1} \frac{1}{\mu(B)} \int_{B \setminus B(x_0, R)} |f(y)| \, d\mu(y)
\leq C_1^2 \sup_{r>0} \frac{1}{\mu(B(x_1, r))} \int_{B(x_1, r) \setminus B(x_0, R)} |f(y)| \, d\mu(y)
= C_1^2 \sup_{r>3R_x} \frac{1}{\mu(B(x_1, r))} \int_{B(x_1, r) \setminus B(x_0, R)} |f(y)| \, d\mu(y)
\leq C_1^2 \mathcal{M}(f)(x).
\]
Thus, with \(\lambda_0 := c_0 C_1^{-2}/2 \), we have
\[
\|\mathcal{M}(f)\|^{p_0}_{L^{p_0, \infty}(w)} \geq \lambda_0^{p_0} w(\{x \in X : \mathcal{M}(f)(x) > \lambda_0\})
\geq \lim_{R \to \infty} \lambda_0^{p_0} w(\{x \in X : R > 4R_x\})
= \infty.
\]
This contradiction implies (4.18). Thus, (4.16) holds and we complete the proof of (i).

To prove (ii), for every \(N \in \mathbb{N} \), set \(A := 2C_1^2 \) and
\[
J_N := \sup_{0 < \lambda < AN} 2^p \lambda^p w_\mu(\{x \in X : \mathcal{M}(f)(x) > 2\lambda\}).
\]
Then we argue as the proof of (i) but using \(J_N \) instead of \(H_N \), the details being omitted.

The proofs for (iii) and (iv) are similar to those of (i) and (ii), the presence of an extra term \(\|f\|_{L^1(X)} \) is due to the fact that (4.14) holds only for \(\lambda > \|f\|_{L^1(X)}/\mu(X) \), the details being omitted. \(\blacksquare \)

Theorem 4.12. Let \(\gamma \in (0, 1/m) \). Then, there exists a constant \(C := C(\gamma, m, \delta, C_1) > 0 \) such that, for all \(\vec{f} \in L^{p_1}(X) \times \cdots \times L^{p_m}(X) \) with \(1 \leq p_1, \ldots, p_m < \infty \),
\[
\mathcal{M}_\gamma^2(T(\vec{f}))(x) \leq C(C_K + W) \mathcal{M}(\vec{f})(x),
\]
where
\[
W := \|T\|_{L^1(X) \times \cdots \times L^1(X) \to L^{1/m, \infty}(X)}.
\]

Proof. Let \(\gamma \in (0, 1/m) \). Fix a point \(x \in X \). To obtain (4.19), by Definition 4.9 and its remark, it suffices to prove that, for any ball \(B \) containing \(x \), there exists \(c_B \in \mathbb{C} \) such that
\[
\left[\frac{1}{\mu(B)} \int_B \left| T(\vec{f})(z) - c_B \right|^\gamma \, d\mu(z) \right]^{1/\gamma} \lesssim (C_K + W) \mathcal{M}(\vec{f})(x).
\]
Let \(z_B \) and \(r_B \) be the center and radius of \(B \), respectively. For \(j \in \{1, \ldots, m\} \), we set
where each term of \(\sum \) contains at least one \(\alpha_j \neq 0 \). Write \(\tilde{f}^0 = (f_1^0, \ldots, f_m^0) \) and set
\[
A := \prod_{j=1}^m \frac{1}{\mu(B)} \|f_j^0\|_{L^1(\mathcal{X})}.
\]
Since \(T \) is bounded from \(L^1(\mathcal{X}) \times \cdots \times L^1(\mathcal{X}) \) to \(L^{\frac{1}{m},\infty}(\mathcal{X}) \) with norm \(W \), we obtain
\[
\left[\frac{1}{\mu(B)} \int_B |T(\tilde{f}^0)(z)|^\gamma \, d\mu(z) \right]^\frac{1}{\gamma} \leq \left[\frac{1}{\mu(B)} \int_0^W \gamma t^{\gamma-1} \mu(\{x \in B : |T(\tilde{f}^0)(z)| > t\}) \, dt \right]^{\frac{1}{\gamma}} + \frac{1}{\mu(B)} \int_{WA}^\infty \gamma t^{\gamma-1} \mu(\{x \in B : |T(\tilde{f}^0)(z)| > t\}) \, dt
\]
\[
\lesssim (WA)^\gamma + W^{\frac{1}{m}} A^{\frac{1}{m}} \int_{WA}^\infty \gamma t^{\gamma-1-\frac{1}{m}} \, dt
\]
\[
\lesssim WA
\]
\[
\lesssim W\mathcal{M}(\tilde{f})(x).
\]

Without loss of generality, we may assume that \(\alpha_{j_1} = \cdots = \alpha_{j_\ell} = 0 \) for some \(\{j_1, \ldots, j_\ell\} \subset \{1, \ldots, m\} \) and \(0 \leq \ell < m \). By convention the set \(\{j_1, \ldots, j_\ell\} \) is empty if \(\ell = 0 \). Recall that \(x \in B \). Then for any \(z \in B \), by the regularity condition (3.2), we have
\[
|T(\tilde{f}_1^{\alpha_1} \cdots \tilde{f}_m^{\alpha_m})(z) - T(\tilde{f}_1^{\alpha_1} \cdots \tilde{f}_m^{\alpha_m})(x)|
\]
\[
\leq C_K \int_{\mathcal{X}} \left[\frac{d(z, x)}{\max_{1 \leq k \leq m} d(z, y_k)} \right]^{\delta} \prod_{j=1}^m |f_j^{\alpha_j}(y_j)| \prod_{k=1}^m \left[\frac{V(z, y_k)}{\sum_{k=1}^m V(z, y_k)} \right]^{\gamma} \, d\mu(y_1) \cdots d\mu(y_m)
\]
\[
\leq C_K \int_{(B^*)^\ell} |f_j^0(y_{j_1}) \cdots f_j^0(y_{j_\ell})| \times \int_{(\mathcal{X} \setminus B^*)^{m-\ell}} \left[\frac{2r_B}{\max_{1 \leq k \leq m} d(z, y_k)} \right]^{\delta} \prod_{j \notin \{j_1, \ldots, j_\ell\}} |f_j(y_j)| \prod_{k=1}^m \left[\frac{V(z, y_k)}{\sum_{k=1}^m V(z, y_k)} \right]^{\gamma} \, d\mu(y_1) \cdots d\mu(y_m)
\]
\[
\leq C_K \sum_{k=1}^\infty \int_{(B^*)^\ell} |f_j^0(y_{j_1}) \cdots f_j^0(y_{j_\ell})| \times \int_{(3^k B^*)^{m-\ell} \setminus (3^{k-1} B^*)^{m-\ell}} \left[\frac{2r_B}{\max_{1 \leq k \leq m} d(z, y_k)} \right]^{\delta} \prod_{j \notin \{j_1, \ldots, j_\ell\}} |f_j(y_j)| \prod_{k=1}^m \left[\frac{V(z, y_k)}{\sum_{k=1}^m V(z, y_k)} \right]^{\gamma} \, d\mu(y_1) \cdots d\mu(y_m)
\]
\[
\lesssim C_K \sum_{k=1}^\infty 3^{-k\delta} \int_{(B^*)^\ell} |f_j^0(y_{j_1}) \cdots f_j^0(y_{j_\ell})|}
\]
\[
\times \int_{(3^kB^*)_{m-\ell}} \prod_{j\notin \{j_1, \ldots, j_k\}} \frac{|f_j(y_j)|}{\mu(B(z, 3^kR))}^m \, d\mu(y_1) \cdots d\mu(y_m)
\]
\[
\lesssim C_K \sum_{k=1}^\infty 3^{-k\delta} \prod_{j=1}^m \frac{1}{\mu(3^kB^*)} \int_{3^kB^*} |f_j(y_j)| \, d\mu(y_j)
\]
\[
\lesssim C_K M(\tilde{f})(x).
\]

Set \(c_B\) in (4.20) by \(c_B := \sum' T(f_1^{\alpha_1} \cdots f_m^{\alpha_m})(x)\). Then from (4.21) it follows that the left hand side of (4.20) is bounded by
\[
2^{\frac{k-1}{2}} \left[\frac{1}{\mu(B)} \int_B |T(\tilde{f}^b)(z)| \, d\mu(z) \right]^\frac{1}{2}
\]
\[
+ 2^{\frac{k-1}{2}} \left[\frac{1}{\mu(B)} \int_B \sum' |T(f_1^{\alpha_1} \cdots f_m^{\alpha_m})(z) - T(f_1^{\alpha_1} \cdots f_m^{\alpha_m})(x)| \, d\mu(z) \right]^\frac{1}{2}
\]
\[
\lesssim (W + C_K) M(\tilde{f})(x),
\]
which completes the proof. \(\square\)

Proposition 4.13. Let \(w\) be an \(A_\infty\) weight and \(p \in [\frac{1}{m}, \infty)\). Then there exists \(C > 0\) such that, for all bounded functions \(\tilde{f}\) with compact support, if \(p > \frac{1}{m}\), then
\[
\|T(\tilde{f})\|_{L^p(w)} \leq C\|M(\tilde{f})\|_{L^p(w)}
\]
and, if \(p \geq \frac{1}{m}\), then
\[
\|T(\tilde{f})\|_{L^p, \infty(w)} \leq C\|M(\tilde{f})\|_{L^p, \infty(w)}.
\]

Proof. We only prove (4.22) since similar arguments give the weak-type estimate (4.23). For every \(N \in \mathbb{N}\), set \(w_N := \min\{w, N\}\). Then \(w_N \in A_\infty\), and Fatou’s lemma implies that
\[
\|T(\tilde{f})\|_{L^p(w)} \leq \liminf_{\substack{j \to \infty}} \|T(\tilde{f})\|_{L^p(w_N)}.
\]
Since each function \(f_j\) is in \(L^\infty_b(\mathcal{X})\), by the assumption,
\[
T : L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \to L^{\gamma, \infty}(\mathcal{X})
\]
for some indices \(1 \leq q_1, \ldots, q_m < \infty\) and \(0 < q < \infty\) satisfying \(\frac{1}{q} = \frac{1}{q_1} + \cdots + \frac{1}{q_m}\), we know that \(T(\tilde{f}) \in L^{\gamma, \infty}(\mathcal{X})\), and hence \(|T(\tilde{f})|_{\gamma} \in L^{1, \infty}_{\text{loc}}(\mathcal{X})\) for all \(\gamma \in (0, 1/m)\). Then, using Lemma 4.11(i) and (4.19), we see that, for any fixed \(\gamma \in (0, 1/m)\),
\[
\|T(\tilde{f})\|_{L^p(w_N)} \leq \left\| [M(|T(\tilde{f})|_{\gamma})]^\frac{1}{\gamma} \right\|_{L^p(w_N)}
\]
\[
\lesssim \|M_\gamma^\#(\tilde{f})\|_{L^p(w_N)}
\]
\[
\lesssim (C_K + W)\|M(\tilde{f})\|_{L^p(w_N)}
\]
\[
\lesssim (C_K + W)\|M(\tilde{f})\|_{L^p(w)}
\]
which gives (4.22) by letting \(N \to \infty\), provided that we can show that, for some \(p_0 \in (0, p)\),
\[
\left\| [M(|T(\tilde{f})|_{\gamma})]^\frac{1}{\gamma} \right\|_{L^{p_0, \infty}(w_N)} < \infty.
\]
Suppose that ν completes the proof.

Let $1 \leq p_1, \ldots, p_m < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$ and $\vec{P} := (p_1, \ldots, p_m)$. Suppose that $\nu \in A_\infty$ and $\{w_j\}_{j=1}^m$ are weights. Let $\vec{w} := (w_1, \ldots, w_m)$. Then the following hold:

(i) if $p_j \geq 1$ for all $j \in \{1, \ldots, m\}$ and $(\nu; \vec{w})$ satisfies (4.1), then T can be extended to a bounded m-linear operator from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^{p,\infty}(\nu)$;

(ii) if $p_j > 1$ for all $j \in \{1, \ldots, m\}$ and (ν, \vec{w}) satisfies the bump weight condition (4.8) for some $r > 1$, then T can be extended to a bounded m-linear operator from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^{p}(\nu)$.

In either case, the norm of T is bounded by $C(C_K + ||T||_{L^{p_1}(\nu) \times \cdots \times L^{p_m}(\nu) \to L^{q}(\nu)})$, where C is a positive constant depending on m, δ, C_1 and $[(\nu; \vec{w})]_{A_{\vec{P}}}$ (or $[(\nu; \vec{w})]_{A_{\vec{P},r}}$).

Likewise, Proposition 4.13 together with Theorems 4.4 and 4.6 implies the following weighted estimate for multilinear Calderón–Zygmund operators.

Corollary 4.15.

Let $1 \leq p_1, \ldots, p_m < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$, $\vec{P} := (p_1, \ldots, p_m)$, and $\vec{w} := (w_1, \ldots, w_m) \in A_{\vec{P}}$. Then the following hold:

(i) T can be extended to a bounded m-linear operator from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^{p}(\nu; \vec{w})$ if all the exponents p_j are greater than 1;

(ii) T can be extended to a bounded m-linear operator from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^{p,\infty}(\nu; \vec{w})$ if some of the exponents p_j are equal to 1.

In either case, the norm of T is bounded by $C(C_K + ||T||_{L^{p_1}(\nu) \times \cdots \times L^{p_m}(\nu) \to L^{q}(\nu)})$, where C is a positive constant depending on m, δ, C_1 and $[w]_{A_{\vec{P}}}$.

4.4. Weighted estimates for maximal multilinear singular integrals. Let T be as in the previous subsection. Define the maximal truncated operator by

$$T^\ast(\vec{f})(x) := \sup_{\alpha > 0} |T_\alpha(f_1, \ldots, f_m)(x)|, \quad \forall \; x \in \mathcal{X},$$

where, using the notation $\vec{y} := (y_1, \ldots, y_m)$ and $d\mu(\vec{y}) := d\mu(y_1) \cdots d\mu(y_m)$, we set

$$T_\alpha(f_1, \ldots, f_m)(x) := \int_{\sum_{j=1}^m d(x,y_j) \geq \alpha} K(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) d\mu(\vec{y}).$$
Such maximal truncated operators for multilinear integrals on \((\mathbb{R}^n)^m\) were first introduced in [54]. In the Euclidean setting, it was proved in [54] that if multilinear Calderón–Zygmund operators are bounded at one point, say \(T : L^{q_1}(\mathbb{R}^n) \times \cdots \times L^{q_m}(\mathbb{R}^n) \rightarrow L^q(\mathbb{R}^n)\) for some \(1 \leq q_1, \ldots, q_m < \infty\) and \(\frac{1}{q} = \frac{1}{q_1} + \cdots + \frac{1}{q_m}\), then
\[
T^* : L^{p_1}(w) \times \cdots \times L^{p_m}(w) \rightarrow L^p(w)
\]
for all \(1 < p_1, \ldots, p_m < \infty\) where \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}\), provided \(w \in \cap_{1 \leq j \leq m} A_{p_j}\).

Notice that the size condition of \(K\) implies that \(T^*(f_1, \ldots, f_m)\) is pointwise well-defined when \(f_j \in L^{q_j}(\mathcal{X})\) with \(q_j \in [1, \infty]\); see [53, p. 1263]. The goal of this subsection is to obtain the following multiple weight norm estimates for \(T^*\).

Theorem 4.16. Let \(1 \leq p_1, \ldots, p_m < \infty\), \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}\), \(\vec{P} := (p_1, \ldots, p_m)\), and \(\vec{w} := (w_1, \ldots, w_m) \in A_{\vec{P}}\). Then,

(i) \(T^*\) can be extended to a bounded operator from \(L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)\) to \(L^p(\nu_{\vec{w}})\) if all the exponents \(p_j\) are greater than 1;

(ii) \(T^*\) can be extended to a bounded operator from \(L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)\) to \(L^{p, \infty}(\nu_{\vec{w}})\) if some exponent \(p_j\) is equal to 1.

In either case, the norm of \(T^*\) is bounded by \(C(C_K + \|T\|_{L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \rightarrow L^q(\mathcal{X})})\), where \(C\) is a positive constant depending on \(m, \delta, C_1\) and \([w]_{A_{\vec{P}}}\).

Consequently, this proposition, along with Theorems 4.4 and 4.6 implies the following weighted estimate for multilinear Calderón–Zygmund operators.

Theorem 4.17. Let \(1 \leq p_1, \ldots, p_m < \infty\), \(\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}\) and \(\vec{P} := (p_1, \ldots, p_m)\). If \(\nu \in A_\infty\) and \([w_j]_{A_{\vec{P}}}^{m} = 1\) are weights. Let \(\vec{w} := (w_1, \ldots, w_m)\). Then the following hold:

(i) if \(p_j \geq 1\) for all \(j \in \{1, \ldots, m\}\) and \((\nu; \vec{w})\) satisfies (4.1), then \(T^*\) can be extended to a bounded operator from \(L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)\) to \(L^{p, \infty}(\nu)\);

(ii) if \(p_j > 1\) for all \(j \in \{1, \ldots, m\}\) and \((\nu; \vec{w})\) satisfies the bump weight condition (4.8) for some \(r > 1\), then \(T^*\) can be extended to a bounded operator from \(L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)\) to \(L^p(\nu)\).

In either case, the norm of \(T\) is bounded by \(C(C_K + \|T\|_{L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \rightarrow L^q(\mathcal{X})})\), where \(C\) is a positive constant depending on \(m, \delta, C_1\) and \((\nu; \vec{w})\) or \((\nu; \vec{w})\) depending on \(A_{\vec{P}}\).

We only prove Theorem 4.16 since the proof for Theorem 4.17 follows in a similar way. We need the following Cotlar-type inequality.

Proposition 4.18. For all \(\gamma > 0\), there exists a positive constant \(C := C(m, C_1, \delta, \gamma)\) such that, for all \(\vec{f} := (f_1, \ldots, f_m)\) with every \(f_j \in L^{q_j}_b(\mathcal{X})\) and \(x \in \mathcal{X}\),
\[
T^*(\vec{f})(x) \leq C \left\{ \mathcal{M}(|T(\vec{f})|^{\gamma})(x) \right\}^{1/\gamma} + (C_K + W)\mathcal{M}(\vec{f})(x),
\]
where
\[
W := \|T\|_{L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \rightarrow L^{q, \infty}(\mathcal{X})}.
\]
Thus, property of \(\mu \) (Theorem 3.3), it follows that \(T \) holds for any \(\alpha > 0 \), and hence it is enough to prove that (4.25) holds with \(\alpha \). By Hölder’s inequality, it suffices to show that (4.25) holds for \(\gamma \) and \(\mu(B(x, \alpha)) \leq C(m, C_1) \sum_{j=1}^{m} V(x, y_j) \).

Thus,

\[
\sup_{\alpha > 0} \left| \int_{U_\alpha(x)} K(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) d\mu(y) \right| \
\leq \sup_{\alpha > 0} \int_{U_\alpha(x)} \frac{C_K |f_1(y_1) \cdots f_m(y_m)|}{\left[\sum_{k=1}^{m} V(x, y_k)\right]^m} d\mu(y) \
\lesssim C_K \sup_{\alpha > 0} \int_{U_\alpha(x)} \frac{|f_1(y_1) \cdots f_m(y_m)|}{\mu(B(x, \alpha))} d\mu(y) \
\lesssim C_K \mathcal{M}(\tilde{f})(x).
\]

Therefore, it is enough to prove that (4.25) holds with \(T^*(\tilde{f}) \) replaced by

\[
\tilde{T}^*(\tilde{f})(x) := \sup_{\alpha > 0} |\tilde{T}_\alpha(f_1, \ldots, f_m)(x)|,
\]

where

\[
\tilde{T}_\alpha(f_1, \ldots, f_m)(x) := \int_{\tilde{y} \notin S_\alpha(x)} K(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) d\mu(\tilde{y}).
\]

Fix \(\alpha > 0 \) and let \(B(x, \alpha/2) \) be the ball centered at \(x \) and of radius \(\alpha/2 \). From every \(f_j \in L_b^\infty(\mathcal{X}) \), together with the boundedness of \(T \) from \(L^1(\mathcal{X}) \times \cdots \times L^1(\mathcal{X}) \) to \(L^1/\mathcal{M}(\mathcal{X}) \) (see Theorem 3.3), it follows that \(T(\tilde{f}) \in L^{1/\alpha}_\mathcal{M}(\mathcal{X}) \), and hence it is finite almost everywhere. For \(\alpha > 0 \), \(x \in \mathcal{X} \) and \(z \in B(x, \alpha/2) \), we set

\[
G_\alpha(\tilde{f})(x, z) := \int_{\tilde{y} \notin S_\alpha(x)} K(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) d\mu(\tilde{y}).
\]

Observe that, for all \(z \in B(x, \alpha/2) \),

\[
|\tilde{T}_\alpha(\tilde{f})(x)| \leq |\tilde{T}_\alpha(\tilde{f})(x) - G_\alpha(\tilde{f})(x, z)| + |T(\tilde{f})(z) - T(\tilde{f}_0)(z)|,
\]

where \(\tilde{f}_0 := (f_1 \chi_{B(x, \alpha)}, \ldots, f_m \chi_{B(x, \alpha)}) \).

Applying the regularity condition (3.2), we obtain

\[
|\tilde{T}_\alpha(\tilde{f})(x) - G_\alpha(\tilde{f})(x, z)| \
\leq C_K \int_{\tilde{y} \notin S_\alpha(x)} \left[\frac{d(x, z)}{\max_{1 \leq k \leq m} d(x, y_k)} \right]^\delta \frac{\prod_{j=1}^{m} |f_j(y_j)|}{\left[\sum_{k=1}^{m} V(x, y_k)\right]^m} d\mu(\tilde{y}).
\]
Notice that the right hand side of (4.27) can be written as a sum of integrals over sets $R_{j_1,\ldots,j_{\ell}}$ for some $\{j_1,\ldots,j_{\ell}\} \subseteq \{1,\ldots,m\}$ so that, for $\vec{y} := (y_1,\ldots,y_m) \in R_{j_1,\ldots,j_{\ell}}$, we have $d(x,y_j) < \alpha$ if and only if $j \in \{j_1,\ldots,j_{\ell}\}$. Set

$$\{k_1,\ldots,k_{m-\ell}\} := \{1,\ldots,m\} \setminus \{j_1,\ldots,j_{\ell}\}.$$

Then $m-\ell \geq 1$ and

$$\int_{\vec{y} \in R_{j_1,\ldots,j_{\ell}}} \left[\frac{d(x,z)}{\max_{1 \leq k \leq m} d(x,y_k)} \right] \delta \frac{\prod_{j=1}^m |f_j(y_j)|}{\left[\sum_{k=1}^m V(x,y_k) \right]^{m}} d\mu(\vec{y})$$

$$\leq \alpha^\delta \prod_{j \in \{j_1,\ldots,j_{\ell}\}} \int_{d(x,y_j) < \alpha} |f_j(y_j)| d\mu(y_j)$$

$$\times \int_{(X \setminus B(x,\alpha))^{m-\ell}} \left[\frac{1}{\max_{1 \leq k \leq m} d(x,y_k)} \right] \delta \frac{\prod_{i=1}^{m-\ell} |f_i(y_{ki})|}{\left[\sum_{i=1}^{m-\ell} V(x,y_{ki}) \right]^{m}} d\mu(y_{ki}) \cdots d\mu(y_{k_{m-\ell}}).$$

Since

$$\int_{(X \setminus B(x,\alpha))^{m-\ell}} \left[\frac{1}{\max_{1 \leq k \leq m} d(x,y_k)} \right] \delta \frac{\prod_{i=1}^{m-\ell} |f_i(y_{ki})|}{\left[\sum_{i=1}^{m-\ell} V(x,y_{ki}) \right]^{m}} d\mu(y_{ki}) \cdots d\mu(y_{k_{m-\ell}})$$

$$\leq \int_{\{\vec{y}: \sum_{i=1}^{m-\ell} d(x,y_{ki}) \geq \alpha\}} \left[\frac{\prod_{i=1}^{m-\ell} |f_i(y_{ki})|}{\sum_{i=1}^{m-\ell} d(x,y_{ki})^{\delta} \left[\sum_{i=1}^{m-\ell} V(x,y_{ki}) \right]^{m}} \right] d\mu(y_{ki}) \cdots d\mu(y_{k_{m-\ell}})$$

$$\leq \sum_{s=0}^{\infty} \left(2^s \alpha^{\delta} (\mu(B(x,2^{s+1} \alpha)))^{m} \prod_{i=1}^{m-\ell} \int_{B(x,2^{s+1} \alpha)} |f_i(y_{ki})| d\mu(y_{ki}) \right);$$

we have

$$\int_{\vec{y} \in R_{j_1,\ldots,j_{\ell}}} \left[\frac{d(x,z)}{\max_{1 \leq k \leq m} d(x,y_k)} \right] \delta \frac{\prod_{j=1}^m |f_j(y_j)|}{\left[\sum_{k=1}^m V(x,y_k) \right]^{m}} d\mu(\vec{y})$$

$$\leq \sum_{s=0}^{\infty} \left(2^s \alpha^{\delta} [\mu(B(x,2^{s+1} \alpha))]^{m} \prod_{j=1}^{m} \int_{B(x,2^{s+1} \alpha)} |f_j(y_j)| d\mu(y_j) \right)$$

$$\lesssim \mathcal{M}(\bar{f})(x).$$

Combining this with (4.27) and (4.26), we see that for all $z \in B(x,\alpha/2)$,

$$|\tilde{T}_\alpha(\bar{f})(x)| \lesssim C_K \mathcal{M}(\bar{f})(x) + |T(\bar{f})(z)| + |T(\bar{f}_0)(z)|. \quad (4.28)$$

Raising (4.28) to the power γ, taking integral average over the ball $B := B(x,\alpha/2)$ with respect to the variable z, we obtain

$$|\tilde{T}_\alpha(\bar{f})(x)|^\gamma \lesssim \left[C_K \mathcal{M}(\bar{f})(x) \right]^\gamma + \mathcal{M}(|T(\bar{f})|^\gamma)(x)$$

$$+ \frac{1}{|B|} \int_B |T(\bar{f}_0)(z)|^\gamma \, d\mu(z). \quad (4.29)$$

Since

$$\int_B |T(\bar{f}_0)(z)|^\gamma \, d\mu(z) = m \gamma \int_0^\infty \lambda^{m\gamma-1} \mu(\{z \in B : |T(\bar{f}_0)(z)|^{1/m} > \lambda\}) \, d\lambda$$
\[\leq m^{\gamma} \int_0^\infty \lambda^{m^{\gamma-1}} \min \left\{ \mu(B), \lambda^{-1} W^{1/m} \prod_{j=1}^m \| f_j \chi_{B(x,\alpha)} \|_{L^1(X)}^{1/m} \right\} d\lambda \]
\[\lesssim \mu(B)^{1-m^{\gamma}} W^{\gamma} \prod_{j=1}^m \| f_j \chi_{B(x,\alpha)} \|_{L^1(X)} \]
we then conclude that
\[\left\{ \frac{1}{|B|} \int_B |T(\tilde{f}_0)(z)|^\gamma d\mu(z) \right\}^{1/\gamma} \lesssim W \prod_{j=1}^m \| f_j \chi_{B(x,\alpha)} \|_{L^1(X)} \lesssim W \mathcal{M}(\tilde{f})(x). \]
Combining this with (4.29), we obtain (4.25).

Proof of Theorem 4.16 To prove (i), we apply Proposition 4.18 to obtain
\[\| T^*(\tilde{f}) \|_{L^p(\nu,\vec{w})} \lesssim \left\| \left[\mathcal{M}(|T(\tilde{f})|^{\gamma}) \right]^{1/\gamma} \right\|_{L^p(\nu,\vec{w})} + (C_K + W) \| \mathcal{M}(\tilde{f}) \|_{L^p(\nu,\vec{w})}. \]

Theorem 4.7 implies that \(\| \mathcal{M}(\tilde{f}) \|_{L^p(\nu,\vec{w})} \lesssim \prod_{j=1}^m \| f_j \|_{L^{p_j}(w_j)}. \) By Proposition 4.3(ii) and \(\vec{w} \in A_B, \) we have \(\nu,\vec{w} \in A_{pm}. \) If we choose \(0 < \gamma < \frac{1}{m}, \) then \(\nu,\vec{w} \in A_{p/\gamma} \) and
\[\left\| \left[\mathcal{M}(|T(\tilde{f})|^{\gamma}) \right]^{1/\gamma} \right\|_{L^p(\nu,\vec{w})} \leq \| \mathcal{M} \|_{L^p(\nu,\vec{w})}^{1/\gamma} \| T(\tilde{f}) \|_{L^p(\nu,\vec{w})} \lesssim \prod_{j=1}^m \| f_j \|_{L^{p_j}(w_j)}, \]
where, in the last inequality, we used Corollary 4.15(i). This finishes the proof of Theorem 4.16(i).

Using Proposition 4.18, Theorem 4.4 and Corollary 4.15(ii), together with an argument similar to the proof of (i), we obtain (ii), the further details being omitted.
5. A multilinear T_1-theorem on Lebesgue spaces

The linear T_1 theorem was obtained by David and Journé [25]. Multilinear T_1-theorems have been obtained by Christ and Journé [17] and Grafakos and Torres [53]. In this section we extend the latter to the context of RD-spaces. The multilinear T_1-theorem provides a criterion for the boundedness of the m-linear Calderón–Zygmund operator on products of Lebesgue spaces.

5.1. Some lemmas on multilinear Calderón–Zygmund operators. The following lemmas for the case $X = \mathbb{R}^n$ were proved in [53]. The proof of the following Lemma 5.1 is similar to that of [53, Lemma 1], the details being omitted.

Lemma 5.1. Fix $x_0 \in X$ and $\eta \in (0, 1]$. Assume that $\psi \in C^\infty(\mathbb{R})$ such that $0 \leq \psi \leq 1$, $\psi(t) = 1$ when $|t| < 1$, and $\psi(t) = 0$ when $|t| \geq 2$. Define

$$
\psi_k(x) := \psi(2^{-k}d(x, x_0))
$$

for all $x \in X$ and $k \in \mathbb{Z}$. Every m-linear Calderón–Zygmund operator T with a kernel $K \in \text{Ker}(m, C_K, \delta)$ for some $C_K > 0$ and $\delta \in (0, 1]$ as in Definition 3.2 can be extended to the m-fold product space $(C^\eta(X) \cap L^\infty(X)) \times \cdots \times (C^\eta(X) \cap L^\infty(X))$ as an element of $(C^\eta_0(X))'$ via

$$
T(f_1, \ldots, f_m)(x) := \lim_{k \to \infty} \left[T(\psi_k f_1, \ldots, \psi_k f_m)(x) + G(\psi_k f_1, \ldots, \psi_k f_m) \right]
$$

for all $x \in X$, where

$$
G(\psi_k f_1, \ldots, \psi_k f_m) := -\int_{\min_{1 \leq j \leq m} \{d(y_j, x_0)\} \geq 1} K(x_0, y_1, \ldots, y_m)(\psi_k f_1)(y_1) \cdots (\psi_k f_m)(y_m) \, d\mu(y_1) \cdots d\mu(y_m),
$$

and the limit is taken in the weak*-topology of $(C^\eta_0(X))'$.

Remark 5.2. For all $f_1, \ldots, f_m \in C^\eta_0(X)$ and $x \notin \bigcap_{j=1}^m \text{supp } f_j$, since there exists $k_1 \in \mathbb{Z}$ such that $\text{supp } f_j \subset B(x_0, 2^{k_1})$ for all $j \in \{1, \ldots, m\}$, we see that, when $k \geq k_1$,

$$
\psi_k(y_j) f_j(y_j) = \psi(2^{-k}d(y_j, x_0)) f_j(y_j) = f_j(y_j)
$$

for all $j \in \{1, \ldots, m\}$ and $y_j \in X$, which implies that the value of $T(f_1, \ldots, f_m)(x)$ as defined in (5.1) differs from that in Definition 3.2 by the constant

$$
-\int_{\min_{1 \leq j \leq m} \{d(y_j, x_0)\} \geq 1} K(x_0, y_1, \ldots, y_m)f_1(y_1) \cdots f_m(y_m) \, d\mu(y_1) \cdots d\mu(y_m).
$$
However, this causes no difference when $T(f_1, \ldots, f_m)$ is considered as a function in BMO (\mathcal{X}).

Lemma 5.3. Let $K \in \ker(m, C_k, \delta)$ and $f_m \in L^\infty(\mathcal{X})$. Let Ω_{m-1} be as in Definition 3.1. For $(x, y_1, \ldots, y_{m-1}) \in \Omega_{m-1}$ define

$$K_{f_m}(x, y_1, \ldots, y_{m-1}) := \int_{\mathcal{X}} K(x, y_1, \ldots, y_{m-1}, y_m) f_m(y_m) \, d\mu(y_m). \quad (5.2)$$

Then there exists a positive constant \tilde{C}, depending on \mathcal{X} and m, such that

$$K_{f_m} \in \ker(m - 1, \tilde{C} C_K \| f_m \|_{L^\infty(\mathcal{X})}, \delta). \quad (5.4)$$

Proof. Fix $(x, y_1, \ldots, y_{m-1}) \in \Omega_{m-1}$. Without loss of generality, in the proof below, we may assume that

$$d(x, y_1) = \max_{1 \leq j \leq m-1} d(x, y_j). \quad (5.3)$$

Then,

$$V(x, y_1) \leq \sum_{k=1}^{m-1} V(x, y_k) \leq (m - 1)V(x, y_1). \quad (5.3)$$

First we consider the size estimate of K_{f_m}. Using (3.1) and (5.3), we obtain

$$|K_{f_m}(x, y_1, \ldots, y_{m-1})| \leq C_K \| f_m \|_{L^\infty(\mathcal{X})} \int_{\mathcal{X}} \left[\sum_{k=1}^{m} V(x, y_k) \right] \frac{1}{m} \, d\mu(y_m) \lesssim C_K \| f_m \|_{L^\infty(\mathcal{X})} \int_{\mathcal{X}} \left[V(x, y_1) + V(x, y_m) \right] \frac{1}{m} \, d\mu(y_m) \lesssim C_K \| f_m \|_{L^\infty(\mathcal{X})} \sum_{\ell=0}^\infty \int_{d(y_m,x) < 2^\ell d(x,y_1)} \frac{1}{[V(x, y_1) + V(x, y_m)]^m} \, d\mu(y_m),$$

where the notation $d(y_m, x) \sim 2^\ell d(x, y_1)$ means that $d(y_m, x) < 2^\ell d(x, y_1)$ for $\ell = 0$ and $2^{\ell-1} d(x, y_1) \leq d(y_m, x) < 2^\ell d(x, y_1)$ for $\ell \geq 1$. Obviously, when $\ell = 0,$

$$\int_{d(y_m,x) < d(x,y_1)} \frac{1}{[V(x, y_1) + V(x, y_m)]^m} \, d\mu(y_m) \leq \frac{1}{[V(x, y_1)]^{m-1}}.$$

For each fixed $\ell \geq 1$, using (2.2), we see that

$$\int_{d(y_m,x) \sim 2^\ell d(x,y_1)} \frac{1}{[V(x, y_1) + V(x, y_m)]^m} \, d\mu(y_m) \leq \int_{d(y_m,x) \sim 2^\ell d(x,y_1)} \frac{1}{[V(x, y_1) + \mu(B(x, 2^{\ell-1} d(x, y_1)))]^m} \, d\mu(y_m) \lesssim \frac{1}{[V(x, y_1)]^{m-1}}.$$

Combining the last two formulae and taking the summation over ℓ, we obtain

$$|K_{f_m}(x, y_1, \ldots, y_{m-1})| \lesssim \frac{C_K \| f_m \|_{L^\infty(\mathcal{X})}}{[V(x, y_1)]^{m-1}} \leq \frac{\tilde{C} C_K \| f_m \|_{L^\infty(\mathcal{X})}}{\sum_{k=1}^{m-1} V(x, y_k)^{m-1}}, \quad (5.4)$$
where we used (5.3) in the second inequality. Here and in what follows of this proof, \(\tilde{C} \) denotes a positive constant depending on \(\mathcal{X} \) and \(m \).

Set \(y_0 := x \). Suppose that \(0 \leq j \leq m - 1 \) and

\[
d(y_j, y'_j) \leq \max_{1 \leq k \leq m-1} d(x, y_k)/2.
\]

Then, \(d(y_j, y'_j) \leq \max_{1 \leq k \leq m-1} d(x, y_k)/2 \). Consequently, applying (3.2) we obtain

\[
|K_{f_m}(y_0, y_1, \ldots, y_j, \ldots, y_{m-1}) - K_{f_m}(y_0, y_1, \ldots, y'_j, \ldots, y_{m-1})| \leq C_K \|f_m\|_{L^\infty(\mathcal{X})} \left[\frac{d(y_j, y'_j)}{\max_{0 \leq k \leq m-1} d(x, y_k)} \right]^{\delta} \int_{\mathcal{X}} \frac{1}{[\sum_{k=1}^m V(y_0, y_k)]^m} d\mu(y_m).
\]

Finally, as we proved before,

\[
\int_{\mathcal{X}} \frac{1}{[\sum_{k=1}^m V(y_0, y_k)]^m} d\mu(y_m) \lesssim \frac{1}{[V(x, y_1)]^{m-1}} \leq \frac{\tilde{C}}{[\sum_{k=1}^{m-1} V(x, y_k)]^{m-1}},
\]

which implies that \(K_{f_m} \) has the desired smoothness estimate. From this and (5.4), we deduce that

\[
K_{f_m} \in \text{Ker}(m-1, \tilde{C} C_K \|f_m\|_{L^\infty(\mathcal{X})}, \delta),
\]

which completes the proof of the lemma. □

Remark 5.4. By symmetry, Lemma 5.3 is true if we use any other variable in \(K \) instead of \(y_m \). Given an \(m \)-linear operator \(T \) and a fixed function \(f_j \in C^m_0(\mathcal{X}) \) for some \(j \in \{0, \ldots, m\} \), then we define the \((m-1)\)-linear operator \(T_{f_j} \) as

\[
T_{f_j}(f_1, \ldots, f_{j-1}, f_j, f_{j+1}, \ldots, f_m) := T(f_1, \ldots, f_{j-1}, f_j, f_{j+1}, \ldots, f_m).
\]

The transposes of \(T_{f_j} \) satisfy

\[
(T_{f_j})^{*k} = (T^{*k})_{f_j}, \quad k \in \{1, \ldots, j - 1\}, \tag{5.5}
\]

and

\[
(T_{f_j})^{*k} = (T^{*(k+1)})_{f_j}, \quad k \in \{j, \ldots, m - 1\}. \tag{5.6}
\]

Denote by \(L^\infty_b(\mathcal{X}) \) the set of all bounded functions on \(\mathcal{X} \) with bounded support.

Lemma 5.5. Let \(T \) be a multilinear operator with kernel \(K \in \text{Ker}(m, C_K, \delta) \) which can be extended to a bounded operator \(T : L^p_1(\mathcal{X}) \times \cdots \times L^p_m(\mathcal{X}) \to L^p(\mathcal{X}) \) for some indices \(1 \leq p, p_1, \ldots, p_m < \infty \) and \(1/p = 1/p_1 + \cdots + 1/p_m \). Given \(f_m \in L^\infty_b(\mathcal{X}) \), let \(T_{f_m} \) be as in (5.4). Then \(T_{f_m} \) is an \((m-1)\)-linear Calderón–Zygmund operator with a kernel \(K_{f_m} \) given by (5.2).

Proof. Let \(f_1, \ldots, f_{m-1} \) in \(C^m_0(\mathcal{X}) \) and \(f_m \in L^\infty_b(\mathcal{X}) \). By Lemma 5.3 and Definition 3.2, it is enough to show that, for every \(x \notin \cap_{\ell=1}^{m-1} \text{supp } f_\ell \),

\[
T_{f_m}(f_1, \ldots, f_{m-1})(x) = \int_{\mathcal{X}^{m-1}} K_{f_m}(x, y_1, \ldots, y_{m-1}) \prod_{\ell=1}^{m-1} f_\ell(y_\ell) \, d\mu(y_\ell). \tag{5.7}
\]

To this end, take \(h \in C^m_0(\mathcal{X}) \) such that

\[
\text{supp } h \cap \left(\bigcap_{\ell=1}^{m-1} \text{supp } f_\ell \right) = \emptyset. \tag{5.8}
\]
By duality and the hypotheses, we obtain
\[\langle T(f_1, \ldots, f_{m-1}, f_m), h \rangle = \langle T^*(f_1, \ldots, f_{m-1}, h), f_m \rangle, \]
where \(T^*(f_1, \ldots, f_{m-1}, h) \) is well defined and belongs to \(L^{q'_m}(X) \) (with the convention \(1' = \infty \) and \(\infty' = 1 \)). Also, \([5.8] \) implies that \(T^*(f_1, \ldots, f_{m-1}, h) \) is given by the absolutely convergent integral
\[z \mapsto \int_{X^m} K(x, y_1, \ldots, y_{m-1}, z) h(x) \, d\mu(x) \prod_{\ell=1}^{m-1} f_\ell(y_\ell) \, d\mu(y_\ell). \]
By this and \([5.8] \), we know that \(\langle T(f_1, \ldots, f_{m-1}, f_m), h \rangle \) is given by the absolutely convergent integral
\[\int_X \left[\int_{X^{m-1}} K_{f_m}(x, y_1, \ldots, y_{m-1}) \prod_{\ell=1}^{m-1} f_\ell(y_\ell) \, d\mu(y_\ell) \right] h(x) \, d\mu(x), \]
which implies \([5.7] \).

5.2. BMO-boundedness of multilinear singular integrals.

Theorem 5.6. Let \(T \) be an \(m \)-linear operator with a kernel \(K \in \text{Ker}(m, C_K, \delta) \) for some \(C_K > 0 \) and \(\delta \in (0,1) \), and \(T \) bounded from \(L^{q_1}(X) \times \cdots \times L^{q_m}(X) \) to \(L^q(X) \), where \(1 < q, q_1, \ldots, q_m < \infty \) satisfying \(\frac{1}{q} = \frac{1}{q_1} + \cdots + \frac{1}{q_m} \). Then, \(T \) extends to a bounded operator from the \(m \)-fold product \(L_b^\infty(X) \times \cdots \times L_b^\infty(X) \) to \(\text{BMO}(X) \) with norm at most a positive constant multiple of \(C_K + \|T\|_{L^{q_1}(X) \times \cdots \times L^{q_m}(X) \rightarrow L^{q,\infty}(X)} \).

Proof. Set
\[W := \|T\|_{L^{q_1}(X) \times \cdots \times L^{q_m}(X) \rightarrow L^{q,\infty}(X)}. \]
We prove the assertion of Theorem 5.6 by induction over \(m \). In the case \(m = 1 \) the assertion is a known result of the linear Calderón–Zygmund theory; see [94, 40]. Next, we assume that the theorem is true for \((m-1)\)-linear Calderón–Zygmund operators, and prove that it is valid for the \(m \)-linear operators.

To achieve this, we fix a function \(f_m \in L_b^\infty(X) \) and define the \((m-1)\)-linear operator
\[T_{f_m}(f_1, \ldots, f_{m-1}) := T(f_1, \ldots, f_m). \]
By Lemmas 5.3 and 5.5, \(T_{f_m} \) is an \((m-1)\)-linear Calderón–Zygmund operator with a kernel \(K_{f_m} \in Czik(m-1, CCK\|f_m\|_{L^\infty(X)}, \delta) \) as given by \([2.17]\). Notice that the \(m \)-th transpose \(T^*_m \) of \(T \) is a Calderón–Zygmund operator with the following boundedness property:
\[T^*_m : L^{q_1}(X) \times \cdots \times L^{q_{m-1}}(X) \times L^{q'}(X) \rightarrow L^{q'_m}(X) \]
with norm \(W \). Since Corollary 4.15 holds when the multiple weight \(w_1 = \cdots = w_m = 1 \), we know that
\[T^*_m : L^m(X) \times \cdots \times L^m(X) \rightarrow L^1(X) \]
with norm \(C(C_K + W) \) and \(C \) as in Corollary 4.15. By duality,
\[T : L^m(X) \times L^m(X) \times \cdots \times L^\infty(X) \rightarrow L^{m'}(X) \]
with norm $C(C_K + W)$. It follows that T_{f_m} is bounded from the $(m-1)$-fold product space $L^m(\mathcal{X}) \times \cdots \times L^m(\mathcal{X})$ to $L^{m'}(\mathcal{X})$ with operator norm $C(C_K + W)\|f_m\|_{L^\infty(\mathcal{X})}$. Therefore, the induction hypothesis implies that T_{f_m} is bounded from the $(m-1)$-fold product space $L^\infty_b(\mathcal{X}) \times \cdots \times L^\infty_b(\mathcal{X})$ to $\text{BMO}(\mathcal{X})$ with operator norm $C(C_K + W)\|f_m\|_{L^\infty(\mathcal{X})}$. Since f_m is an arbitrary $L^\infty_b(\mathcal{X})$ function, the desired conclusion of the theorem follows. ■

Corollary 5.7. Let T be as in Theorem 5.6. Then, T extends to a bounded operator from the m-fold product $L^\infty(\mathcal{X}) \times \cdots \times L^\infty(\mathcal{X})$ to $\text{BMO}(\mathcal{X})$ with norm at most a positive constant multiple of $C_K + \|T\|_{L^m(\mathcal{X}) \times \cdots \times L^{m}(\mathcal{X}) \to L^\infty(\mathcal{X})}$.

Proof. Fix $x_0 \in \mathcal{X}$ and consider a function $h : \mathbb{R} \to \mathbb{R}$ such that $\text{supp } h \subset (-2, 2)$, $0 \leq h \leq 1$, and $h(t) = 1$ if $0 \leq |t| \leq 1$. For $k \in \mathbb{Z}$ and $x \in \mathcal{X}$, define

$$
\psi_k(x) := h(2^{-k}d(x, x_0)).
$$

For any $k \in \mathbb{Z}$, since T maps the m-fold product space $L^{2m}(\mathcal{X}) \times \cdots \times L^{2m}(\mathcal{X})$ to $L^2(\mathcal{X})$, we know that $T(\psi_k f_1, \ldots, \psi_k f_m) \in L^2(\mathcal{X})$ whenever $f_1, \ldots, f_m \in L^\infty(\mathcal{X})$. Hence, for any given $f_1, \ldots, f_m \in L^\infty(\mathcal{X})$, we define

$$
G(\psi_k f_1, \ldots, \psi_k f_m) := -\min_{1 \leq j \leq m} \int d(y_j, x_0) > 1 K(x_0, y_1, \ldots, y_m) \prod_{j=1}^m \psi_k(y_j) f_j(y_j) d\mu(y_j).
$$

Then, by Lemma 5.1, T extends to the m-fold product $L^\infty(\mathcal{X}) \times \cdots \times L^\infty(\mathcal{X})$ via

$$
T(f_1, \ldots, f_m) = \lim_{k \to \infty} [T(\psi_k f_1, \ldots, \psi_k f_m) + G(\psi_k f_1, \ldots, \psi_k f_m)],
$$

(5.9)

where the limit exists almost everywhere and defines a locally integrable function. Now, by (5.9) and Theorem 5.6, we have

$$
\|T(f_1, \ldots, f_m)\|_{\text{BMO}(\mathcal{X})} \leq \limsup_{k \to \infty} \|T(\psi_k f_1, \ldots, \psi_k f_m) + G(\psi_k f_1, \ldots, \psi_k f_m)\|_{\text{BMO}(\mathcal{X})}
$$

$$
= \limsup_{k \to \infty} \|T(\psi_k f_1, \ldots, \psi_k f_m)\|_{\text{BMO}(\mathcal{X})}
$$

$$
\lesssim (C_K + B) \lim_{k \to \infty} \prod_{j=1}^m \|\psi_k f_j\|_{L^\infty(\mathcal{X})}
$$

$$
\lesssim (C_K + B) \prod_{j=1}^m \|f_j\|_{L^\infty(\mathcal{X})}.
$$

This finishes the proof of the corollary. ■

5.3. A multilinear $T1$-theorem.

Definition 5.8. Let $A > 0$. We say that an m-linear Calderón–Zygmund operator T is BMO-restrictively bounded with bound A if there exists $\eta \in (0, 1]$ such that, for all $x_1, \ldots, x_m \in \mathcal{X}, R_1, \ldots, R_m \in (0, \infty)$, $\phi_i \in \mathcal{T}(\eta, x_i, R_i)$ and $j \in \{0, \ldots, m\}$,

$$
\|T^{*j}(\phi_1, \ldots, \phi_m)\|_{\text{BMO}(\mathcal{X})} \leq A.
$$

Obviously, any m-linear Calderón–Zygmund operator T as in Theorem 5.6 is BMO-restrictively bounded. Conversely, we have the following multilinear $T1$-type theorem.
52 5. A multilinear T_1-theorem on Lebesgue spaces

Theorem 5.9. Let T be an m-linear Calderón–Zygmund operator with a kernel K belonging to $\text{Ker}(m, C_K, \delta)$ for some $C_K > 0$ and $\delta \in (0, 1]$. Suppose that T is BMO-restrictively bounded for some positive constant A. Then, there exist $1 < q, q_1, \ldots, q_m < \infty$ such that $\sum_{j=1}^{m} \frac{1}{q_j} = \frac{1}{q}$ and T has a bounded extension from $L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X})$ to $L^q(\mathcal{X})$. Moreover,

$$\|T\|_{L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_m}(\mathcal{X}) \to L^q(\mathcal{X})} \leq C(A + C_K),$$

where C depends only on C_1, C_2, m, and δ.

Proof. We prove this theorem by induction in m. By Theorem 2.23, the assertion is true if $m = 1$. Suppose that the result is valid for $(m - 1)$-linear operators. Let T be an m-linear operator, fix $\phi_m \in \mathcal{T}(\eta, x_m, R_m)$, and consider the $(m - 1)$-linear operator $T_{\phi_m}(f_1, \ldots, f_{m-1}) := T(f_1, \ldots, f_{m-1}, \phi_m)$.

By (5.5) and (5.6), together with Definition 5.8, we see that T_{ϕ_m} is also BMO-restrictively bounded with constant A. By the induction hypothesis, we know that there exist $1 < q, q_1, \ldots, q_{m-1} < \infty$ satisfying $\sum_{j=1}^{m-1} \frac{1}{q_j} = \frac{1}{q}$ such that

$$T_{\phi_m} : L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_{m-1}}(\mathcal{X}) \to L^q(\mathcal{X})$$

with norm at most a positive constant multiple of $C_K + A$.

Next, by Lemma 5.5 and and the fact that $\phi_m \in \mathcal{T}(\eta, x_m, R_m) \subset L^\infty(\mathcal{X})$, we conclude that T_{ϕ_m} has a Calderón–Zygmund kernel in $\text{Ker}(m - 1, C_K, \delta)$. Thus, from Theorem 5.6, it follows that

$$T_{\phi_m} : \underbrace{L^\infty_b(\mathcal{X}) \times \cdots \times L^\infty_b(\mathcal{X})}_{m-1 \text{ times}} \to \text{BMO}(\mathcal{X})$$

with norm less than a positive constant multiple of $C_K + A$. Consequently,

$$\|T(g, \phi_2, \ldots, \phi_m)\|_{\text{BMO}(\mathcal{X})} \lesssim (C_K + A)\|g\|_{L^\infty(\mathcal{X})} \quad \text{for all } g \in L^\infty_b(\mathcal{X}). \quad (5.10)$$

Notice that we could repeat this argument when the function g appears in any other entry $2 \leq j \leq m$. Next, for $1 \leq j \leq m$ and $g_j \in L^\infty_b(\mathcal{X})$, consider the operators T_{g_j} given by

$$T_{g_j}(f_1, \ldots, f_{m-1}) := T(f_1, \ldots, f_{j-1}, g_j, f_{j+1}, \ldots, f_{m-1}).$$

By (5.10), T_{g_j} satisfies the $(m - 1)$-linear BMO-restrictively boundedness with a constant of the form $C_j := C(C_K + A)\|g_j\|_{L^\infty(\mathcal{X})}$, where C depends only on C_1, C_2, m, and δ. Analogous conclusions hold for all T_{g_j}, $2 \leq j \leq m$. Therefore, by the inductive hypothesis we conclude that, for $1 \leq j \leq m$, the operator T_{g_j} satisfies that

$$L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_{j-1}}(\mathcal{X}) \times L^{q_{j+1}}(\mathcal{X}) \cdots \times L^{q_m}(\mathcal{X}) \to L^q(\mathcal{X})$$

for some $1 < q_k := q_k(j), q := q(j) < \infty$ satisfying $\sum_{1 \leq k \leq m, k \neq j} \frac{1}{q_k} = \frac{1}{q}$, with bound at most a positive constant multiple of $C_j := C(C_K + A)\|g_j\|_{L^\infty(\mathcal{X})}$. In other words, T maps

$$L^{q_1}(\mathcal{X}) \times \cdots \times L^{q_{j-1}}(\mathcal{X}) \times L^\infty_b(\mathcal{X}) \times L^{q_{j+1}}(\mathcal{X}) \cdots \times L^{q_m}(\mathcal{X}) \to L^q(\mathcal{X}),$$

with norm bounded by at most a positive constant multiple of $C_K + A$. Now notice that each point of the form

$$(1/q_1, 1/q_2, \ldots, 1/q_m),$$
with $1 < q_1, \ldots, q_m < \infty$ and $1/q_1 + \cdots + 1/q_m < 1$, lies in the open convex hull of points of the form
\[
\left(\frac{1}{q_1}, \ldots, \frac{1}{q_{j-1}}, 0, \frac{1}{q_{j+1}}, \ldots, \frac{1}{q_m}\right), \quad 1 \leq j \leq m.
\]
Based on [43, Theorem 4.6] (see also [50]), T is of strong type for any point in this convex hull with a bound controlled by a positive constant multiple of $C_K + A$, which completes the proof of Theorem 5.9. ■
6. Bilinear T^1-theorems on Triebel–Lizorkin and Besov spaces

A powerful method to prove the boundedness of operators on Triebel–Lizorkin or Besov spaces is to show that they map appropriate atoms into molecules. This method goes back to Y. Meyer \[81\] and it was used by Frazier, Han, Jawerth and Weiss \[32\], and by Frazier, Torres and Weiss \[35\] to prove the T^1 theorem for linear Calderón–Zygmund operators on Triebel–Lizorkin spaces; see also the work of Torres \[99\]. A systematic treatment of bilinear operators through the use of wavelet decompositions was developed by Grafakos and Torres \[51\]. Bényi \[3\] applied such decomposition techniques to obtain a T^1-theorem for bilinear operators on the space $\dot{F}^0_{p,q}(\mathbb{R}^n)$ for $1 \leq p < \infty$ and $1 \leq q \leq \infty$. Bényi \[2\] has also studied more singular pseudodifferential operators with forbidden symbols on Lipschitz and Besov spaces.

Motivated by these pioneering works, in this section, we prove T^1 theorems for bilinear Calderón–Zygmund operators on Triebel–Lizorkin spaces $\dot{F}^s_{p,q}(\mathcal{X})$ and Besov spaces $\dot{B}^s_{p,q}(\mathcal{X})$ for full admissible ranges of s, p, q; see Theorems 6.14 and 6.15. This successfully addresses an open problem posed by Grafakos and Torres \[55, \text{p. 85}\].

6.1. Bilinear weak boundedness property. Let Q denote the collection of Christ’s dyadic cubes as in Lemma \[2.5\]. For any $k \in \mathbb{Z}$, let

$$Q_k := \{Q^k_\alpha : \alpha \in I_k\}.$$

Denote by c_Q the center of every cube $Q \in Q$.

Definition 6.1. Let $\eta \in (0, 1]$. A continuous bilinear operator

$$T : C^\eta_b(\mathcal{X}) \times C^\eta_b(\mathcal{X}) \to (C^\eta_b(\mathcal{X}))'$$

is said to satisfy the **bilinear weak boundedness property** (for short, $T \in \text{BWBP}(\eta)$) if there exists a positive constant C such that, for all $f, g, h \in \mathcal{T}(\eta, x, r)$ and $i \in \{1, 2\}$,

$$\langle T^{*,i}(f, g), h \rangle \leq C \mu(B(x, r)). \quad (6.1)$$

Denote by $\|T\|_{\text{BWBP}(\eta)}$ the smallest C satisfying (6.1).

If $T \in \text{BWBP}(\eta)$ and K is the distribution kernel of T as defined in (3.3), then (6.1) is equivalent to the following:

$$|\langle K, f \otimes g \otimes h \rangle| \leq C \mu(B(x, r)), \quad \forall f, g, h \in \mathcal{T}(\eta, x, r), \quad (6.2)$$

where above and in what follows,

$$(f \otimes g \otimes h)(x, y, z) = f(x)g(y)h(z), \quad \forall x, y, z \in \mathcal{X}.$$

[54]
However, different from the Euclidean case, we do not know whether \((6.2)\) holds for general “bump functions” on \(X^3\) or not. In other words, we do not known whether \((6.2)\) implies that

\[
|\langle K, F \rangle| \leq C\mu(B(x, r))
\]

or not whenever \(F : X^3 \to \mathbb{C}\) satisfies that, for all \(x_0, x_1, x_2 \in X\,

1. supp \(F \subset B(x, r) \times B(x, r) \times B(x, r)\) for some \(x \in X\) and \(r > 0\);
2. \(|F|_{L^\infty(X \times X \times X)} \leq 1\);
3. \(|F(\cdot, x_1, x_2)|_{\dot{C}^\gamma(X)} \leq r^{-\gamma}\), \(|F(x_0, \cdot, x_2)|_{\dot{C}^\gamma(X)} \leq r^{-\gamma}\) and
 \(|F(x_0, x_1, \cdot)|_{\dot{C}^\gamma(X)} \leq r^{-\gamma}\).

The following lemma, usually referred to as Meyer’s lemma (see Meyer \[81\], also Torres \[99\] for its linear version), was proved by Bényi \[3\] for bilinear Calderón–Zygmund operators on \(\mathbb{R}^n\). This bilinear Meyer’s lemma is crucial for the proof of \(T\) mapping atoms into bilinear molecules. We mention that the proof for RD-spaces is much more subtle than that in \(\mathbb{R}^n\).

Lemma 6.2. Let \(\eta \in (0, 1]\) and

\[
D^\eta := X^3 \setminus \{(x, x, x) : x \in X\}.
\]

Suppose that \(T \in \text{BWBP}(\eta)\) and its kernel \(K\) satisfies that, for all \((x_0, x_1, x_2) \in D^\eta\),

\[
|K(x_0, x_1, x_2)| \leq C_K \frac{1}{[V(x_0, x_1) + V(x_0, x_2)]^2}.
\]

If \(f, g, h \in C^\eta_b(X)\) and \(f \otimes g \otimes h\) vanishes on the diagonal \(\{(x, x, x) : x \in X\}\), then

\[
\langle T(f, g), h \rangle = \int_{D^\eta} K(x_0, x_1, x_2) f(x_1) g(x_2) h(x_0) \, dx_0 \, dx_1 \, dx_2 \tag{6.3}
\]

and the integral on the right of \((6.3)\) is absolutely convergent.

Before we prove Lemma 6.2, we first establish the following auxiliary estimate.

Lemma 6.3. Let \(\alpha \in (0, \infty)\), \(x_0 \in X\) and \(R \in (0, \infty)\). Then

\[
\int_{B(x_0, R)} \int_{B(x_0, R)} \int_{B(x_0, R)} \frac{d(x, x_1)^\alpha + d(x, x_2)^\alpha}{[V(x, x_1) + V(x, x_2)]^2} \, d\mu(x_1) \, d\mu(x_2) \, d\mu(x) < \infty.
\]

Proof. Observe that, when \(x_1, x_2, x \in B(x_0, R)\), we have

\[
d(x, x_1) < 2R \quad \text{and} \quad d(x, x_2) < 2R.
\]

With this observation, we may assume that \(\alpha < \kappa\); otherwise we may bound

\[
d(x, x_1)^\alpha + d(x, x_2)^\alpha
\]

by \((2R)^{\alpha-\epsilon}[d(x, x_1)^\epsilon + d(x, x_2)^\epsilon]\) for some \(\epsilon \in (0, \kappa)\).

Now assume that \(\alpha < \kappa\) and we prove the lemma. Indeed, it suffices to prove that there exists a positive constant \(C\) such that, for all \(x \in B(x_0, R)\),

\[
\int_{B(x_0, R)} \int_{B(x_0, R)} \frac{d(x, x_1)^\alpha + d(x, x_2)^\alpha}{[V(x, x_1) + V(x, x_2)]^2} \, d\mu(x_1) \, d\mu(x_2) \leq C.
\]
To this end, by symmetry, we see that it is enough to show that
\[
\int_{B(x_0, R)} \int_{d(x, z) \geq d(x, x_1)} \frac{d(x, x_1)^\alpha + d(x, x_2)^\alpha}{[V(x, x_1) + V(x, x_2)]^2} \, d\mu(x_2) \, d\mu(x_1) \leq C
\] (6.4)
for some positive constant \(C\) independent of \(x \in B(x_0, R)\). To prove (6.4), we observe that
\[
\int_{d(x, z) \geq d(x, x_1)} \frac{d(x, x_1)^\alpha + d(x, x_2)^\alpha}{[V(x, x_1) + V(x, x_2)]^2} \, d\mu(x_2) \sim \int_{d(x, z) \geq d(x, x_1)} \frac{d(x, x_2)^\alpha}{[V(x, x_2)]^2} \, d\mu(x_2),
\]
where the right hand of this inequality can be estimated as follows:
\[
\int_{d(x, z) \geq d(x, x_1)} \frac{d(x, x_2)^\alpha}{[V(x, x_2)]^2} \, d\mu(x_2)
\]
\[
= \sum_{j=1}^\infty \int_{2^{j-1}d(x, x_1) \leq d(x, z) < 2^jd(x, x_1)} \frac{d(x, x_2)^\alpha}{[V(x, x_2)]^2} \, d\mu(x_2)
\]
\[
\sim \sum_{j=1}^\infty \int_{2^{j-1}d(x, x_1) \leq d(x, z) < 2^jd(x, x_1)} \frac{[2^j d(x, x_1)]^\alpha}{[\mu(B(x, 2^jd(x, x_1)))]^2} \, d\mu(x_2)
\]
\[
\lesssim \sum_{j=1}^\infty \frac{[2^j d(x, x_1)]^\alpha}{\mu(B(x, 2^jd(x, x_1)))}.
\]

Furthermore, from the reverse doubling condition (2.2) and the assumption \(\alpha < \kappa\), it follows that
\[
\sum_{j=1}^\infty \frac{[2^j d(x, x_1)]^\alpha}{\mu(B(x, 2^jd(x, x_1)))} \lesssim \sum_{j=1}^\infty \frac{[2^j d(x, x_1)]^\alpha}{2^{j\kappa} \mu(B(x, d(x, x_1)))} \lesssim \frac{d(x, x_1)^\alpha}{\mu(B(x, d(x, x_1)))}.
\]

Thus, we have
\[
\int_{d(x, z) \geq d(x, x_1)} \frac{d(x, x_1)^\alpha + d(x, x_2)^\alpha}{[V(x, x_1) + V(x, x_2)]^2} \, d\mu(x_2) \lesssim \frac{d(x, x_1)^\alpha}{\mu(B(x, d(x, x_1)))}.
\]

Integrating both sides of this inequality on the ball \(B(x_0, R)\) with respect to the variable \(x_1\) and then using Lemma 2.4(c), we see that the right hand side of (6.4) is bounded by a positive constant multiple of
\[
\int_{B(x_0, R)} \frac{d(x, x_1)^\alpha}{\mu(B(x, d(x, x_1)))} \, d\mu(x_1) \lesssim R^\alpha,
\]
which proves (6.4), and hence completes the proof of Lemma 6.3. ■

Proof of Lemma 6.2. Let \(\{S_k\}_{k \in \mathbb{Z}}\) be a 1-ATI with bounded support and with additional properties that every \(S_k(x, y)\) is non-negative and
\[
S_k(x, y) = S_k(y, x)
\]
for all \(x, y \in \mathcal{X}\) and all \(k \in \mathbb{Z}\). Without loss of generality, we may as well assume that \(S_k(x, y) = 0\) when \(d(x, y) \geq 2^{-k}\). Let \(\psi \in C_c^\infty(\mathbb{R})\) be a non-negative radial function such that \(0 \leq \psi \leq 1\), \(\psi(\xi) = 1\) if \(|\xi| \leq 2\), and \(\psi(\xi) = 0\) if \(|\xi| > 4\). Define
\[
\lambda_k(x, y) := \int_{\mathcal{X}} S_k(x, z) \psi(2^k d(z, y)) \, d\mu(z), \quad \forall k \in \mathbb{Z} \text{ and } x, y \in \mathcal{X}.
\]
It is easy to see that functions \(\{ \lambda_k \}_{k \in \mathbb{Z}} \) enjoy the following properties:

(i) every \(\lambda_k \in C_0^\infty(\mathcal{X}) \);
(ii) \(0 \leq \lambda_k(x, x) \leq 1 \) for all \(x \in \mathcal{X} \);
(iii) \(\lambda_k(x, y) = 0 \) when \(d(x, y) \geq 2^{-k+3} \);
(iv) \(\lambda_k(x, y) = 1 \) when \(d(x, y) < 2^{-k} \);
(v) \(\lambda_k(x, y) = \lambda_k(y, x) \) for all \(x, y \in \mathcal{X} \).

Observe that, if \(f, g \in C_0^\infty(\mathcal{X}) \), then \(fg \in C_0^\infty(\mathcal{X}) \). So we can write

\[
\langle T(f, g), h \rangle = \langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)\lambda_k(\cdot, x)), h(x) \rangle
+ \langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)[1 - \lambda_k(\cdot, x)])(x), h(x) \rangle
+ \langle T(f(\cdot)[1 - \lambda_k(\cdot, x)], g(\cdot))(x), h(x) \rangle.
\] (6.5)

First we consider the second term of (6.5). Since \(x \notin \text{supp}(f(\cdot)\lambda_k(\cdot, x)) \cap \text{supp}(g(\cdot)[1 - \lambda_k(\cdot, x)]) \), by (6.3), we obtain

\[
T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)[1 - \lambda_k(\cdot, x)])(x)
= \int_{\mathcal{X}^2} K(x, x_1, x_2)f(x_1)\lambda_k(x_1, x)g(x_2)[1 - \lambda_k(x_2, x)] d\mu(x_1) d\mu(x_2).
\]

Without loss of generality, we may assume that \(f, g, h \) are supported on some ball \(B(x_0, R) \) with \(x_0 \in \mathcal{X} \) and \(R \in (0, \infty) \). Hence,

\[
\langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)[1 - \lambda_k(\cdot, x)]), h(x) \rangle
= \int_{B(x_0, R)^3} K(x, x_1, x_2)\lambda_k(x_1, x)[1 - \lambda_k(x_2, x)]
\times f(x_1)g(x_2) h(x) d\mu(x_1) d\mu(x_2) d\mu(x)
= \int_{B(x_0, R)^3} K(x, x_1, x_2)\lambda_k(x_1, x)[1 - \lambda_k(x_2, x)]
\times [f(x_1)g(x_2) - f(x)g(x)] h(x) d\mu(x_1) d\mu(x_2) d\mu(x),
\] (6.6)

where we used the fact \(f(x)g(x)h(x) = 0 \) for all \(x \in \mathcal{X} \). Since \(f, g \in C_0^\infty(\mathcal{X}) \), we have

\[
|f(x_1)g(x_2) - f(x)g(x)| \leq |f(x_1)||g(x_2) - g(x)| + |f(x_1) - f(x)||g(x)|
\leq \|f\|_{L^\infty(\mathcal{X})}\|g\|_{\dot{C}^\eta(\mathcal{X})}d(x_2, x)^\eta + \|g\|_{L^\infty(\mathcal{X})}\|f\|_{\dot{C}^\eta(\mathcal{X})}d(x_1, x)^\eta,
\]

so the integrand in the last formulae of (6.6) is bounded by

\[
C_K \left[\|f\|_{L^\infty(\mathcal{X})}\|g\|_{\dot{C}^\eta(\mathcal{X})} + \|g\|_{L^\infty(\mathcal{X})}\|f\|_{\dot{C}^\eta(\mathcal{X})} \right] \|h\|_{L^\infty(\mathcal{X})} \frac{d(x_1, x)^\eta + d(x_2, x)^\eta}{[V(x, x_1) + V(x, x_2)]^2},
\]

which is integrable on the product domain \(B(x_0, R)^3 \) in terms of Lemma 6.3. From this and the Lebesgue dominated convergence theorem, it follows that

\[
\lim_{k \to \infty} \langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)[1 - \lambda_k(\cdot, x)]), h(x) \rangle
= \int_{B(x_0, R)^3} \lim_{k \to \infty} \lambda_k(x_1, x)[1 - \lambda_k(x_2, x)] K(x, x_1, x_2)
\times [f(x_1)g(x_2) - f(x)g(x)] h(x) d\mu(x_1) d\mu(x_2) d\mu(x) = 0.
\]
For the third term of (6.5), an argument similar as above implies that

$$\lim_{k \to \infty} \langle T(f(\cdot)[1 - \lambda_k(\cdot, x)], g(\cdot))(x), h(x) \rangle$$

$$= \int_{H} \lim_{k \to \infty} [1 - \lambda_k(x, x)] K(x, x, x, x) [f(x_1)g(x_2) - f(x)g(x)] h(x) \, d\mu(x_1) \, d\mu(x_2) \, d\mu(x)$$

$$= \int_{D^B} K(x, x, x, x) f(x_1)g(x_2)h(x) \, d\mu(x_1) \, d\mu(x_2) \, d\mu(x).$$

Therefore, to obtain (6.3), it suffices to prove that

$$\lim_{k \to \infty} \langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)\lambda_k(\cdot, x))(x), h(x) \rangle = 0. \tag{6.7}$$

To this end, we claim that, for any $k \in \mathbb{Z}$ and $x \in X$,

$$\lambda_k(\cdot, x) = \lim_{J \to \infty} \sum_{Q \in Q_J} \mu(Q) S_k(\cdot, c_Q) \psi(2^k d(c_Q, x)) \tag{6.8}$$

holds true in $C^0_0(X)$. Indeed, (6.8) was proved in [60, p. 31, (2.85)]; moreover, for each fixed large number J and $x, y \in X$, say $J \geq k + 10$, the sum

$$\sum_{Q \in Q_J} \mu(Q) S_k(\cdot, c_Q) \psi(2^k d(c_Q, x))$$

has only finitely many non-zero terms.

For notational convenience, for any $Q \in Q$ and $k \in \mathbb{Z}$, set

$$\Psi_{k,Q}(\cdot) := \psi(2^k d(c_Q, \cdot)) \quad \text{and} \quad S_{k,Q}(\cdot) := S_k(\cdot, c_Q).$$

By (6.8), we write

$$\langle T(f(\cdot)\lambda_k(\cdot, x), g(\cdot)\lambda_k(\cdot, x))(x), h(x) \rangle$$

$$= \lim_{J \to \infty} \sum_{Q \in Q_J} \mu(Q) \mu(P) \langle T(f\Psi_{k,Q}, g\Psi_{k,P}), S_{k,Q} S_{k,P} h \rangle. \tag{6.9}$$

Taking into account the support condition on $S_{k,Q} S_{k,P} h$, we see that the sums in (6.9) are over all $Q, P \in Q_J$ satisfying $Q \cap \supp h \neq \emptyset, P \cap \supp h \neq \emptyset$ and $d(c_Q, c_P) \leq 2^{-k+1}$. Observe that

$$\langle T(f\Psi_{k,Q}, g\Psi_{k,P}), S_{k,Q} S_{k,P} h \rangle$$

$$= \langle T([f - f(c_Q)]\Psi_{k,Q}, [g - g(c_P)]\Psi_{k,P}), S_{k,Q} S_{k,P} h \rangle$$

$$+ h(c_Q) \langle T([f - f(c_Q)]\Psi_{k,Q}, [g - g(c_P)]\Psi_{k,P}), S_{k,Q} S_{k,P} h \rangle$$

$$+ g(c_P) \langle T([f - f(c_Q)]\Psi_{k,Q}, S_{k,Q} S_{k,P} h), \Psi_{k,P} \rangle$$

$$+ f(c_Q) \langle T([f - f(c_Q)]\Psi_{k,Q}, S_{k,Q} S_{k,P} h), \Psi_{k,P} \rangle$$

$$=: Z_1 + Z_2 + Z_3 + Z_4.$$

To estimate Z_1 through Z_4, we apply the hypothesis $T \in \text{BWBP}(\eta)$. Notice that

$$\supp ([f - f(c_Q)]\Psi_{k,Q}) \subset B(c_Q, 2^{-k+2})$$

and, for any $x \in X$,

$$\|f(x) - f(c_Q)\|_{\tilde{C}^\eta(X)} \leq \|f\|_{\tilde{C}^\eta(X)} \|d(x, c_Q)\|_{\tilde{C}^\eta(X)}$$

$$\leq 2^{(-k+2)\eta} \|f\|_{\tilde{C}^\eta(X)}.$$ \(\tag{6.10}\)
Now we show, for all \(x, x' \in \mathcal{X} \),
\[
|f(x) - f(c_Q)| \Psi_{k,Q}(x) - |f(x') - f(c_Q)| \Psi_{k,Q}(x')| \lesssim d(x, x')^\eta. \tag{6.11}
\]
To this end, by the support condition of \(\Psi_{k,Q} \), we may as well assume that
\[
d(x, c_Q) \leq 2^{-k+2} \quad \text{or} \quad d(x', c_Q) \leq 2^{-k+2};
\]
otherwise the left-hand side of (6.11) is equal to 0 and (6.11) holds automatically. By symmetry, it suffices to consider the case \(d(x', c_Q) \leq 2^{-k+2} \). Then, it holds that, for all \(x, x' \in \mathcal{X} \),
\[
|f(x) - f(c_Q)| \Psi_{k,Q}(x) - |f(x') - f(c_Q)| \Psi_{k,Q}(x')|
\leq |f(x) - f(x')| |\Psi_{k,Q}(x)| + |f(x') - f(c_Q)||\Psi_{k,Q}(x) - \Psi_{k,Q}(x')|
\lesssim \|f\|_{C^\eta(\mathcal{X})} d(x, x')^\eta + \|f\|_{C^\eta(\mathcal{X})} d(x', c_Q)^\eta \left[2^k d(x, x') \right]^\eta
\lesssim d(x, x')^\eta,
\]
which proves (6.11). From (6.10) and (6.11), it follows that there exists a positive constant \(C \) such that, for all \(k \in \mathbb{Z} \), \(J \geq k + 10 \) and \(Q \in \mathcal{Q}_J \),
\[
C 2^{k \eta} |f - f(c_Q)| \Psi_{k,Q} \in \mathcal{T}(\eta, c_Q, 2^{-k+2}).
\]
As we are considering the cubes \(Q \) and \(P \) such that \(d(c_Q, c_P) \leq 2^{-k+1} \), so an argument similar to that used in the proofs of (6.10) and (6.11) also implies that there exists a positive constant \(C \) such that, for all \(k \in \mathbb{Z} \), \(J \geq k + 10 \) and \(Q, P \in \mathcal{Q}_J \),
\[
C 2^{k \eta} |g - g(c_P)| \Psi_{k,P} \in \mathcal{T}(\eta, c_Q, 2^{-k+2});
\]
\[
CV_{2^{-k}}(c_Q)V_{2^{-k}}(c_P)S_{k,Q}S_{k,P} \in \mathcal{T}(\eta, c_Q, 2^{-k+2});
\]
\[
C 2^{k \eta} V_{2^{-k}}(c_Q)V_{2^{-k}}(c_P)S_{k,Q}S_{k,P}[h - h(c_Q)] \in \mathcal{T}(\eta, c_Q, 2^{-k+2}).
\]
By these and the hypothesis \(T \in \text{BWBP}(\eta) \), we obtain
\[
|Z_1| \lesssim 2^{-3k \eta} \mu(B(c_Q, 2^{-k+2})) \frac{1}{V_{2^{-k}}(c_Q)V_{2^{-k}}(c_P)},
\]
\[
|Z_2| \lesssim 2^{-2k \eta} \mu(B(c_Q, 2^{-k+2})) \frac{1}{V_{2^{-k}}(c_Q)V_{2^{-k}}(c_P)}
\]
and
\[
|Z_3| \leq |g(c_P) \langle T([f - f(c_Q)] \Psi_{k,Q}, S_{k,Q}S_{k,P}[h - h(c_Q)]) |
+ |g(c_P)h(c_Q) \langle T([f - f(c_Q)] \Psi_{k,Q}, S_{k,Q}S_{k,P})]\]
\lesssim 2^{-k \eta} \mu(B(c_Q, 2^{-k+2})) \frac{1}{V_{2^{-k}}(c_Q)V_{2^{-k}}(c_P)}.
\]
Using the assumption \(f(x)g(x)h(x) = 0 \) for all \(x \in \mathcal{X} \), we write \(Z_4 \) as
\[
Z_4 = f(c_Q) \langle T(\Psi_{k,Q}, [g - g(c_P)] \Psi_{k,P} , S_{k,Q}S_{k,P}[h - h(c_Q)])
+ f(c_Q)g(c_P) \langle T(\Psi_{k,Q}, \Psi_{k,P}) , S_{k,Q}S_{k,P}[h - h(c_Q)])
+ f(c_Q)h(c_Q) \langle T(\Psi_{k,Q}, [g - g(c_P)] \Psi_{k,P}) , S_{k,Q}S_{k,P})
+ f(c_Q)h(c_Q) [g(c_P) - g(c_Q)] \langle T(\Psi_{k,Q}, \Psi_{k,P}) , S_{k,Q}S_{k,P})
\]
\[= Z_{4,1} + Z_{4,2} + Z_{4,3} + Z_{4,4}.\]
As the estimates of Z_1 through Z_3, applying the hypothesis $T \in \text{BWBP}(\eta)$ gives us that
\[
|Z_{4,1}| + |Z_{4,2}| + |Z_{4,3}| \lesssim 2^{-k\eta} \mu(B(c_Q, 2^{-k+2})) \frac{1}{V_{2-k}(c_Q)V_{2-k}(c_P)}.
\]
By $d(c_Q, c_P) \leq 2^{-k+1}$, $g \in C_0^\eta(\mathcal{X})$, $T \in \text{BWBP}(\eta)$ and the facts
\[
C\psi_{k,P}, \ C\psi_{k,Q}, \ CV_{2-k}(c_P)V_{2-k}(c_P)S_{k,Q}S_{k,P} \in T(\eta, c_Q, 2^{-k+2}),
\]
where C is a positive constant, we also obtain
\[
|Z_{4,4}| \lesssim 2^{-k\eta} \mu(B(c_Q, 2^{-k+2})) \frac{1}{V_{2-k}(c_Q)V_{2-k}(c_P)}.
\]
Combining the estimates of Z_1 through Z_4, we conclude that
\[
\langle T(f\lambda_k(\cdot, x), g\lambda_k(\cdot, x))(x), h(x)\rangle \lesssim 2^{-k\eta} \mu(Q)\mu(P) \frac{1}{V_{2-k}(c_Q)V_{2-k}(c_P)}.
\]
Now we insert this estimate into (6.9) and see that, for all $J \geq k + 10$,
\[
|\langle T(f\lambda_k(\cdot, x), g\lambda_k(\cdot, x))(x), h(x)\rangle| \lesssim 2^{-k\eta} \lim_{J \to \infty} \sum_{Q \in \mathcal{Q}_J} \sum_{\mu(a, c_Q) < 2^{-k+1}} \mu(Q)\mu(P) \frac{1}{V_{2-k}(c_Q)V_{2-k}(c_P)}.
\]
\[
\lesssim 2^{-k\eta}.
\]
Letting $k \to \infty$ we obtain (6.7). This concludes the proof of the lemma.

6.2. Bilinear molecules. Now we elaborate on the concept of bilinear molecules, as introduced by Grafakos–Torres in [51], and stress the importance of mapping properties from atoms to molecules in the boundedness of bilinear operators on Besov and Triebel–Lizorkin spaces. The whole section stems from the seminal linear work by Y. Meyer [81], and David, Journé and Semmes in [25] [26].

DEFINITION 6.4. Let $\beta \in (0, 1]$. If $Q \in \mathcal{Q}_k$ for some $k \in \mathbb{Z}$, a function a_Q is called a β-atom associated with Q if the following hold:

(i) $\text{supp } a_Q \subset Q$ and, for all $x \in \mathcal{X}$,
\[
|a_Q(x)| \leq \mu(Q)^{-1/2};
\]

(ii) for all $x, x' \in \mathcal{X}$ such that $d(x, x') \leq 2^{-k-1}$,
\[
|a_Q(x) - a_Q(x')| \leq \mu(Q)^{-1/2}[2^k d(x, x')]^\beta;
\]

(iii) \[
\int_{\mathcal{X}} a_Q(y) \, d\mu(y) = 0.
\]

Obviously, any β-atom is an element of
\[
\{f \in \mathcal{G}(\beta, \gamma) : f \text{ has bounded support}\}
\]
for all $\gamma \in (0, \infty)$. The converse is also true modulo a positive constant.

Bilinear molecules on \mathbb{R}^n were first introduced by Grafakos and Torres in [51]; these molecules as well as their derivatives decay rapidly at infinity. Here we introduce bilinear molecules on RD-spaces with no requirements on their smoothness.
6.2. Bilinear molecules

Definition 6.5. Let $\gamma \in (0, \infty)$ and $\sigma \in (0, \infty)$. If $Q \in \mathcal{Q}_k$ and $P \in \mathcal{Q}_j$ for some $k, j \in \mathbb{Z}$, a function $M_{Q,P}$ is called a **bilinear** (γ, σ)-**molecule** associated with Q and P if, for almost every $x \in \mathcal{X}$,

$$|M_{Q,P}(x)| \leq 2^{-|k-j|\sigma} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-k}; \gamma, x, c_Q) \mathcal{K}(2^{-j}; \gamma, x, c_P)$$

and

$$\int_{\mathcal{X}} M_{Q,P}(x) \, d\mu(x) = 0,$$

where, for any given $\epsilon \in (0, \infty)$, $t > 0$ and all $x, y \in \mathcal{X}$,

$$\mathcal{K}(t; \epsilon, x, y) := \frac{1}{V_t(x) + V_t(y) + V(x, y)} \left[\frac{t}{t + d(x, y)} \right]^\epsilon.$$

Theorem 6.6. Let $\eta \in (0, 1]$, $\beta \in (0, 1]$, $T \in \text{BWBP}(\eta)$ with a kernel $K \in \text{Ker}(2, C_K, \delta)$ for some $C_K > 0$ and $\delta > 0$. Assume that, for all $g \in C_0^0(\mathcal{X})$,

$$T(g, 1) = T^{*, 1}(1, g) = 0 \quad \text{in} \quad (C_0^0(\mathcal{X}))'.$$

If a_Q is a β-atom associated with $Q \in \mathcal{Q}_k$ for some $k \in \mathbb{Z}$, and a_P a β-atom associated with $P \in \mathcal{Q}_j$ for some integer $j \leq k$, then, for any given

$$\gamma \in (0, \delta/2] \quad \text{and} \quad \sigma \in (0, \min\{\delta - \gamma, \beta, \kappa\}],$$

$T(a_Q, a_P)$ is a constant multiple of a bilinear (γ, σ)-molecule associated with Q and P.

Proof. Without loss of generality, we may as well assume that $\beta \leq \kappa$, where κ is the reverse doubling exponent in (2.2), since any β-atom is a β'-atom whenever $\beta' \in (0, \beta]$.

We first estimate $|T(a_Q, a_P)(x)|$ for all $x \in \mathcal{X}$ by considering the following four cases:

Case 1: $d(x, c_Q) \geq C_5 2^{-k+10}$ and $d(x, c_P) \geq C_5 2^{-j+10}$. In this case, by (3.3) and

$$\int_{\mathcal{X}} a_Q(y) \, d\mu(y) = 0,$$

we write

$$|T(a_Q, a_P)(x)| = \left| \int_{\mathcal{X}^2} K(x, y_1, y_2) a_Q(y_1) a_P(y_2) \, d\mu(y_1) \, d\mu(y_2) \right|$$

$$= \left| \int_{\mathcal{X}^2} [K(x, y_1, y_2) - K(x, c_Q, y_2)] a_Q(y_1) a_P(y_2) \, d\mu(y_1) \, d\mu(y_2) \right|.$$

Since $\text{supp} \ a_Q \subset Q$ and $\text{supp} \ a_P \subset P$, it follows that, if the integrand is non-zero, then

$$d(x, y_1) \sim d(x, c_Q), \quad d(x, y_2) \sim d(x, c_P) \quad \text{and} \quad d(y_1, c_Q) \leq C_5 2^{-k} \leq d(x, y_1)/2.$$

Applying the regularity condition of K and the size conditions of a_Q and a_P, we conclude that

$$|T(a_Q, a_P)(x)| \lesssim \int_{\mathcal{Q}} \int_{\mathcal{P}} \left[\frac{d(y_1, c_Q)}{\max\{d(x, y_1), d(x, y_2)\}} \right]^\delta \frac{\mu(Q)^{-1/2} \mu(P)^{-1/2}}{[V(x, y_1) + V(x, y_2)]^2} \, d\mu(y_1) \, d\mu(y_2)$$

$$\lesssim \left[\frac{2^{-k}}{\max\{d(x, c_P), d(x, c_Q)\}} \right]^\delta \frac{\mu(Q)^{1/2} \mu(P)^{1/2}}{[\mu(B(x, d(x, c_Q)) + \mu(B(x, d(x, c_P)))^2]}$$

$$\lesssim 2^{(j-k)(\delta - \gamma)} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-k}; \gamma, x, c_Q) \mathcal{K}(2^{-j}; \gamma, x, c_P).$$
Case 2: $d(x, cQ) < C_5 2^{-k+10}$ and $d(x, cP) \geq C_5 2^{-j+10}$. In this case, again by (3.3) and
\[
\int_X a_Q(y) \, d\mu(y) = 0,
\]
we write
\[
|T(a_Q, a_P)(x)| = \left| \int_{X^2} [K(x, y_1, y_2) - K(x, cQ, y_2)]a_Q(y_1)a_P(y_2) \, d\mu(y_1) \, d\mu(y_2) \right|.
\]
Notice that, for all $y_1 \in Q$ and $y_2 \in P$,
\[
d(x, y_2) \sim d(x, cP) \quad \text{and} \quad d(y_1, cQ) \leq C_5 2^{-k} \leq C_5 2^{-j} \leq d(x, y_2)/2.
\]
Applying the regularity condition of K as well as the size conditions on a_Q and a_P implies that
\[
|T(a_Q, a_P)(x)| \lesssim \int_Q \int_P \left[\frac{d(y_1, cQ)}{\max\{d(x, y_1), d(x, y_2)\}} \right]^\delta \frac{\mu(Q)^{-1/2} \mu(P)^{-1/2}}{[V(x, y_1) + V(x, y_2)]^2} \, d\mu(y_1) \, d\mu(y_2)
\]
\[
\lesssim 2^{(j-k)} \frac{2^{-j}}{d(x, cP)} \left(\frac{\mu(Q)^{1/2} \mu(P)^{1/2}}{\mu(B(x, d(x, cP)))} \right)^2
\]
\[
\lesssim 2^{(j-k)} \mu(Q)^{1/2} \mu(P)^{1/2} \kappa(2^{-k}; \gamma, x, cQ) \kappa(2^{-j}; \delta, x, cP),
\]
where we used the estimates $2^{-k}d(x, cQ) \lesssim 1$, $j \leq k$ and $V_{2^{-k}}(x) + V(x, cQ) \lesssim \mu(B(x, 2^{-k})) \lesssim \mu(B(x, 2^{-j})) \lesssim \mu(B(x, d(x, cP)))$.

Case 3: $d(x, cQ) \geq C_5 2^{-k+10}$ and $d(x, cP) < C_5 2^{-j+10}$. As in the previous two cases, we have
\[
|T(a_Q, a_P)(x)| = \left| \int_{X^2} [K(x, y_1, y_2) - K(x, cQ, y_2)]a_Q(y_1)a_P(y_2) \, d\mu(y_1) \, d\mu(y_2) \right|.
\]
Notice that, for all $y_1 \in Q$ and $y_2 \in P$,
\[
d(x, y_1) \sim d(x, cQ) \quad \text{and} \quad d(y_1, cQ) \leq C_5 2^{-k} \leq d(x, y_1)/2.
\]
By the regularity condition of K and the size conditions on a_Q and a_P, we know that
\[
|T(a_Q, a_P)(x)| \lesssim \int_Q \int_P \left[\frac{d(y_1, cQ)}{\max\{d(x, y_1), d(x, y_2)\}} \right]^\delta \frac{\mu(Q)^{-1/2} \mu(P)^{-1/2}}{[V(x, y_1) + V(x, y_2)]^2} \, d\mu(y_1) \, d\mu(y_2)
\]
\[
\lesssim 2^{(j-k)(\delta-\gamma)} \left[\frac{2^{-k}}{d(x, cQ)} \right]^\gamma \frac{\mu(Q)^{1/2} \mu(P)^{1/2}}{\mu(B(x, d(x, cQ)))}
\]
\[
\times \int_P \left[\frac{2^{-j}}{\max\{d(x, cQ), d(x, y_2)\}} \right]^{\delta-\gamma} \frac{1}{V(x, y_2) + V(x, cQ)} \, d\mu(y_2)
\]
\[
\lesssim 2^{(j-k)(\delta-\gamma)} \mu(Q)^{1/2} \mu(P)^{1/2} \kappa(2^{-k}; \gamma, x, cQ) \kappa(2^{-j}; \gamma, x, cP),
\]
where the last inequality is due to the following three estimates:
\[
\frac{1}{\mu(P)} \lesssim \kappa(2^{-j}; \gamma, x, cP) \quad \text{when} \quad d(x, cP) \leq C_5 2^{-j+10},
\]
\[
\left[\frac{2^{-k}}{d(x, cQ)} \right]^\gamma \frac{1}{\mu(B(x, d(x, cQ)))} \lesssim \kappa(2^{-k}; \gamma, x, cQ) \quad \text{when} \quad d(x, cQ) > C_5 2^{-j+10},
\]
To prove (6.13), by the assumption h and d.

Applying Lemma 6.2 and using the size and regularity conditions of d and hence

$$\left(\frac{2^{-j}}{\max\{d(x, c_Q), d(x, y_2)\}}\right)^{\delta - \gamma} \frac{1}{V(x, y_2) + V(x, c_Q)} d\mu(y_2)$$

$$= \sum_{\ell=0}^{\infty} \int_{d(x, y_2) \sim 2^{\ell-k}} \left(\frac{2^{-j}}{\max\{d(x, c_Q), d(x, y_2)\}}\right)^{\delta - \gamma} \frac{1}{V(x, y_2) + V(x, c_Q)} d\mu(y_2)$$

$$\lesssim \sum_{\ell=0}^{\infty} \int_{d(x, y_2) \sim 2^{\ell-k}} 2^{-\ell(\delta - \gamma)} \frac{1}{\mu(B(x, 2^{\ell-k})} d\mu(y_2)$$

$$\lesssim 1,$$

where the notation $d(x, y_2) \sim 2^{\ell-k}$ means that $2^{\ell-k} \leq d(x, y_2) < 2^{\ell-k+1}$ when $\ell \in \mathbb{N}$, and $d(x, y_2) < 2^{-k}$ when $\ell = 0$.

Case 4: $d(x, c_Q) < 2^{-k+10}$ and $d(x, c_P) < 2^{-j+10}$. In this case, it suffices to show that

$$\left\| T(a_Q, a_P) \chi_{B(c_Q, 2^{-k+10}) \cap B(c_P, 2^{-j+10})} \right\|_{L^\infty(\mathcal{X})} \lesssim 2^{-(j-k)\beta} \mu(Q)^{-1/2} \mu(P)^{-1/2}.$$ (6.12)

Since (\mathcal{X}, d, μ) is assumed to be an RD-space, it follows that $C_0^\infty(\mathcal{X})$ is dense in $L^1(\mathcal{X})$ (see [60] Corollary 2.11]). Thus, the proof of (6.12) would follow from the estimate

$$\left\| T(a_Q, a_P), h) \right\| \lesssim 2^{-(j-k)\beta} \mu(Q)^{-1/2} \mu(P)^{-1/2}$$ (6.13)

for all functions $h \in C_0^\infty(\mathcal{X})$ with $\|h\|_{L^1(\mathcal{X})} = 1$ and $\text{supp } h \subset B(c_Q, 2^{-k+10}) \cap B(c_P, 2^{-j+10})$.

To prove (6.13), by the assumption $T(g, 1) = 0$ in $(C_0^\infty(\mathcal{X}))'$ for all $g \in C_0^\infty(\mathcal{X})$, we have

$$\langle T(a_Q, 1), h \rangle = 0$$

and hence

$$\langle T(a_Q, a_P), h) = \langle T(a_Q, a_P - a_P(x)), h(x) \rangle.$$

Applying Lemma 6.2 and using the size and regularity conditions of a_P, we see that

$$\left|\langle T(a_Q, [a_P - a_P(x)]), h(x) \rangle \right|$$

$$= \left| \int_{\partial^\bullet} K(x, y_1, y_2) a_Q(y_1) [a_P(y_2) - a_P(x)] h(x) \, d\mu(y_1) \, d\mu(y_2) \, d\mu(x) \right|$$

$$\lesssim \int_{(x, y_1, y_2) \in \partial^\bullet} \frac{\mu(Q)^{-1/2} \mu(P)^{-1/2}}{[V(x, y_1) + V(x, y_2)]^2} \min \left\{ \left[\frac{d(x, y_2)}{2^{-j}} \right]^{\beta}, 1 \right\} |h(x)| \, d\mu(y_1) \, d\mu(y_2) \, d\mu(x).$$

By the doubling and reverse doubling conditions of μ, we obtain

$$\int_{Q} \int_{\mathcal{X}} \min \left\{ \left[\frac{d(x, y_2)}{2^{-j}} \right]^{\beta}, 1 \right\} \frac{1}{[V(x, y_1) + V(x, y_2)]^2} d\mu(y_2) \, d\mu(y_1)$$

$$\leq \sum_{s=0}^{\infty} \sum_{t \in \mathbb{Z}} \int_{d(x, y_1) \sim 2^{-k-s}} \int_{d(x, y_2) \sim 2^{-j-t}} \min \left\{ \left[\frac{d(x, y_2)}{2^{-j}} \right]^{\beta}, 1 \right\} \frac{1}{[V(x, y_1) + V(x, y_2)]^2} d\mu(y_2) \, d\mu(y_1)$$
\[\sum_{s=0}^{\infty} \sum_{t+\gamma > s+k} 2^{-t\beta} \frac{\mu(B(x, 2^{-s-k})) \mu(B(x, 2^{-t-j}))}{[\mu(B(x, 2^{-s-k})) + \mu(B(x, 2^{-t-j}))]^2} \]\[\sum_{s=0}^{\infty} \sum_{t+\gamma > s+k} 2^{-t\beta} \frac{\mu(B(x, 2^{-s-k})) + \sum_{s=0}^{\infty} \sum_{t=s+k-j} \min \{2^{-t\beta}, 1\} \mu(B(x, 2^{-s-k}))}{\mu(B(x, 2^{-t-j}))} \]\[\sum_{s=0}^{\infty} \sum_{t+\gamma > s+k} 2^{-t\beta} \left(\frac{2^{-t-j}}{2^{-s-k}} \right)^{\kappa} + \sum_{s=0}^{\infty} \sum_{t=0}^{s+j} 2^{-t\beta} \left(\frac{2^{-s-k}}{2^{-t-j}} \right)^{\kappa} + \sum_{s=0}^{\infty} \sum_{t=-\infty}^{s-j} \left(\frac{2^{-s-k}}{2^{-t-j}} \right)^{\kappa} \]

(here we used \(\beta \leq \kappa \)), therefore,

\[|\langle T(a_Q, a_P), h \rangle| \lesssim 2^{-(k-j)\beta} \mu(Q)^{-1/2} \mu(P)^{-1/2} \int_X |h(x)| d\mu(x) \]

\[\lesssim 2^{-(k-j)\beta} \mu(Q)^{-1/2} \mu(P)^{-1/2}, \]

which proves (6.13) and hence (6.12).

Putting all estimates in four cases above together, we finally conclude that \(T(a_Q, a_P) \) satisfies the size condition of a bilinear \((\gamma, \sigma)\)-molecule associated with \(Q \) and \(P \) modulo a positive constant. Moreover, it is easy to see that

\[\int_X T(a_Q, a_P)(x) d\mu(x) = \langle T(a_Q, a_P), 1 \rangle = \langle T^{*,1}(1, a_P), a_Q \rangle = 0, \]

which completes the proof. \(\blacksquare \)

The following bilinear almost diagonal estimate is a variation of the one in [51, Proposition 3] but it is in the context of RD-spaces; see also [46, Proposition 3.2] and the related work of Bényi and Tzirakis [6].

Theorem 6.7. Let \(\ell, k, j \) be integers such that \(j \leq \ell \leq k \), \(R \in Q_\ell \), \(Q \in Q_k \) and \(P \in Q_j \). Then, for all \(\gamma \in (0, \infty) \), \(\gamma' \in (0, \gamma) \) and \(\gamma'' \in (0, \gamma) \),

\[J := \frac{1}{\mu(R)} \int_{B(c_R, C_5 2^{-\ell})} \frac{1}{V_{2^{-k}}(x) + V(x, c_Q)} \left[\frac{1}{1 + 2^{kd}(x, c_Q)} \right]^\gamma \]

\[\times \frac{1}{V_{2^{-j}}(x) + V(x, c_P)} \left[\frac{1}{1 + 2^{j}(x, c_P)} \right]^\gamma d\mu(x) \]

\[\leq C \mathcal{K}(2^{-\ell}; \gamma', c_R, c_Q) \mathcal{K}(2^{-j}; \gamma'', c_R, c_P), \]

(6.14)

where \(C_5 \) is the constant appearing in Lemma 2.5, and \(C \) is a positive constant independent of \(P, Q, R \).

Proof. Let

\[A_0 := \{ x \in X : d(x, c_P) < 2^t-j \} \]

and

\[A_t := \{ x \in X : 2^{t-1-j} \leq d(x, c_P) < 2^t-j \}, \quad \forall \ t \in \mathbb{N}. \]

Let also

\[W_0 := \{ x \in X : d(x, c_Q) < 2^t-j \} \]
and

\[W_s := \{ x \in \mathcal{X} : 2^{-s-1} \leq d(x, c_Q) < 2^{-s} \}, \quad \forall s \in \mathbb{N}. \]

Then,

\[
\mathcal{J} \lesssim \sum_{t=0}^{\infty} \sum_{s=0}^{\infty} 2^{-t\gamma} 2^{-s\gamma} \frac{1}{\mu(R)} \frac{1}{\mu(B(c_Q, 2s^{-k}))} \frac{1}{\mu(B(c_P, 2^{t-j}))} \int_{B(c_R, C_52^{-\ell}) \cap A_t \cap W_s} d\mu(x).
\]

If \(B(c_R, C_52^{-\ell}) \cap A_t \cap W_s \neq \emptyset \), then, by \(j \leq \ell \leq k \), we have

\[d(c_R, c_Q) \leq C_52^{-\ell} + 2^{s-k} \lesssim \max\{2^{-\ell}, 2^{s-k}\} \]

and

\[d(c_R, c_P) \leq C_52^{-\ell} + 2^{t-j} \lesssim 2^{t-j}, \]

which implies that, for all \(s \geq 0 \) and \(\gamma' \in (0, \gamma) \),

\[
\frac{1}{\mu(B(c_Q, 2s^{-k}))} \lesssim \frac{\mu(B(c_Q, 2^{-\ell} + d(c_R, c_Q)))}{\mu(B(c_Q, 2s^{-k}))} \left[\frac{2^{-\ell} + d(c_R, c_Q)}{2} \right]^{\gamma'} K(2^{-\ell}; \gamma', c_R, c_Q)
\]

\[
\lesssim 2^{s\gamma'} \frac{\mu(B(c_Q, 2^{-\ell} + 2^{s-k}))}{\mu(B(c_Q, 2s^{-k}))} K(2^{-\ell}; \gamma', c_R, c_Q) \quad (6.15)
\]

and, for all \(t \geq 0 \) and \(\gamma'' \in (0, \gamma) \),

\[
\frac{1}{\mu(B(c_P, 2^{t-j}))} \lesssim \frac{\mu(B(c_P, 2^{t-j} + d(c_R, c_P)))}{\mu(B(c_P, 2^{t-j}))} \left[\frac{2^{t-j} + d(c_R, c_P)}{2} \right]^{\gamma''} K(2^{t-j}; \gamma'', c_R, c_P)
\]

\[
\lesssim 2^{t\gamma''} K(2^{-\ell}; \gamma'', c_R, c_P). \quad (6.16)
\]

By (6.15), (6.16), together with the facts

\[\mu(B(c_Q, 2^{-\ell} + 2^{s-k})) \sim \mu(B(c_R, 2^{-\ell} + 2^{s-k})) \]

and

\[\mu(B(c_R, C_52^{-\ell}) \cap A_t \cap W_s) \lesssim \min \{ \mu(R), \mu(B(c_Q, 2s^{-k})) \}, \]

we obtain

\[
\mathcal{J} \lesssim \sum_{t=0}^{\infty} \sum_{s=0}^{\infty} 2^{-t(\gamma-\gamma')} 2^{-s(\gamma-\gamma'')} \frac{\mu(B(c_Q, 2^{-\ell} + 2^{s-k}))}{\mu(B(c_Q, 2s^{-k}))} \min \{ \mu(R), \mu(B(c_Q, 2s^{-k})) \}
\]

\[
\times K(2^{-\ell}; \gamma', c_R, c_Q) K(2^{t-j}; \gamma'', c_R, c_P)
\]

\[
\lesssim K(2^{-\ell}; \gamma', c_R, c_Q) K(2^{t-j}; \gamma'', c_R, c_P).
\]

Inserting the estimate of \(\mathcal{J} \) into (6.17) implies the desired inequality (6.14). This concludes the proof. \(\blacksquare \)

As an application of Theorems 6.6 and 6.7, we easily obtain the following conclusion.

Theorem 6.8. Let \(\eta \in (0, 1] \), \(\beta \in (0, 1] \), \(T \in \text{BWBP}(\eta) \) with a kernel \(K \in \text{Ker}(2, C_K, \delta) \) for some \(C_K > 0 \) and \(\delta > 0 \). Assume that, for all \(g \in C_0^\eta(\mathcal{X}) \),

\[T(1, g) = T(g, 1) = T^{s,1}(1, g) = 0 \quad \text{in} \quad (C_0^\eta(\mathcal{X}))'. \]
Suppose that ℓ, j, k are integers such that a_p, a_Q and a_R are β-atoms associated with cubes $P \in Q_j$, $Q \in Q_k$, and $R \in Q_\ell$, respectively. Then, for any given
\[
\gamma \in (0, \delta/2) \quad \text{and} \quad \sigma \in (0, \min\{\delta - \gamma, \beta, \kappa\}],
\]
the following hold: for any given $\gamma', \gamma'' \in (0, \gamma)$,

(i) when $j \leq \ell \leq k$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|k-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-\ell}; \gamma', c_R, c_Q) \mathcal{K}(2^{-j}; \gamma'', c_R, c_P);
\]

(ii) when $k \leq \ell \leq j$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|k-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-k}; \gamma', c_R, c_Q) \mathcal{K}(2^{-j}; \gamma'', c_R, c_P);
\]

(iii) when $j \leq k \leq \ell$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|\ell-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-j}; \gamma', c_R, c_Q) \mathcal{K}(2^{-k}; \gamma'', c_R, c_P);
\]

(iv) when $k \leq j \leq \ell$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|\ell-k|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-\ell}; \gamma', c_P, c_Q) \mathcal{K}(2^{-k}; \gamma'', c_Q, c_P);
\]

(v) when $\ell \leq k \leq j$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|\ell-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-j}; \gamma', c_Q, c_R) \mathcal{K}(2^{-k}; \gamma'', c_R, c_Q);
\]

(vi) when $\ell \leq j \leq k$,
\[
|\langle a_R, T(a_P, a_Q) \rangle| \leq C 2^{-|\ell-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-j}; \gamma', c_P, c_R) \mathcal{K}(2^{-k}; \gamma'', c_R, c_Q),
\]

where C is a positive constant independent of P, Q, and R.

Proof. Since $T(g, 1) = T^{*,-1}(1, g) = 0$ in $(C_0^\infty(\mathcal{X}))'$, by Theorems 6.6 and 6.7, we see that, when $j \leq \ell \leq k$,
\[
\left| \int_{\mathcal{X}} a_R(x)T(a_P, a_Q)(x) \, d\mu(x) \right| \leq 2^{-|k-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \frac{1}{\mu(R)} \int_{B(c_R, c_52^{-\ell})} 1 \frac{1}{V_{2^{-k}}(x) + V(x, c_Q)}
\]
\[
\times \left[\frac{1}{1 + 2^{k}d(x, c_Q)} \right]^{\gamma} \frac{1}{V_{2^{-j}}(x) + V(x, c_P)} \left[\frac{1}{1 + 2^{k}d(x, c_P)} \right]^{\gamma} \, d\mu(x)
\]
\[
\lesssim 2^{-|k-j|\sigma} \mu(R)^{1/2} \mu(Q)^{1/2} \mu(P)^{1/2} \mathcal{K}(2^{-\ell}; \gamma', c_R, c_Q) \mathcal{K}(2^{-j}; \gamma'', c_R, c_P),
\]
(6.17)

which proves (i).

By symmetry, (ii) holds true.
6.3. Bilinear T_1-theorem on Triebel–Lizorkin spaces

To prove (iii) and (iv), we write
\[\langle a_R, T(a_P, a_Q) \rangle = \langle a_Q, T^{*,2}(a_P, a_R) \rangle. \]
Since $j \leq k \leq \ell$ and the operator $S := T^{*,2}$ satisfies that
\[S(g, 1) = S^{*,1}(1, g) = 0 \quad \text{in } (C^0_b(\mathcal{X})), \]
we therefore apply (i) and (ii), respectively, to conclude the estimates (iii) and (iv).

Finally, (v) and (vi) hold true due to similar reasons, the details being omitted. This finishes the proof of the theorem. ■

6.3. Bilinear T_1-theorem on Triebel–Lizorkin spaces. Homogeneous Besov and Triebel-Lizorkin spaces on Ahlfors 1-regular metric spaces were first introduced by Han and Sawyer [61] via applying the Calderón reproducing formulae, but only for exponents $p, q \in (1, \infty)$ (for Triebel–Lizorkin spaces $p, q \in [1, \infty)$). An extension of these exponents to the range p, q smaller than 1 and near 1 was by Han [57]. For a systemic treatment of the theory of (in)homogeneous Besov and Triebel–Lizorkin spaces on RD-spaces, we refer the reader to the works of Han, Müller and Yang [60]. We recall their definitions.

Definition 6.9. Let (\mathcal{X}, d, μ) be an RD-space and $\mu(\mathcal{X}) = \infty$. Let $\epsilon_1 \in (0, 1], \epsilon_2 > 0$, $\epsilon_3 > 0$, $\epsilon \in (0, \epsilon_1 \wedge \epsilon_2)$, $|s| < \epsilon$, and $\{S_k\}_{k \in \mathbb{Z}}$ be an $(\epsilon_1, \epsilon_2, \epsilon_3)$-ATI. For $k \in \mathbb{Z}$, let $D_k := S_k - S_{k-1}$. Set also
\[p(s, \epsilon) := \max \{n/(n + \epsilon), n/(n + \epsilon + s)\}. \]

(i) Let $p(s, \epsilon) < p \leq \infty$ and $0 < q \leq \infty$. The space $\dot{B}^s_{p,q}(\mathcal{X})$ is defined to be the set of all $f \in (\dot{G}^\beta_0(\mathcal{X}))'$, for some β, γ satisfying
\[
\max \{s, 0, -s + n(1/p - 1)_+\} < \beta < \epsilon,
\max \{s - \kappa/p, n(1/p - 1)_+, -s + n(1/p - 1) - \kappa(1 - 1/p)_+\} < \gamma < \epsilon,
\]
such that
\[
\|f\|_{\dot{B}^s_{p,q}(\mathcal{X})} := \left(\sum_{k=-\infty}^{\infty} 2^{ksq} \|D_k(f)\|_{L^p(\mathcal{X})}^q \right)^{1/q} < \infty
\]
with the usual modifications made when $p = \infty$ or $q = \infty$.

(ii) Let $p(s, \epsilon) < p < \infty$ and $p(s, \epsilon) < q \leq \infty$. The space $\dot{F}^s_{p,q}(\mathcal{X})$ is defined to be the set of all $f \in (\dot{G}^\beta_0(\mathcal{X}))'$ for some β, γ satisfying (6.18) such that
\[
\|f\|_{\dot{F}^s_{p,q}(\mathcal{X})} := \left(\left(\sum_{k=-\infty}^{\infty} 2^{ksq} |D_k(f)|^q \right)^{1/q} \right)_{L^p(\mathcal{X})} < \infty
\]
with the usual modification made when $q = \infty$. When $p = \infty$ and $p(s, \epsilon) < q \leq \infty$, the space $\dot{F}^s_{\infty,q}(\mathcal{X})$ is defined to be the set of all $f \in (\dot{G}^\beta_0(\mathcal{X}))'$, for some β, γ satisfying
\[
|s| < \beta < \epsilon, \quad \max \{s, 0, -s - \kappa\} < \gamma < \epsilon,
\]
such that
\[
\|f\|_{\dot{F}^s_{\infty,q}(\mathcal{X})} := \sup_{\ell \in \mathbb{Z}} \sup_{\alpha \in I_\ell} \left[\frac{1}{\mu(Q^\ell_\alpha)} \int_{Q^\ell_\alpha} \sum_{k=-\infty}^{\infty} 2^{ksq} |D_k(f)(x)|^q \, d\mu(x) \right]^{1/q} < \infty,
\]
where the supremum is taken over all dyadic cubes as in Lemma 2.5 and the usual modification is made when \(q = \infty \).

Let
\[
\mathcal{Q} := \{ Q^k_\alpha \subset \mathcal{X} : k \in \mathbb{Z}, \alpha \in I_k \}
\]
be the collection of all Christ’s dyadic cubes as in Lemma 2.5. For \(k \in \mathbb{Z} \) and \(\tau \in I_k \), we denote by
\[
\{ Q^{k,\nu}_\tau : \nu \in \{1, \ldots, N(k, \tau)\} \}
\]
the set of all cubes \(Q^{k,j_0}_\tau \subset Q^k_\tau \), where \(Q^k_\tau \) is the dyadic cube as in Lemma 2.5 and \(j_0 \) a positive integer satisfying
\[
2^{-j_0} C_5 < 1/3.
\]
(6.19)

Denote by \(z^k_{\tau,\nu} \) the “center” of \(Q^{k,\nu}_\tau \) and by \(y^k_{\tau,\nu} \) any point of \(Q^{k,\nu}_\tau \).

The Calderón reproducing formulae, due to Calderón [14] in the Euclidean case, are proved to be a powerful tool in the study of Besov and Triebel–Lizorkin spaces on \(\mathbb{R}^n \); see [34, 33]. For an extension of these formulae and its applications in spaces of homogeneous type, especially in the context of Ahlfors 1-regular metric measure spaces, see [61]. The following discrete homogeneous Calderón reproducing formula on RD-spaces was proved in [60, Theorem 4.13]; see also [60, Theorems 4.11 and 4.12].

Lemma 6.10. Let \(\epsilon_1 \in (0, 1] \), \(\epsilon_2 > 0 \), \(\epsilon_3 > 0 \) and \(\epsilon \in (0, \epsilon_1 \wedge \epsilon_2) \). Let \(\{ S_k \}_{k \in \mathbb{Z}} \) be an \((\epsilon_1, \epsilon_2, \epsilon_3)\)-ATI. Set \(D_k := S_k - S_{k-1} \) for \(k \in \mathbb{Z} \). Then, for any fixed \(j_0 \) satisfying (6.19), large enough, there exist linear operators, \(\{ \tilde{D}_k \}_{k \in \mathbb{Z}} \) and \(\{ \overline{D}_k \}_{k \in \mathbb{Z}} \), such that, for any fixed \(y^k_{\tau,\nu} \in Q^{k,\nu}_\tau \) with \(k \in \mathbb{Z} \), \(\tau \in I_k \) and \(\nu \in \{1, \ldots, N(k, \tau)\} \), and all \(f \in \mathcal{G}_0^\prime(\beta, \gamma) \) (or \(f \in \mathcal{G}_0^\prime(\beta, \gamma) \)) with \(\beta, \gamma \in (0, \epsilon) \),
\[
\begin{align*}
f &= \sum_{k \in \mathbb{Z}} \sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) \tilde{D}_k(\cdot, y^k_{\tau,\nu}) D_k(f)(y^k_{\tau,\nu}) \\
&= \sum_{k \in \mathbb{Z}} \sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) D_k(\cdot, y^k_{\tau,\nu}) \overline{D}_k(f)(y^k_{\tau,\nu}),
\end{align*}
\]
where the series converge in \(\mathcal{G}_0^\prime(\beta, \gamma) \) (or in \(\mathcal{G}_0^\prime(\beta, \gamma) \)). Moreover, the kernels of the operators \(\{ \tilde{D}_k \}_{k \in \mathbb{Z}} \) satisfy that, for all \(x, y \in \mathcal{X} \) and \(k \in \mathbb{Z} \),

(a)
\[
|\tilde{D}_k(x, y)| \leq C \frac{1}{V_{2^{-k}}(x) + V(x, y)} \left[\frac{2^{-k}}{2^{-k} + d(x, y)} \right]^{\epsilon'};
\]

(b) for \(d(x, x') \leq (2^{-k} + d(x, y))/2 \),
\[
|\tilde{D}_k(x, y) - \tilde{D}_k(x', y)| \leq C \left[\frac{d(x, x')}{2^{-k} + d(x, y)} \right]^{\epsilon'} \frac{1}{V_{2^{-k}}(x) + V(x, y)} \left[\frac{2^{-k}}{2^{-k} + d(x, y)} \right]^{\epsilon'};
\]

(c)
\[
\int_{\mathcal{X}} \tilde{D}_k(w, y) d\mu(w) = 0 = \int_{\mathcal{X}} \tilde{D}_k(x, w) d\mu(w),
\]
where \(\epsilon' \in (\epsilon, \epsilon_1 \wedge \epsilon_2) \) and \(C \) is a positive constant independent of \(k, x, x' \) and \(y \). The kernels of \(\{ \mathcal{D}_k \}_{k \in \mathbb{Z}} \) satisfy the above (a), (c) and (b') for \(d(x, x') \leq [2^{-k} + d(x, y)]/2 \),

\[
|\mathcal{D}_k(y, x) - \mathcal{D}_k(y, x')| \leq C \left[\frac{d(x, x')}{2^{-k} + d(x, y)} \right]^{\epsilon'} \frac{1}{V_{2^{-k}}(x) + V(x, y)} \left[\frac{2^{-k}}{2^{-k} + d(x, y)} \right]^{\epsilon'},
\]

where \(\epsilon' \) and \(C \) are as in (b).

As a consequence of the Calderón reproducing formulae, it was proved in [60, Theorem 7.2, Proposition 5.4] the following frame characterizations of Besov and Triebel–Lizorkin spaces.

Lemma 6.11. With all the notation as in Definition 6.9 and Lemma 6.10, the following hold:

(i) if \(p(s, \epsilon) < p \leq \infty \) and \(0 < q \leq \infty \), then

\[
\|f\|_{\hat{B}_{p,q}^s(X)} \sim \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} \left[\sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) \inf_{z \in Q^{k,\nu}_\tau} |D_k(f)(z)|^p \right]^{q/p} \right\}^{1/q}
\]

\[
\sim \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} \left[\sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) |D_k(f)(y^{k,\nu}_\tau)|^p \right]^{q/p} \right\}^{1/q}
\]

\[
\sim \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} \left[\sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) \sup_{z \in Q^{k,\nu}_\tau} |D_k(f)(z)|^p \right]^{q/p} \right\}^{1/q}
\]

with the implicit equivalent positive constants independent of \(f \).

(ii) if \(p(s, \epsilon) < p < \infty \) and \(0 < q \leq \infty \), then

\[
\|f\|_{\hat{F}_{p,q}^s(X)} \sim \left\| \left\{ \sum_{k \in \mathbb{Z}} \sum_{\nu \in I_k} \sum_{\tau \in I_k} 2^{ksq} \inf_{z \in Q^{k,\nu}_\tau} |D_k(f)(z)|^q \chi_{Q^{k,\nu}_\tau} \right\}^{1/q} \right\|_{L^p(X)}
\]

\[
\sim \left\| \left\{ \sum_{k \in \mathbb{Z}} \sum_{\nu \in I_k} \sum_{\tau \in I_k} 2^{ksq} |D_k(f)(y^{k,\nu}_\tau)|^q \chi_{Q^{k,\nu}_\tau} \right\}^{1/q} \right\|_{L^p(X)}
\]

\[
\sim \left\| \left\{ \sum_{k \in \mathbb{Z}} \sum_{\nu \in I_k} \sum_{\tau \in I_k} 2^{ksq} \sup_{z \in Q^{k,\nu}_\tau} |D_k(f)(z)|^q \chi_{Q^{k,\nu}_\tau} \right\}^{1/q} \right\|_{L^p(X)}
\]

with the implicit equivalent positive constants independent of \(f \).

The following technical lemma proved in [60, Lemma 5.3] is very useful when dealing with spaces \(\hat{B}_{p,q}^s(X) \) and \(\hat{F}_{p,q}^s(X) \) for the cases \(p < 1 \) or \(q < 1 \).

Lemma 6.12. Let \(\epsilon > 0, k', k \in \mathbb{Z}, \) and \(y^{k,\nu}_\tau \) be any point in \(Q^{k,\nu}_\tau \) for \(\tau \in I_k \) and \(\nu \in \{1, \ldots, N(k,\tau)\} \). If \(r \in (n/(n+\epsilon), 1] \), then there exists a positive constant \(C \), depending on \(r \), such that, for all \(a^{k,\nu}_\tau \in \mathbb{C} \) and \(x \in X \),

\[
\sum_{\tau \in I_k} \sum_{\nu=1}^{N(k,\tau)} \mu(Q^{k,\nu}_\tau) \frac{1}{V_{2^{-k-\epsilon}(x)} + V(x, y^{k,\nu}_\tau)} \left[\frac{2-(k' \land k)\epsilon}{2^{-(k' \land k)\epsilon} + d(x, y^{k,\nu}_\tau)} \right]^{\epsilon} |a^{k,\nu}_\tau|,
\]
\[
\leq C2^{[(k' \wedge k) - k]n(1 - 1/r)} \left[\mathcal{M} \left(\sum_{\tau \in \eta} \sum_{\nu=1}^{N(k,\tau)} |a^{k,\nu}_\tau|^r \chi_{Q^{k,\nu}_\tau}(x) \right) \right]^{1/r},
\]
where \(C \) is also independent of \(k, k', \tau \) and \(\nu \).

The following simple observation is of particular interest for estimates of the Triebel–Lizorkin or Besov norms.

Lemma 6.13. Let \(p \in (0, \infty) \) and \(\sigma \in (0, \infty) \). Then, there exists a positive constant \(C_{p,\sigma} \), depending only on \(p \) and \(\sigma \), such that, for all non-negative sequences \(\{a_j\}_{j \in \mathbb{N}} \),
\[
\left[\sum_{j \in \mathbb{N}} 2^{-j\sigma} a_j^p \right]^{1/p} \leq C_{p,\sigma} \sum_{j \in \mathbb{N}} 2^{-j\sigma(p^\wedge 1)} a_j^p.
\]

Proof. By the following elementary inequality: for all \(\alpha \in (0, 1] \) and sequences \(\{b_j\}_{j \in \mathbb{N}} \),
\[
\left[\sum_{j \in \mathbb{N}} |b_j| \right]^\alpha \leq \sum_{j \in \mathbb{N}} |b_j|^\alpha,
\]
we see that (6.20) holds when \(p \in (0, 1] \). As for the case \(p \in (1, \infty) \), applying Hölder’s inequality, we know that
\[
\left[\sum_{j \in \mathbb{N}} 2^{-j\sigma} a_j^p \right]^{p/p'} \leq \left[\sum_{j \in \mathbb{N}} 2^{-j\sigma} a_j^p \right]^{p/p'} \leq C_{p,\sigma} \sum_{j \in \mathbb{N}} 2^{-j\sigma} a_j^p.
\]
This concludes the proof of Lemma 6.13. \(\square \)

Theorem 6.14. Let \(\kappa \) be the constant appearing in the reverse doubling condition \((2.2) \) and \(\varepsilon \in (0, 1) \cap (0, \kappa] \). Suppose that the bilinear operator \(T \in \text{BWBP}(\eta) \) for some \(\eta \in (0, \varepsilon] \) and its kernel \(K \in \text{Ker}(2, C_K, \delta) \) for some \(C_K > 0 \) and \(\delta \geq 2\varepsilon \). Assume that, for all \(g \in C_0^n(\mathcal{X}) \),
\[
T(1, g) = T(g, 1) = T^{*,1}(1, g) = 0 \quad \text{in} \quad (C_0^n(\mathcal{X}))'.
\]
For every \(j \in \{0, 1, 2\} \), let \(|s_j| < \varepsilon, p(s_j, \varepsilon) < p_j < \infty \) and \(p(s_j, \varepsilon) < q_j < \infty \) such that
\[
s_0 = s_1 + s_2, \quad \frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} \quad \text{and} \quad \frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2},
\]
and let \(\hat{F}^{s_j}_{p_j, q_j}(\mathcal{X}) \) be the Triebel–Lizorkin space as defined in Definition 6.9(ii). Then, \(T \) can be extended to a bounded bilinear operator from \(\hat{F}^{s_1}_{p_1, q_1}(\mathcal{X}) \times \hat{F}^{s_2}_{p_2, q_2}(\mathcal{X}) \) to \(\hat{F}^{s_0}_{p_0, q_0}(\mathcal{X}) \).

Proof. Fix all parameters as in the theorem. Let \(\epsilon_1 \) and \(\epsilon_2 \) be positive real numbers such that \(\min\{\epsilon_1, \epsilon_2\} > \epsilon \). By the density of the set
\[
\hat{G}_b(\epsilon_1, \epsilon_2) := \{ f \in \hat{G}_b(\epsilon_1, \epsilon_2) : f \text{ has bounded support} \}
\]
in \(\hat{F}^{s_j}_{p_j, q_j}(\mathcal{X}) \) for \(j \in \{1, 2\} \) (see [60] Proposition 5.21]), it suffices to show that
\[
T : \left[\hat{F}^{s_1}_{p_1, q_1}(\mathcal{X}) \cap \hat{G}_b(\epsilon_1, \epsilon_2) \right] \times \left[\hat{F}^{s_2}_{p_2, q_2}(\mathcal{X}) \cap \hat{G}_b(\epsilon_1, \epsilon_2) \right] \to \hat{F}^{s_0}_{p_0, q_0}(\mathcal{X}).
\]
Since functions in \(\hat{G}_b(\epsilon_1, \epsilon_2) \) are indeed atoms, modulo a positive constant, associated to Christ’s dyadic cubes in the sense of Definition 6.4 we see that, for all \(f, g \in \hat{G}_b(\epsilon_1, \epsilon_2) \), it
follows from Theorem 6.6 that $T(f, g)$ is a bilinear molecule and hence can be interpreted in the usual way as an element of $(\mathcal{G}_0^0(\beta, \gamma))^\prime$, where β and γ satisfy (6.18) with s, p therein, respectively, replaced by s_0 and p_0. Consequently, it makes sense to write that, for all $\ell \in \mathbb{Z}$ and $x \in \mathcal{X}$,

$$D_\ell(T(f, g))(x) := \langle T(f, g), D_\ell(\cdot, x) \rangle,$$

where $\{S_k\}_{k \in \mathbb{Z}}$ is chosen to be a nonnegative and symmetric 1-ATI with bounded support, and $D_k := S_k - S_{k-1}$ for all $k \in \mathbb{Z}$. Then, for all $f, g \in \mathcal{G}_0^0(\epsilon_1, \epsilon_2)$, by the frame characterization of the Triebel–Lizorkin spaces (see Lemma 6.11), we see that $\|T(f, g)\|_{F_{p_0, q_0}^{x_0}(\mathcal{X})}$ is comparable to

$$\left\| \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{\nu \in I_\ell} 2^{s_0 q_0} \inf_{y^{\ell, \nu}_\tau} \left\langle T(f, g), D_\ell(\cdot, y^{\ell, \nu}_\tau) \right\rangle \chi_{Q_{\ell, \nu}^k} \right\|_{L^{p_0}(\mathcal{X})}. $$

Denote by $\mathcal{G}_0^0(\mathcal{X})$ the collection of all $f \in C_0^0(\mathcal{X})$ such that $\int_{\mathcal{X}} f(x) \, \mu(x) = 0$. Since $\epsilon \in (0, \epsilon_1 \wedge \epsilon_2)$ and $\eta \in (0, \epsilon]$, we have

$$\left(\mathcal{G}_0^0(\epsilon_1, \epsilon_2), \| \cdot \|_{C_0^0(\mathcal{X})} \right) \hookrightarrow \left(\mathcal{F}_0^0(\mathcal{X}), \| \cdot \|_{C_0^0(\mathcal{X})} \right) \hookrightarrow \mathcal{G}_0^0(\beta, \gamma),$$

where the notation $X \hookrightarrow Y$ means that the space X is continuously embedded into Y.

So we apply the Calderón reproducing formulae to $f, g \in \mathcal{G}_0^0(\epsilon_1, \epsilon_2)$ and obtain, for all $w \in \mathcal{X}$,

$$f(w) = \sum_{k \in \mathbb{Z}} \sum_{j \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q_k^{\ell, \nu'})D_k(w, y^{k, \nu'}_\tau)\overline{D_k}(f)(y^{k, \nu'}_\tau)$$

and

$$g(w) = \sum_{j \in \mathbb{Z}} \sum_{j' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} \mu(Q_j^{j', \nu''})D_j(w, y^{j', \nu''}_\tau)\overline{D_j}(g)(y^{j', \nu''}_\tau),$$

where both series converge in $\mathcal{G}_0^0(\beta, \gamma)$ and hence in $C_0^0(\mathcal{X})$. Then, for any $\ell \in \mathbb{Z}, \tau \in I_\ell, \nu \in \{1, \ldots, N(\tau, \ell)\}$ and any $y^{\ell, \nu}_\tau \in Q^\ell_\tau$,

$$\langle T(f, g)(\cdot), D_\ell(\cdot, y^{\ell, \nu}_\tau) \rangle$$

$$= \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \sum_{\nu' = 1}^{N(k, \tau')} \sum_{\nu'' = 1}^{N(j, \tau'')} \mu(Q_k^{k, \nu'})\mu(Q_{j'}^{j', \nu''})\overline{D_k}(f)(y^{k, \nu'}_\tau)$$

$$\times \overline{D_j}(g)(y_{j'}^{j', \nu''},) \left(T(D_k(\cdot, y^{k, \nu'}_\tau), D_j(\cdot, y^{j', \nu''}_\tau))(x), D_\ell(x, y^{\ell, \nu}_\tau) \right).$$

It follows that

$$\|T(f, g)\|_{F_{p_0, q_0}^{x_0}(\mathcal{X})}$$

$$\sim \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{\nu \in I_\ell} 2^{s_0 q_0} \inf_{y^{\ell, \nu}_\tau} \left\langle T(f, g), D_\ell(\cdot, y^{\ell, \nu}_\tau) \right\rangle \chi_{Q_{\ell, \nu}^k} \right\|_{L^{p_0}(\mathcal{X})}. $$

$$\times \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \sum_{\nu' = 1}^{N(k, \tau')} \sum_{\nu'' = 1}^{N(j, \tau'')} \mu(Q_k^{k, \nu'})\mu(Q_{j'}^{j', \nu''})\overline{D_k}(f)(y^{k, \nu'}_\tau)$$

$$\times \overline{D_j}(g)(y_{j'}^{j', \nu''},) \left(T(D_k(\cdot, y^{k, \nu'}_\tau), D_j(\cdot, y^{j', \nu''}_\tau))(x), D_\ell(x, y^{\ell, \nu}_\tau) \right).$$
We estimate Z by splitting the summation $\sum_{r} k_{r}$ part of Z where $\sum_{\ell} \mu(Q_{i,j}^{(\ell,k,j)}) \mu(Q_{i,j}^{(\ell,k,j)})$

\[
\times |D_k(f)(y_{i,j}^{k,i,j})| \left|D_j(g)(y_{i,j}^{k,i,j})\right|,
\]

then, obviously

\[
Z \leq \left\| \left\{ \sum_{\ell=1}^{N(\ell,\tau)} \sum_{\nu=1}^{N(\nu,\tau')} 2^{\ell \delta_0 q_0} \inf_{x_{i,j}^{\ell,\nu} \in Q_{i,j}^{(\ell,k,j)}} \left[\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} Z_{i,j}^{(\ell,k,j)} \right]^{q_0} \chi_{Q_{i,j}^{(\ell,k,j)}} \right\|_{L^p(\mathcal{X})}^{1/q_0}.
\]

We estimate Z by splitting the summation $\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}$ into 6 parts via the size relationship of k, j, and ℓ. To be precise, Z_1 is the part of Z where $j \leq \ell \leq k$, namely,

\[
Z_1 := \left\| \left\{ \sum_{\ell=1}^{N(\ell,\tau)} \sum_{\nu=1}^{N(\nu,\tau')} 2^{\ell \delta_0 q_0} \inf_{x_{i,j}^{\ell,\nu} \in Q_{i,j}^{(\ell,k,j)}} \left[\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} Z_{i,j}^{(\ell,k,j)} \right]^{q_0} \chi_{Q_{i,j}^{(\ell,k,j)}} \right\|_{L^p(\mathcal{X})}^{1/q_0};
\]

similarly, Z_2 is the part of Z where $k \leq \ell \leq j$, Z_3 the part of Z where $j \leq k \leq \ell$, Z_4 the part of Z where $k \leq j \leq \ell$, Z_5 the part of Z where $\ell \leq k \leq j$, and Z_6 the part of Z where $\ell \leq j \leq k$. Clearly,

\[
Z \lesssim \sum_{i=1}^{6} Z_i.
\]

So it is enough to show that, for $i \in \{1, \ldots, 6\}$,

\[
Z_i \lesssim \|f\|_{\dot{F}^{s_1}_{p_1,q_1}(\mathcal{X})} \|g\|_{\dot{F}^{s_2}_{p_2,q_2}(\mathcal{X})}.
\]

The main tools to be used in the proof below are Theorem 6.8, Lemmas 6.12 and 6.13 and the Fefferman–Stein vector-valued maximal function inequality; for the latter, see [48].

Since $\epsilon \in (0, 1) \cap (0, \kappa] \cap (0, \delta/2]$, there exist positive real numbers $\tilde{\gamma}, \gamma, \sigma, r_0, r_1$, and r_2 such that, for $i \in \{0, 1, 2\}$,

\[
\begin{cases}
\tilde{\gamma} \in (0, \delta/2], \\
\gamma \in (0, \tilde{\gamma}), \\
\sigma \in (0, \min\{\delta - \tilde{\gamma}, 1, \kappa]\}, \\
|s_i| < \min\{\sigma, \epsilon\}, \\
\max\left\{\frac{n}{n + \gamma}, \frac{n}{n + \sigma}, \frac{n}{n + \sigma + s_i}\right\} < r_i < \min\{1, p_i, q_i\}.
\end{cases}
\] (6.22)

To see the existence of such numbers, we first choose a small positive number η and
\(\sigma > 0\) such that
\[
\begin{align*}
|s_i| &< \epsilon - 2\eta < \sigma < 2\eta < \epsilon, \\
\min\{p_i, q_i\} &> \max\left\{ \frac{n}{n + \epsilon - 2\eta}, \frac{n}{n + \epsilon - 2\eta + s_i} \right\}, \quad i \in \{0, 1, 2\};
\end{align*}
\]
it is easy to show that \(\tilde{\gamma} := \epsilon\) guarantees that
\[
\tilde{\gamma} \in (0, \delta/2]\quad\text{and}\quad\sigma \in (0, \min\{\delta - \tilde{\gamma}, 1, \kappa\}];
\]
finally, by taking \(\gamma := \epsilon - \eta\), we have
\[
\max\left\{ \frac{n}{n + \gamma}, \frac{n}{n + \sigma}, \frac{n}{n + \sigma + s_i} \right\} < \min\{1, p_i, q_i\},
\]
so \(r_i\) can be taken to be any number in the interval
\[
\left(\max\left\{ \frac{n}{n + \gamma}, \frac{n}{n + \sigma}, \frac{n}{n + \sigma + s_i} \right\}, \min\{1, p_i, q_i\} \right).
\]

In the following proof, we fix such numbers \(\tilde{\gamma}, \gamma, \sigma, r_0, r_1, \) and \(r_2\) satisfying \((6.22)\).

Estimate for \(Z_1: j \leq \ell \leq k\)

By Theorem 6.8.1, we see that, when \(j \leq \ell \leq k\),
\[
\left| \left< T \left(D_k(\cdot, y_{r_1}^{k,\nu'}), D_j(\cdot, y_{r_2}^{j,\nu''}) \right) (x), D_{\ell}(x, y_{r_1}^{\ell,\nu}) \right> \right| \leq 2^{-(k-j)\sigma} \mathcal{K} \left(2^{-\ell}; \gamma, y_{r_1}^{\ell,\nu}, y_{r_2}^{k,\nu'} \right) \mathcal{K} \left(2^{-j}; \gamma, y_{r_1}^{\ell,\nu}, y_{r_2}^{k,\nu'} \right).
\]

From \((6.23)\) and Lemma 6.12, it follows that, when \(j \leq \ell \leq k\),
\[
Z_{r_1, r_2}(\ell, k, j) \leq 2^{-(k-j)\sigma} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q_{r_1}^{k,\nu'}) \left| \mathcal{D}_k(f)(y_{r_1}^{k,\nu'}) \right| \mathcal{K} \left(2^{-\ell}; \gamma, y_{r_1}^{\ell,\nu}, y_{r_2}^{k,\nu'} \right)
\]
\[
\times \sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(\ell, \tau'')} \mu(Q_{r_2}^{j,\nu''}) \left| \mathcal{D}_j(g)(y_{r_2}^{j,\nu''}) \right| \mathcal{K} \left(2^{-j}; \gamma, y_{r_1}^{\ell,\nu}, y_{r_2}^{j,\nu''} \right)\]
\[
\leq 2^{-(k-j)\sigma} 2^{(k-\ell)n(1/r_1 - 1)} \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| \mathcal{D}_k(f)(y_{r_1}^{k,\nu'}) \right| ^{r_1} X_{Q_{r_1}^{k,\nu'}} \right) \left(y_{r_1}^{\ell,\nu} \right) \right\}^{1/r_1}
\]
\[
\times \left\{ \mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(\ell, \tau'')} \left| \mathcal{D}_j(g)(y_{r_2}^{j,\nu''}) \right| ^{r_2} X_{Q_{r_2}^{j,\nu''}} \right) \left(y_{r_2}^{\ell,\nu} \right) \right\}^{1/r_2}.
\]

Inserting this into the expression of \(Z_1\), we obtain
\[
Z_1 \lesssim \left\| \sum_{\ell \in \mathbb{Z}} \sum_{\nu \in \nu_0} \sum_{\nu' = 1}^{N(\ell, \tau)} \inf_{y_{r_1}^{\ell,\nu} \in Q_{r_1}^{\ell,\nu}} \left[\sum_{k \geq \ell} \sum_{j \leq \ell} 2^{\ell(s_1 + s_2)} 2^{-(k-j)\sigma} 2^{(k-\ell)n(1/r_1 - 1)} \right. \right.
\]
\[
\left. \times \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| \mathcal{D}_k(f)(y_{r_1}^{k,\nu'}) \right| ^{r_1} X_{Q_{r_1}^{k,\nu'}} \right) \left(y_{r_1}^{\ell,\nu} \right) \right\}^{1/r_1} \right.
\]
\[
\left. \times \left\{ \mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(\ell, \tau'')} \left| \mathcal{D}_j(g)(y_{r_2}^{j,\nu''}) \right| ^{r_2} X_{Q_{r_2}^{j,\nu''}} \right) \left(y_{r_2}^{\ell,\nu} \right) \right\}^{1/r_2} \right\}_{L^0(X)}^{1/q_0} \right\|_{L^0(X)}^{1/q_0}.
\]
6. Bilinear T_1-theorems on Triebel–Lizorkin and Besov spaces

\[
\lambda \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \left[\sum_{k \geq \ell} \sum_{j \leq \ell} 2^{\ell(s_1+s_2)} 2^{-(k-\ell)\sigma} 2^{-(\ell-j)\sigma} 2^{k(\ell-n)} n(1/r_1-1) \right. \right. \right. \\
\left. \left. \left. \times \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| D_k(f)(y_{\tau'}^{k, \nu'}) \right|^r \chi_{Q_{\tau'}^{k, \nu}} \right) \right\} \right\|_{L^0(X)}^{1/r_1} \right\|_L^{1/q_0} \right\|_{L^q_0(X)}^{1/q_0} \right\}
\]

where the last inequality was obtained by first removing the infimum and then using the fact that, for all $\ell \in \mathbb{Z},$

\[
\sum_{\tau \in I_\ell} \sum_{\nu = 1}^{N(\ell, \tau)} \chi_{Q_\nu^{\ell, \nu}}(x) = 1 \quad \text{for almost every } x \in \mathcal{X}.
\]

Applying Hölder’s inequality to the last quantity displayed in the above inequality, we see that

\[
Z_1 \lesssim I \times J,
\]

where

\[
I := \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \left[\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma+s_1-n(1/r_1-1)]} \right. \right. \right. \right.
\left. \left. \left. \times \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| 2^{ks_1} D_k(f)(y_{\tau'}^{k, \nu'}) \right|^r \chi_{Q_{\tau'}^{k, \nu'}} \right) \right\} \right\|_{L^p(X)}^{1/r_1} \right\|_{L^{q_1}(X)}^{1/q_1} \right\}
\]

and

\[
J := \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \left[\sum_{j \leq \ell} 2^{-(\ell-j)[\sigma-s_2]} \right. \right. \right. \right. \right.
\left. \left. \left. \times \left\{ \mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} \left| 2^{js_2} D_j(g)(y_{\tau''}^{j, \nu''}) \right|^r \chi_{Q_{\tau''}^{j, \nu''}} \right) \right\} \right\|_{L^p(X)}^{1/r_2} \right\|_{L^{q_2}(X)}^{1/q_2} \right\}.
\]

To estimate $I,$ by Lemma 6.13 and the fact that

\[
\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma+s_1-n(1/r_1-1)]]} \lesssim 1
\]

(this is because $r_1 > n/(n + \sigma + s_1)$), we have

\[
\left[\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma+s_1-n(1/r_1-1)]} \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| 2^{ks_1} D_k(f)(y_{\tau'}^{k, \nu'}) \right|^r \chi_{Q_{\tau'}^{k, \nu'}} \right) \right\} \right]^{1/r_1} \right\|_{L^{q_1}(X)}\]

\[
\lesssim \left[\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma+s_1-n(1/r_1-1)]} \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| 2^{ks_1} D_k(f)(y_{\tau'}^{k, \nu'}) \right|^r \chi_{Q_{\tau'}^{k, \nu'}} \right) \right\} \right]^{q_1/r_1} \right\}
\]

\[
\times \left[\mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| 2^{ks_1} D_k(f)(y_{\tau'}^{k, \nu'}) \right|^r \chi_{Q_{\tau'}^{k, \nu'}} \right) \right]^{q_1/r_1} \right\}.
\]
From this and the Fefferman–Stein vector-valued maximal inequality (48), we deduce that

\[I \lesssim \left\{ \left\| \sum_{\ell \in \mathbb{Z}} \sum_{k \geq \ell} 2^{-(k-\ell)[\sigma+s_1-n(1/r_1-1)](q_1 \wedge 1)} \right\|_{L^p_1/r_1(X)} \right\} \]

\[\lesssim \left\| \sum_{k \in \mathbb{Z}} \left[\mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |2^{k \alpha_1} D_k(f)(y_{\tau', \nu'})^\prime|^{r_1} \chi_{Q_{\tau', \nu'}} \right) \right] \right\|_{L^p_1/r_1(X)} \]

\[\lesssim \left\| \sum_{k \in \mathbb{Z}} \left[\mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |2^{k \alpha_1} D_k(f)(y_{\tau', \nu'})^\prime|^{r_1} \chi_{Q_{\tau', \nu'}} \right) \right] \right\|_{L^p_1/r_1(X)} \]

\[\lesssim \left\| \sum_{k \in \mathbb{Z}} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} 2^{k \alpha_1 q_1} |D_k(f)(y_{\tau', \nu'})^\prime|^{q_1} \chi_{Q_{\tau', \nu'}} \right\|_{L^{p_1}(X)} \]

An argument similar to that used in the estimate of \(I \) gives that

\[J \lesssim \| g \|_{\dot{F}^{p_2}_{p_2, q_2}(X)} \]

Combining the estimates of \(I \) and \(J \) implies that

\[Z_1 \lesssim \| f \|_{\dot{F}^{p_1}_{p_1, q_1}(X)} \| g \|_{\dot{F}^{p_2}_{p_2, q_2}(X)} \]

Estimate for \(Z_2 \): \(k \leq \ell \leq j \) By symmetry of \(f \) and \(g \), the estimate of \(Z_2 \) is similar to that of \(Z_1 \). More precisely, when \(k \leq \ell \leq j \), applying Theorem 6.8(ii) one deduces that

\[\left| \left\langle T \left(D_k(\cdot, y_{\tau', \nu'}), D_j(\cdot, y_{\tau', \nu''}) \right) \right| \right|_{L^{p_0}(X)} \]

\[\lesssim 2^{-(j-k)\sigma} \kappa \left(2^{-k; \gamma}, y_{\tau', \nu'}, y_{\tau', \nu''} \right) \kappa \left(2^{-\ell; \gamma}, y_{\tau', \nu}, y_{\tau', \nu''} \right) \]

Comparing this inequality with (6.23), as well as the expression of \(Z_1 \) with that of \(Z_2 \), we see that

\[Z_2 := \left\{ \left\| \sum_{k \in \mathbb{Z}} \sum_{\nu = 1}^{N(\ell, \tau)} 2^k \inf_{y_{\tau', \nu}} \chi_{Q_{\tau', \nu}} \right\|_{L^{q_0}(X)} \right\} \]

\[\lesssim \| f \|_{\dot{F}^{p_1}_{p_1, q_1}(X)} \| g \|_{\dot{F}^{p_2}_{p_2, q_2}(X)} \]

which was obtained via replacing the estimate of \(Z_1 \) by reversing the roles of the terms related to \(k \) and those related to \(j \) therein, the details being omitted.

Estimate for \(Z_3 \): \(j \leq k \leq \ell \) Recall that \(Z_3 \) is given by

\[Z_3 := \left\{ \left\| \sum_{k \in \mathbb{Z}} \sum_{\nu = 1}^{N(\ell, \tau)} 2^k \inf_{y_{\tau', \nu}} \chi_{Q_{\tau', \nu}} \right\|_{L^{q_0}(X)} \right\} \]

\[\lesssim \| f \|_{\dot{F}^{p_1}_{p_1, q_1}(X)} \| g \|_{\dot{F}^{p_2}_{p_2, q_2}(X)} \]

\[\lesssim \| f \|_{\dot{F}^{p_2}_{p_2, q_2}(X)} \| g \|_{\dot{F}^{p_1}_{p_1, q_1}(X)} \]
From Theorem 6.8 (iii) it follows that, when \(j \leq k \leq \ell \),

\[
\left| \langle T \left(D_k(\cdot, y^{k, \nu}_\tau), D_j(\cdot, y^{j, \nu''}_\tau) \right)(x), D_\ell(x, y^{\ell, \nu}_\tau) \rangle \right| \\
\lesssim 2^{-\sigma(k-j)} K \left(2^{-k} \gamma, y^{k, \nu}_\tau, y^{\ell, \nu}_\tau \right) K \left(2^{-j} \gamma, y^{k, \nu}_\tau, y^{j, \nu''}_\tau \right) .
\]

(6.24)

When \(j \leq k \), the doubling condition (2.1) implies that, for all \(z, y^{k, \nu''}_\tau \in Q^{k, \nu''}_\tau \),

\[
K \left(2^{-j} \gamma, y^{k, \nu'}, y^{j, \nu''}_\tau \right) \sim K \left(2^{-j} \gamma, z, y^{j, \nu''}_\tau \right) .
\]

By this, (6.24) and Lemma 6.12 we deduce that, when \(j \leq k \leq \ell \),

\[
Z^{(\ell, k), j}_{\tau, \nu} \lesssim 2^{-\sigma(k-j)} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{\mathcal{N}(k, \tau')} \mu(Q^{k, \nu'}) K \left(2^{-k} \gamma, y^{k, \nu'}_\tau, y^{\ell, \nu}_\tau \right) |D_k(f)(y^{k, \nu'}_\tau)| \\
\times \inf_{z \in Q^{k, \nu'}} \left[\mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{\mathcal{N}(j, \tau'')} |D_j(g)(y^{j, \nu''}_\tau)|^{r_2} |Q^{j, \nu''}_\tau \left(z \right) \right] \right]^{1/r_2} \\
\lesssim 2^{-\sigma(k-j)} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{\mathcal{N}(k, \tau')} \mu(Q^{k, \nu'}) K \left(2^{-k} \gamma, y^{k, \nu'}_\tau, y^{\ell, \nu}_\tau \right) |D_k(f)(y^{k, \nu'}_\tau)| \\
\times \inf_{z \in Q^{k, \nu'}} \left[\mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{\mathcal{N}(j, \tau'')} |D_j(g)(y^{j, \nu''}_\tau)|^{r_2} |Q^{j, \nu''}_\tau \left(z \right) \right] \right]^{1/r_2} \\
\lesssim 2^{-\sigma(k-j)} \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{\mathcal{N}(k, \tau')} |D_k(f)(y^{k, \nu'}_\tau)|^{r_2} |Q^{k, \nu'}_\tau \left(z \right) \right) \right\}^{1/r_0} ,
\]

where, for all \(z \in \mathcal{X} \),

\[
G_j(z) := \left[\mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{\mathcal{N}(j, \tau'')} |D_j(g)(y^{j, \nu''}_\tau)|^{r_2} |Q^{j, \nu''}_\tau \left(z \right) \right) \right]^{1/r_2} .
\]

If, for any \(z \in \mathcal{X} \), we set

\[
P^{(\ell, k), j}(z) := \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{\mathcal{N}(k, \tau')} |2^{k\alpha_1} D_k(f)(y^{k, \nu'}_\tau)|^{r_0} |2^{j\alpha_2} G_j|^{r_0} |Q^{k, \nu'}_\tau \left(z \right) \right) \right\}^{1/r_0} ,
\]

then

\[
Z^{(\ell, k), j}_{\tau, \nu} \lesssim 2^{-(\ell-k)\sigma} 2^{-k\alpha_0} 2^{-(k-j)\sigma} P^{(\ell, k), j}(y^{\ell, \nu}_\tau) .
\]

Inserting this into the expression of \(Z_3 \), we obtain

\[
Z_3 \lesssim \left\| \sum_{\ell, \nu} \sum_{\nu' = 1}^{\mathcal{N}(\ell, \nu)} 2^{k\alpha_0} \right\|_{L^{p_0}(\mathcal{X})} \\
\times \inf_{y^{\ell, \nu'}_\tau \in Q^{\ell, \nu'}_\tau} \sum_{k \leq \ell, j \leq k} 2^{-(\ell-k)\sigma} 2^{-k\alpha_0} 2^{-(k-j)\sigma} P^{(\ell, k), j}(y^{\ell, \nu}_\tau) \chi_{Q^{\ell, \nu'}_\tau} \right\|_{L^{p_0}(\mathcal{X})}^{q_0} .
\]
where, in the last step, we used Lemma 6.13. Invoking the definition of $F^{(\ell,k,j)}$, the above inequality gives us

$$Z_{3,2} \lesssim \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{k \leq \ell \leq j \leq k} 2^{-\ell (k-s_0) (q_0 \wedge 1)} 2^{-(k-j)(\sigma-s_2)} [F^{(\ell,k,j)}]^{q_0} \right\} \right\|_{L^{p_0}(X)}^{1/q_0},$$

Since $q_0/r_0 > 1$ and $p_0/r_0 > 1$, by applying the Fefferman–Stein vector-valued maximal function inequality ([HS]), we continue the preceding estimate with

$$Z_{3,2} \lesssim \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{k \leq \ell \leq j \leq k} 2^{-\ell (k-s_0) (q_0 \wedge 1)} 2^{-(k-j)(\sigma-s_2)} [F^{(\ell,k,j)}]^{q_0} \right\} \right\|_{L^{p_0}(X)}^{1/q_0}.$$

Then, Hölder’s inequality implies that

$$Z_{3,2} \lesssim \left\| \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{k \leq \ell \leq j \leq k} 2^{-\ell (k-s_0) (q_0 \wedge 1)} 2^{-(k-j)(\sigma-s_2)} [F^{(\ell,k,j)}]^{q_0} \right\} \right\|_{L^{p_0}(X)}^{1/q_0}.$$
The estimate of \(Z \)

Combining this with (6.24) and Lemma 6.12, we conclude that, when \(k < \min \{ p_2, q_2 \} \) imply that the second term is dominated by

This proves that

\[
Z_3 \lesssim \| f \|_{\dot{F}^s_{p_1,q_1}(X)} \| g \|_{\dot{F}^s_{p_2,q_2}(X)}.
\]

Estimate for \(Z_4 \): \(k \leq j \leq \ell \). The estimate of \(Z_4 \) is quite similar to that of \(Z_3 \); indeed we just need to repeat the estimate of \(Z_3 \) by reversing the roles of the terms related to \(k \) and \(j \) therein, the details being omitted.

Estimate for \(Z_5 \): \(\ell \leq k \leq j \). The estimate of \(Z_5 \) is similar to that of \(Z_3 \); for the convenience of the reader let us sketch the proof. In this case, applying Theorem 6.8(v), we see that

\[
\left| \left\langle T \left(D_k(\cdot, y_{\tau}', \nu'), D_{\ell}(\cdot, y_{\tau}^{\ell}, \nu^{\ell}) \right), D_{j}(x, y_{\tau}^{j}, \nu^{j}) \right\rangle \right| \lesssim 2^{-(j-\ell)\sigma} K \left(2^{\ell; \gamma, y_{\tau}^{j}, \nu^{j}} \right) \cdot K \left(2^{-k; \nu, y_{\tau}^{k}, \nu^{k}} \right).
\]

When \(k \leq j \), the doubling condition (2.1) implies that, for all \(z, y_{\tau}^{k}, \nu^{k}, y_{\tau}^{j}, \nu^{j} \in Q_{\tau}^{k}, \nu^{k}, y_{\tau}^{j}, \nu^{j} \sim K \left(2^{-k; \nu, y_{\tau}^{k}, \nu^{k}} \right). \)

Combining this with (6.24) and Lemma 6.12 we conclude that, when \(\ell \leq k \leq j \),

\[
Z_5^{(\ell, k, j)} \lesssim 2^{-(j-\ell)\sigma} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q_{\tau'}^{k}, \nu') \cdot K \left(2^{\ell; \nu, y_{\tau}^{j}, \nu^{j}} \right) \cdot D_k(f)(y_{\tau}^{k}, \nu^{k})
\]

\[
\quad \times \inf_{z \in Q_{\tau}^{k}, \nu} \sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(k, \tau'')} \mu(Q_{\tau''}^{j}, \nu'') \cdot K \left(2^{-k; \nu, y_{\tau}^{j}, \nu^{j}} \right) \cdot D_{\ell}(g)(y_{\tau}^{j}, \nu^{j})
\]

\[
\lesssim 2^{-(j-\ell)\sigma} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q_{\tau'}^{k}, \nu') \cdot K \left(2^{-k; \nu, y_{\tau}^{j}, \nu^{j}} \right) \cdot D_k(f)(y_{\tau}^{k}, \nu^{k})
\]

\[
\quad \times \inf_{z \in Q_{\tau}^{k}, \nu} \left[\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(k, \tau'')} |D_{\ell}(g)(y_{\tau}^{j}, \nu^{j})|^2 \cdot X_{Q_{\tau'}^{j}, \nu''}(z) \right]^{1/r_2}
\]

\[
\lesssim 2^{-(j-\ell)\sigma} 2^{(j-k)n(1/r_2-1)} 2^{(k-\ell)n(1/r_0-1)}
\]
\[
\times \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| D_k(f) \left(y_{\tau'}^{k, \nu'} \right) \right|^2 \left| G_j \right|^{r_0} \left| \chi_{Q_{\tau'}^{k, \nu'}} \right| (y_{\tau'}^{\ell, \nu'}) \right) \right\}^{1/r_0},
\]

where, as in the estimate of \(Z_3 \), the function \(G_j \) is defined by

\[
G_j(z) := \left\{ \mathcal{M} \left(\sum_{\tau' \in I_j} \sum_{\nu' = 1}^{N(j, \tau')} \left| D_j(g) \left(y_{\tau'}^{j, \nu'} \right) \right|^2 \left| \chi_{Q_{\tau'}^{j, \nu'}} \right| (y_{\tau'}^{\ell, \nu'}) \right) \right\}^{1/r_2}, \quad \forall z \in \mathcal{X}.
\]

Inserting this into the expression of \(Z_5 \) and noticing that

\[
2^{\ell s_0} 2^{\ell - \ell} 2^{(j - k)n(1/r_2 - 1)2^{(k - \ell)n(1/r_0 - 1)}} 2^{k s_1} 2^{j s_2}
\]

and also observing that, for any measurable function \(H : \mathcal{X} \to [0, \infty) \), all \(\ell \in \mathbb{Z} \), and almost every \(x \in \mathcal{X} \),

\[
\sum_{\nu \in I_\ell} \sum_{\nu = 1}^{N(\ell, \tau)} \left[\inf_{y_{\tau'}^{\ell, \nu} \in Q_{\tau'}^{\ell, \nu}} H(y_{\tau'}^{\ell, \nu}) \right] \chi_{Q_{\tau'}^{\ell, \nu}}(x) \leq H(x),
\]

we obtain

\[
Z_5 \lesssim \left\| \sum_{\ell \in \mathbb{Z}} \sum_{\nu \in I_\ell} \sum_{\nu = 1}^{N(\ell, \tau)} 2^{\ell s_0} 2^{\ell - \ell} \inf_{y_{\tau'}^{\ell, \nu} \in Q_{\tau'}^{\ell, \nu}} \sum_{k \geq \ell} \sum_{j \geq k} 2^{s_0 - (j - k)n(1/r_2 - 1)2^{(k - \ell)n(1/r_0 - 1)}} \left\{ \mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| D_k(f) \left(y_{\tau'}^{k, \nu'} \right) \right|^2 \left| G_j \right|^{r_0} \left| \chi_{Q_{\tau'}^{k, \nu'}} \right| (y_{\tau'}^{\ell, \nu'}) \right) \right\}^{1/r_0} \right\|_{L^{p_0}(\mathcal{X})}\]

and hence

\[
\sum_{k \geq \ell} \sum_{j \geq k} 2^{s_0 - (j - k)n(1/r_2 - 1)2^{(k - \ell)n(1/r_0 - 1)}} \lesssim 1.
\]

By Lemma 6.13, the Fefferman–Stein vector-valued maximal function inequality (see, for example, [48]) and Hölder’s inequality, we follow the same procedure as in the estimate of \(Z_3 \) to obtain

\[
Z_5 \lesssim \| f \|_{\dot{F}^{s_1}_{p_1, q_1}(\mathcal{X})} \| g \|_{\dot{F}^{s_2}_{p_2, q_2}(\mathcal{X})},
\]

further details being omitted.

Estimate for \(Z_6 \): \(\ell \leq j \leq k \): Analogously with \(Z_4 \), to obtain the desired estimate for \(Z_6 \), we just need to repeat the estimate for \(Z_5 \) by reversing the roles of the terms related to \(k \) and \(j \), the details being omitted.

Summarizing the estimates of \(Z_1 \) through \(Z_6 \), we complete the proof of the theorem. ■
6.4. Bilinear T1-theorem on Besov spaces. In this section we prove a bilinear T1-theorem, on Besov spaces, that complements the corresponding results on the Triebel–Lizorkin scale.

Theorem 6.15. Let κ be the constant appearing in the reverse doubling condition (2.2) and $\epsilon \in (0, 1) \cap (0, \kappa]$. Suppose that the bilinear operator $T \in \text{BWBP}(\eta)$ for some $\eta \in (0, \epsilon]$ and its kernel $K \in \text{Ker}(2, C_K, \delta)$ for some $C_K > 0$ and $\delta \geq 2\epsilon$. Assume that, for all $g \in C^0_b(\mathcal{X})$,

$$T(1, g) = T(g, 1) = T_{\ast,1}(1, g) = 0 \quad \text{in } C^0_b(\mathcal{X})'. $$

For every $j \in \{0, 1, 2\}$, let $|s_j| < \epsilon$, $p(s_j, \epsilon) < p_j < \infty$ and $0 < q_j < \infty$ such that

$$s_0 = s_1 + s_2, \quad \frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} \quad \text{and} \quad \frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2},$$

and let $\dot{B}^{s_j}_{p_j, q_j}(\mathcal{X})$ be the Besov space as defined in Definition 6.9(i). Then, T can be extended to a bounded bilinear operator from $\dot{B}^{s_1}_{p_1, q_1}(\mathcal{X}) \times \dot{B}^{s_2}_{p_2, q_2}(\mathcal{X})$ to $\dot{B}^{s_0}_{p_0, q_0}(\mathcal{X})$.

Proof. Let ϵ_1 and ϵ_2 be positive real numbers such that $\min\{|\epsilon_1, \epsilon_2\} > \epsilon$. Let $\{S_k\}_{k \in \mathbb{Z}}$ be a nonnegative and symmetric 1-ATI with bounded support, and $D_k := S_k - S_{k-1}$ for all $k \in \mathbb{Z}$. As in the proof of Theorem 6.14, it suffices to prove that, for all $f, g \in \dot{G}^0_b(\epsilon_1, \epsilon_2)$ with bounded supports,

$$||T(f, g)||_{\dot{B}^{s_0}_{p_0, q_0}(\mathcal{X})} \leq C ||f||_{\dot{B}^{s_1}_{p_1, q_1}(\mathcal{X})} ||g||_{\dot{B}^{s_2}_{p_2, q_2}(\mathcal{X})}.$$

By the frame characterization of the Besov spaces (see Lemma 6.11), we write

$$||T(f, g)||_{\dot{B}^{s_0}_{p_0, q_0}(\mathcal{X})} \sim \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell s_0 q_0} \left[\sum_{\tau \in I_\ell} \sum_{\nu = 1}^{N(\ell, \tau)} \mu(Q^{\ell, \nu}_\tau) \inf_{y^{\ell, \nu}_\tau \in Q^{\ell, \nu}_\tau} \left| (T(f, g)(\cdot), D_\ell(\cdot, y^{\ell, \nu}_\tau)) \right| \right] \right\}^{1/q_0}.$$

Next, applying the Calderón reproducing formula to f and g gives that, for all $w \in \mathcal{X}$,

$$f(w) = \sum_{k \in \mathbb{Z}} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q^{k, \nu'}_{\tau'}) D_k(w, y^{k, \nu'}_{\tau'}) \overline{D}_k(f)(y^{k, \nu'}_{\tau'}) $$

and

$$g(w) = \sum_{j \in \mathbb{Z}} \sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} \mu(Q^{j, \nu''}_{\tau''}) D_j(w, y^{j, \nu''}_{\tau''}) \overline{D}_j(g)(y^{j, \nu''}_{\tau''}),$$

where each series converges in $C^0_b(\mathcal{X})$. It follows that

$$||T(f, g)||_{\dot{B}^{s_0}_{p_0, q_0}(\mathcal{X})} \sim \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell s_0 q_0} \left[\sum_{\tau \in I_\ell} \sum_{\nu = 1}^{N(\ell, \tau)} \mu(Q^{\ell, \nu}_\tau) \inf_{y^{\ell, \nu}_\tau \in Q^{\ell, \nu}_\tau} \left| \sum_{k \in \mathbb{Z}} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \mu(Q^{k, \nu'}_{\tau'}) D_k(w, y^{k, \nu'}_{\tau'}) \overline{D}_k(f)(y^{k, \nu'}_{\tau'}) \right| \right] \right\}^{1/q_0}.$$
\[\times D_j(g)(y^{j,\nu''}_\tau) \left\langle T \left(D_k(\cdot, y^{k,\nu'}_\tau), D_j(\cdot, y^{j,\nu''}_\tau) \right)(x), D_\ell(x, y^{\ell,\nu}_\tau) \right\rangle \bigg|_{p_0} q_0/p_0 \bigg] \right\}^{1/q_0} =: Y. \]

In what follows, we use the following notation: for all \(k, j, \ell \in \mathbb{Z} \), set

\[Y^{(\ell,k,j)} := \sum_{\tau' \in I_k} \sum_{\nu' = 1}^N(k,\tau') \sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^N(j,\tau'') \mu(Q^{k,\nu'}_{\tau'}) \mu(Q^{j,\nu''}_{\tau''}) \times \left| D_k(f)(y^{k,\nu'}_{\tau'}) \right| \left| D_j(g)(y^{j,\nu''}_{\tau''}) \right| \left\langle T \left(D_k(\cdot, y^{k,\nu'}_\tau), D_j(\cdot, y^{j,\nu''}_\tau) \right)(x), D_\ell(x, y^{\ell,\nu}_\tau) \right\rangle. \]

With this notation, we have

\[Y = \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell \sigma_0 q_0} \left[\sum_{\tau' \in I_k} \sum_{\nu' = 1}^N(\ell,\tau) \mu(Q^{\ell,\nu}_{\tau'}) \inf_{y^{\ell,\nu'}_\tau \in Q^{\ell,\nu}_{\tau'}} \left\| \sum_{k,j \in \mathbb{Z}} Y^{(\ell,k,j)} \right\|_{p_0} q_0/p_0 \right] \right\}^{1/q_0}. \]

As in the proof of Theorem 6.14, we estimate \(Y \) by splitting the summation \(\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \) into 6 parts via the size relationship of \(k, j, \) and \(\ell \). To be precise, \(Y_1 \) is the part of \(Y \) where \(k \leq \ell \leq k \), \(Y_2 \) the part of \(Y \) where \(k \leq \ell \leq k \), \(Y_3 \) the part of \(Y \) where \(j \leq k \leq \ell \), \(Y_4 \) the part of \(Y \) where \(j \leq \ell \leq \ell \), \(Y_5 \) the part of \(Y \) where \(\ell \leq k \leq j \), and \(Y_6 \) the part of \(Y \) where \(\ell \leq j \leq \ell \). Clearly,

\[Y \lesssim \sum_{i=1}^6 Y_i. \]

Thus, it is enough to show that, for \(i \in \{1, \ldots, 6\} \),

\[Y_i \lesssim \|f\|_{B^{s_1}_{p_1,q_1}(\chi)} \|g\|_{B^{s_2}_{p_2,q_2}(\chi)}. \quad (6.26) \]

Observe that, by symmetry, the estimates of \(Y_2, Y_4 \) and \(Y_6 \) are analogous to those of \(Y_1, Y_3 \) and \(Y_5 \), respectively. So we only prove (6.26) for \(j \in \{1, 3, 5\} \).

\[\text{Estimate for } Y_1: j \leq \ell \leq k. \] Let \(\sigma, \gamma, r_0, r_1 \) and \(r_2 \) be positive numbers satisfying (6.22). Recall that, in the estimate for \(Z_1 \) in Theorem 6.14 by Theorem 6.8(i) and Lemma 6.12 we have obtained the following: when \(j \leq \ell \leq k \),

\[Y^{(\ell,k,j)} \lesssim 2^{-(k-j)\sigma} 2^{(k-\ell)\gamma} 2^{n(1/r_1-1)} \left[\mathcal{M} \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^N(k,\tau') \left| D_k(f)(y^{k,\nu'}_{\tau'}) \right|^r \chi_{Q^{k,\nu'}_{\tau'}} \right) \left| y^{\ell,\nu}_{\tau'} \right| \right]^{1/r_1} \]

\[\times \left[\mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^N(j,\tau'') \left| D_j(g)(y^{j,\nu''}_{\tau''}) \right|^r \chi_{Q^{j,\nu''}_{\tau''}} \right) \left| y^{\ell,\nu}_{\tau'} \right| \right]^{1/r_2}. \]

From this and Hölder’s inequality, it follows that

\[Y_1 := \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell \sigma_0 q_0} \left[\sum_{\tau' \in I_k} \sum_{\nu' = 1}^N(\ell,\tau) \mu(Q^{\ell,\nu}_{\tau'}) \inf_{y^{\ell,\nu'}_{\tau'} \in Q^{\ell,\nu}_{\tau'}} \left\| \sum_{j \leq \ell} \sum_{k \geq \ell} Y^{(\ell,k,j)} \right\|_{p_0} q_0/p_0 \right] \right\}^{1/q_0} \]

\[\lesssim \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell \sigma_0 q_0} \left[\sum_{j \leq \ell} \sum_{k \geq \ell} 2^{-(k-j)\sigma} 2^{(k-\ell)\gamma} 2^{n(1/r_1-1)} \right] \right\}^{1/q_0}. \]
\[\times \left[M \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |D_k(f)(y_{\tau'}^{k, \nu'})|^r \chi_{Q_{\tau'}^{k, \nu'}}^r \right) \right]^{1/r_1} \]
\[\times \left[M \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} |D_j(g)(y_{\tau''}^{j, \nu''})|^s \chi_{Q_{\tau''}^{j, \nu''}}^s \right) \right]^{1/r_2} \left\{ \sum_{\nu = 1}^{q_0} \right\}^{1/q_0} \]
\[\sim \left\{ \sum_{\ell \in \mathbb{Z}} 2^{s_0 q_0} \left\| \sum_{j \leq \ell, k \geq \ell} 2^{-(k-j) \sigma} 2^{(k-\ell)n(1/r_1 - 1)} F_k G_j \right\|_{L^p(\mathcal{X})}^{q_0} \right\}^{1/q_0}, \]

where the functions \(F_k \) and \(G_j \) are defined as follows:

\[F_k := \left[M \left(\sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |D_k(f)(y_{\tau'}^{k, \nu'})|^r \chi_{Q_{\tau'}^{k, \nu'}}^r \right) \right]^{1/r_1} \]

and

\[G_j := \left[M \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} |D_j(g)(y_{\tau''}^{j, \nu''})|^s \chi_{Q_{\tau''}^{j, \nu''}}^s \right) \right]^{1/r_2}. \]

Noticing that \(s_0 = s_1 + s_2 \) and applying Hölder’s inequality, we control the above inequality by

\[Y_1 \lesssim I \times J, \]

where

\[I := \left\{ \sum_{\ell \in \mathbb{Z}} 2^{s_1 q_1} \left\| \sum_{k \geq \ell} 2^{-(k-\ell)[\sigma - n(1/r_1 - 1)]} F_k \right\|_{L^p(\mathcal{X})}^{q_1} \right\}^{1/q_1} \]

and

\[J := \left\{ \sum_{\ell \in \mathbb{Z}} 2^{s_2 q_2} \left\| \sum_{j \leq \ell} 2^{-(\ell-j) \sigma} G_j \right\|_{L^p(\mathcal{X})}^{q_2} \right\}^{1/q_2}. \]

To estimate the term \(I \), for every \(\ell \in \mathbb{Z} \), we set

\[I_\ell := \left\| \sum_{k \geq \ell} 2^{-(k-\ell)[\sigma + s_1 - n(1/r_1 - 1)]} F_k \right\|_{L^p(\mathcal{X})}. \]

Obviously, \(I = \left\{ \sum_{\ell \in \mathbb{Z}} (I_\ell)^{q_1} \right\}^{1/q_1} \). For each \(\ell \in \mathbb{Z} \), we rewrite \(I_\ell \) as

\[I_\ell := \left\| \sum_{k \geq \ell} 2^{-(k-\ell)[\sigma + s_1 - n(1/r_1 - 1)]} \right\|_{L^p(\mathcal{X})}^{p_1} \]

Invoking the expression of \(F_k \) and applying Lemma 6.13 and using

\[\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma - n(1/r_1 - 1)](p_1 \wedge 1)} < \infty, \]

we conclude that

\[I_\ell \lesssim \left\| \sum_{k \geq \ell} 2^{-(k-\ell)[\sigma + s_1 - n(1/r_1 - 1)](p_1 \wedge 1)} \right\|_{L^p(\mathcal{X})}. \]
\[
\sum_{k \geq \ell} 2^{-(k-\ell)[\sigma + s_1 - n(1/r_1 - 1)]} \left[\sum_{\tau' \in I_k} \sum_{\nu'=1}^{N(k,\tau')} |2^{ks_1} \mathcal{D}_k(f) (y_{\tau'}^{k,\nu'}) |^{r_1} \chi_{Q_{\tau'}^{k,\nu'}} \right]^{p_1/r_1} \leq \|f\|_{F_{p_1,q_1}^k(X)}.
\]

Combining the estimates of \(\mathcal{I}\) and \(\mathcal{J}\) implies the desired estimate of \(Y_1\).
Estimate for Y_3: $j \leq k \leq \ell$. Recall that

$$Y_3 := \left\{ \sum_{\ell \in \mathbb{Z}} 2^{s_0 q_0} \left[\sum_{\tau \in I_{\ell}} \sum_{\nu = 1}^{N(\ell, \tau)} \mu(Q_{\ell, \nu}) \inf_{y_{\tau}^{\ell, \nu} \in Q_{\ell, \nu}} \left| \sum_{k \leq j \leq k} Y(\ell, k, j) \right| \right] \right\}^{1/q_0}.$$

We also recall that, in the estimate of Z_3 in Theorem 6.13, it was proved that, when $j \leq k \leq \ell$,

$$Y(\ell, k, j) \lesssim 2^{-(\ell-j)\sigma} \left| G_j \right|^{r_0} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |D_k(f)(y_{\tau'}^{k, \nu'})|^{r_0} \chi_{Q_{\tau'}^{k, \nu'}}(y_{\tau'}^{k, \nu'}) \right|^{1/r_0},$$

where, for all $z \in \mathcal{X}$,

$$G_j(z) := \left[\mathcal{M} \left(\sum_{\tau'' \in I_j} \sum_{\nu'' = 1}^{N(j, \tau'')} |D_j(g)(y_{\tau''}^{j, \nu''})|^{r_2} \chi_{Q_{\tau''}^{j, \nu''}}(z) \right) \right]^{1/r_2}.$$

If, for any $z \in \mathcal{X}$, we set

$$F(\ell, k, j)(z) := \left[\mathcal{M} \left(2^{js_2} |G_j|^{r_0} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} \left| D_k(f)(y_{\tau'}^{k, \nu'}) \right|^{r_0} \chi_{Q_{\tau'}^{k, \nu'}}(y_{\tau'}^{k, \nu'}) \right)(z) \right]^{1/r_0},$$

then, by $s_0 = s_1 + s_2$, we have

$$Y(\ell, k, j) \lesssim 2^{-(\ell-j)\sigma} 2^{-ks_0} 2^{(k-j)s_2} F(\ell, k, j)(y_{\tau'}^{k, \nu'}).$$

Inserting this estimate into the expression of Y_3 gives that

$$Y_3 \lesssim \left\{ \sum_{\ell \in \mathbb{Z}} 2^{s_0 q_0} \left[\sum_{\tau \in I_{\ell}} \sum_{\nu = 1}^{N(\ell, \tau)} \mu(Q_{\ell, \nu}) \inf_{y_{\tau}^{\ell, \nu} \in Q_{\ell, \nu}} \left| \sum_{k \leq j \leq k} Y(\ell, k, j) \right| \right] \right\}^{1/q_0} \times \left\{ \sum_{\ell \in \mathbb{Z}} \left[\sum_{k \leq j \leq k} 2^{-(\ell-k)(\sigma-s_0)} 2^{-(k-j)(\sigma-s_2)} F(\ell, k, j) \right]^{q_0} \right\}^{1/q_0}.$$

For each $\ell \in \mathbb{Z}$, applying Lemma 6.13 and the fact that

$$\sum_{k \leq j \leq k} 2^{-(\ell-k)(\sigma-s_0)(p_0 \wedge 1)} 2^{-(k-j)(\sigma-s_2)(p_0 \wedge 1)} \lesssim 1,$$

we obtain

$$\left\| \sum_{k \leq j \leq k} 2^{-(\ell-k)(\sigma-s_0)} 2^{-(k-j)(\sigma-s_2)} F(\ell, k, j) \right\|_{L^{p_0}(\mathcal{X})} \leq \left\| \sum_{k \leq j \leq k} 2^{-(\ell-k)(\sigma-s_0)} 2^{-(k-j)(\sigma-s_2)} \right\|_{L^1(\mathcal{X})}^{1/p_0}.$$
\[\sim \left(\sum_{k \leq \ell} \sum_{j \leq k} 2^{-(\ell-k)(\sigma-s_0)(p_0/1)} 2^{-(k-j)(\sigma-s_2)(p_0/1)} \left\| \mathcal{F}(\ell,k,j) \right\|_{L^1(\mathcal{X})} \right)^{1/p_0}. \]

Notice that the $L^{p_0/r_0}(\mathcal{X})$-boundedness of \mathcal{M} and Hölder’s inequality imply that

\[
\left\| \mathcal{F}(\ell,k,j) \right\|_{L^1(\mathcal{X})} \lesssim \left\| 2^{j s_2} G_j \right\|_{L^{p_0/r_0}(\mathcal{X})} \left(\sum_{\tau' \in I_k} \sum_{\nu'=1}^{N(k,\tau')} |2^{k s_1} \overline{D}_k(f)(y_{\tau',\nu'})| \chi_{Q_{\tau',\nu'}} \right)^{r_0} \left\| \mathcal{F}(\ell,k,j) \right\|_{L^{p_0/r_0}(\mathcal{X})}^{p_0}
\sim \left\| 2^{j s_2} G_j \right\|_{L^{p_0}(\mathcal{X})} \left(\sum_{\tau' \in I_k} \sum_{\nu'=1}^{N(k,\tau')} |2^{k s_1} \overline{D}_k(f)(y_{\tau',\nu'})| \chi_{Q_{\tau',\nu'}} \right)^{p_0} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(\mathcal{X})}^{p_0}.
\]

By this, (6.27), Lemma 6.13, and the fact that

\[
\sum_{k \leq \ell} \sum_{j \leq k} 2^{-(\ell-k)(\sigma-s_0)2} 2^{-(k-j)(\sigma-s_2)} \lesssim 1,
\]

we obtain

\[
\left\| \sum_{k \leq \ell} \sum_{j \leq k} 2^{-(\ell-k)(\sigma-s_0)} 2^{-(k-j)(\sigma-s_2)} \mathcal{F}(\ell,k,j) \right\|_{L^{p_0}(\mathcal{X})}^{q_0} \\sim \left(\sum_{k \leq \ell} \sum_{j \leq k} 2^{-(\ell-k)(\sigma-s_0)(p_0/1)} 2^{-(k-j)(\sigma-s_2)(p_0/1)} \right)^{q_0/p_0} \times \left(\sum_{\tau' \in I_k} \sum_{\nu'=1}^{N(k,\tau')} |2^{k s_1} \overline{D}_k(f)(y_{\tau',\nu'})| \chi_{Q_{\tau',\nu'}} \right)^{p_0/p_0} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(\mathcal{X})}^{q_0/p_0}.
\]

Then, Hölder’s inequality further gives that

\[
Y_3 \lesssim \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{k \leq \ell} \sum_{j \leq k} 2^{-(\ell-k)(\sigma-s_0)(p_0/1)} 2^{-(k-j)(\sigma-s_2)(p_0/1)} \right\}^{1/q_1} \times \left(\sum_{\tau' \in I_k} \sum_{\nu'=1}^{N(k,\tau')} |2^{k s_1} \overline{D}_k(f)(y_{\tau',\nu'})| \chi_{Q_{\tau',\nu'}} \right)^{q_1} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(\mathcal{X})}^{q_0/p_0}.
\]
Recall that, in the estimate for Z_{86}, bilinear

Obviously, the first term is equal to

and, as for the second term, the boundedness of M on $L^2/\pi^2(\mathcal{X})$ implies that

Thus,

Estimate for Y_3: $\ell \leq k \leq j$. Recall that, in the estimate for Z_5 in the proof of Theorem 6.14, we proved that, when $\ell \leq k \leq j$,

\[
Y(\ell, k, j) \lesssim 2^{-(j-\ell)\sigma} 2^{(j-k)n(1/\pi^2 - 1)} 2^{(k-\ell)n(1/r_0 - 1)}
\]

\[
\times \left\{ \mathcal{M} \left(|G_j|^{r_0} \sum_{\ell, k, j} |D_k(f)(y_{\tau}^{k,\nu})|^r \chi_{Q_\tau^{k,\nu}} \right) \right\},
\]

where, for all $z \in \mathcal{X}$,

\[
G_j(z) := \left[\mathcal{M} \left(\sum_{\ell, k, j} |D_k(f)(y_{\tau}^{k,\nu})|^r \chi_{Q_\tau^{k,\nu}} \right) (z) \right]^{1/r_0}.
\]

Set, for all $z \in \mathcal{X}$,

\[
H^{(\ell, k, j)}(z) := \left\{ \mathcal{M} \left(2^{js2} |G_j|^{r_0} \sum_{\ell, k, j} |D_k(f)(y_{\tau}^{k,\nu})|^r \chi_{Q_\tau^{k,\nu}} \right) (z) \right\}^{1/r_0}.
\]

Then, it holds true that

\[
Y(\ell, k, j) \lesssim 2^{-(j-\ell)\sigma} 2^{(j-k)n(1/\pi^2 - 1)} 2^{(k-\ell)n(1/r_0 - 1)} 2^{ks0} 2^{k(\ell-j)s_2} H^{(\ell, k, j)}(y_{\tau}^{k,\nu}).
\]

Also, notice that

\[
2^{s_0} 2^{-(j-\ell)\sigma} 2^{(j-k)n(1/\pi^2 - 1)} 2^{(k-\ell)n(1/r_0 - 1)} 2^{ks0} 2^{k(\ell-j)s_2}.
\]
Therefore,

\[Y_5 := \left\{ \sum_{\ell \in \mathbb{Z}} 2^{\ell s_0} q_0 \left[\sum_{\nu = 1}^{N(\ell, \tau)} \mu(Q_{\ell, \nu}) \inf_{y_{\ell, \nu} \in Q_{\ell, \nu}} \left| \sum_{k \geq \ell \geq j} Y(\ell, k, j)(y_{\ell, \nu}) \right| \right] \right\}^{1/q_0} \]

\[\lesssim \left\{ \sum_{\ell \in \mathbb{Z}} \left(\sum_{k \geq \ell \geq j} 2^{-(k-\ell)[\sigma+s_0-n(1/r_0-1)]} 2^{-(j-k)[\sigma+s_2-n(1/r_2-1)]} |H(\ell, k, j)(y_{\ell, \nu})| \right)^{p_0} q_0 \right\}^{1/q_0} \]

Applying Lemma 6.13 and the fact

\[\sum_{k \geq \ell \geq j} 2^{-(k-\ell)[\sigma+s_0-n(1/r_0-1)]} 2^{-(j-k)[\sigma+s_2-n(1/r_2-1)]} \lesssim 1, \]

we conclude that, for every \(\ell \in \mathbb{Z} \),

\[K_{\ell} := \left\| \sum_{k \geq \ell \geq j \geq k} 2^{-(k-\ell)[\sigma+s_0-n(1/r_0-1)]} 2^{-(j-k)[\sigma+s_2-n(1/r_2-1)]} |H(\ell, k, j)| \right\|_{L^{p_0}(\mathcal{X})}^{q_0} \]

\[\lesssim \left\| \sum_{k \geq \ell \geq j \geq k} 2^{-(k-\ell)[\sigma+s_0-n(1/r_0-1)]} 2^{-(j-k)[\sigma+s_2-n(1/r_2-1)]} |H(\ell, k, j)| \right\|_{L^{1}(\mathcal{X})}^{q_0/p_0} \]

The boundedness of \(\mathcal{M} \) on \(L^{p_0/r_0}(\mathcal{X}) \) and Hölder’s inequality imply that

\[\left\| |H(\ell, k, j)| |^{p_0} \right\|_{L^{1}(\mathcal{X})} \]

\[= \left\{ \mathcal{M} \left(|2^{k}s_2 G_j|^{p_0} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} 2^{k s_1} D_k(f)(y_{k, \nu'}^{k, \nu'}) |^{p_0} X_{Q_{\ell, \nu'}}^{k, \nu'} \right) \right\}^{p_0/r_0} \]

\[\lesssim \left\| |2^{k}s_2 G_j|^{p_0} \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} 2^{k s_1} D_k(f)(y_{k, \nu'}^{k, \nu'}) |^{p_0} X_{Q_{\ell, \nu'}}^{k, \nu'} \right\|_{L^{1}(\mathcal{X})} \]

\[\lesssim \left\| \sum_{\tau' \in I_k} \sum_{\nu' = 1}^{N(k, \tau')} |2^{k s_1} D_k(f)(y_{k, \nu'}^{k, \nu'})| X_{Q_{\ell, \nu'}}^{k, \nu'} \right\|_{L^{p_1}(\mathcal{X})}^{p_0/p_1} \]
Combining this with Lemma 6.13, we further see that
\[
K_\ell \lesssim \sum_{k \geq \ell} \sum_{j \geq k} 2^{-(k-\ell)[\sigma + s_0 - n(1/r_0 - 1)](p_0 \wedge 1) \left(\frac{q_0}{p_0} \wedge 1 \right)} 2^{-(j-k)[\sigma + s_2 - n(1/r_2 - 1)](p_0 \wedge 1) \left(\frac{q_0}{p_0} \wedge 1 \right)}
\]
\[
\times \left\| \sum_{\tau' \in I_k} \sum_{\nu' = 1} N(k, \tau') 2^{k s_1} D_k(f)(y_{\tau'}^{k, \nu'}) \chi_{Q_{\tau'}^{k, \nu'}} \right\|_{L^p_1(X)} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(X)}^{q_0/p_2}.
\]
From this estimate and Hölder’s inequality, we deduce that
\[
Y_5 \lesssim \left\{ \sum_{\ell \in \mathbb{Z}} K_\ell \right\}^{1/q_0}
\]
\[
\lesssim \left\{ \sum_{\ell \in \mathbb{Z}} \sum_{k \geq \ell} \sum_{j \geq k} 2^{-(k-\ell)[\sigma + s_0 - n(1/r_0 - 1)](p_0 \wedge 1) \left(\frac{q_0}{p_0} \wedge 1 \right)} 2^{-(j-k)[\sigma + s_2 - n(1/r_2 - 1)](p_0 \wedge 1) \left(\frac{q_0}{p_0} \wedge 1 \right)}
\]
\[
\times \left\| \sum_{\tau' \in I_k} \sum_{\nu' = 1} N(k, \tau') 2^{k s_1} D_k(f)(y_{\tau'}^{k, \nu'}) \chi_{Q_{\tau'}^{k, \nu'}} \right\|_{L^p_1(X)} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(X)} \right\}^{1/q_1}
\]
\[
\lesssim \left\{ \sum_{k \in \mathbb{Z}} \left\| \sum_{\tau' \in I_k} \sum_{\nu' = 1} N(k, \tau') 2^{k s_1} D_k(f)(y_{\tau'}^{k, \nu'}) \chi_{Q_{\tau'}^{k, \nu'}} \right\|_{L^p_1(X)} \right\}^{1/q_1}
\]
\[
\times \left\{ \sum_{j \in \mathbb{Z}} \left\| 2^{j s_2} G_j \right\|_{L^{p_2}(X)} \right\}^{1/q_2}
\]
\[
\lesssim \| f \|_{\dot{B}^{s_1}_{p_0, q_0}(X)} \| g \|_{\dot{B}^{s_2}_{p_2, q_2}(X)}.
\]
This proves the desired estimate for Y_5 and finishes the proof of Theorem 6.13.
7. Multilinear vector-valued T^1 type theorems

Let us recall the Tb theorem by Semmes [92]. For any given family of functions,

$$
\theta_k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C},
$$

such that, for all $x, y, y' \in \mathbb{R}^n$, $k \in \mathbb{Z}$ and some positive numbers A, δ_1 and δ_2,

$$
|\theta_k(x, y)| \leq \frac{A}{2^{-kn} (1 + 2^k|x - y|)^{n+\delta_2}} \quad (7.1)
$$

and

$$
|\theta_k(x, y) - \theta_k(x, y')| \leq \frac{A}{2^{-kn}} \frac{|y - y'|^{\delta_1}}{2^{-k\delta_1}} \quad (7.2)
$$

we have the following square function estimate:

$$
\left\{ \sum_{k \in \mathbb{Z}} \|\Theta_k(f)\|_{L^2(\mathbb{R}^n)}^2 \right\}^{1/2} \leq C \|f\|_{L^2(\mathbb{R}^n)} \quad (7.3)
$$

with the positive constant C independent of f, provided that, for certain para-accretive function b,

$$
\Theta_k(b) = 0, \quad \forall \ k \in \mathbb{Z}, \quad (7.4)
$$

where Θ_k is the operator associated with kernel θ_k. By a duality argument, this theorem easily implies, in particular, the celebrated boundedness of the Cauchy integral [92].

The main goal of this section is to investigate the multilinear version of such a quadratic estimate (7.3). Precisely, by assuming certain decay, smoothness and cancellation conditions on the sequence of multilinear operators, $\{\Theta_k\}_{k \in \mathbb{Z}}$, we are interested in the behavior of

$$
\left\{ \sum_{k \in \mathbb{Z}} 2^{ksq}\|\Theta_k(\vec{f})\|_{L^p(\mathbb{R}^n)}^q \right\}^{1/q} \quad \text{and} \quad \left\| \sum_{k \in \mathbb{Z}} 2^{ksq}|\Theta_k(\vec{f})|^q \right\|_{L^p(\mathbb{R}^n)}
$$

for suitable p, q and s and vector of functions,

$$
\vec{f} := (f_1, \ldots, f_m) \in \prod_{j=1}^m \mathcal{Y}_j,
$$

with each \mathcal{Y}_j being Lebesgue or Besov or Triebel–Lizorkin spaces. A particular useful tool in the proof of the main results (Theorems 7.6, 7.8 and 7.9 in this section is the Calderón reproducing formula in Lemma 6.10 [89].
7.1. A multilinear off-diagonal estimate. A multilinear version of the family of the operators \(\{ \Theta_k \}_{k \in \mathbb{Z}} \) appeared in Maldonado [77] when \(\mathcal{X} \) is an Ahlfors-1 regular metric space. Here we adopt the following definition.

Definition 7.1. Let \(m \in \mathbb{N} \). Suppose that, for any \(k \in \mathbb{Z} \),

\[
\Theta_k : \mathcal{X} \times \cdots \times \mathcal{X} \to \mathbb{C},
\]

moreover, there exist constants \(A > 0, \delta_1 > 0 \) and \(\delta_2 > 0 \) such that, for all \(k \in \mathbb{Z} \) and points \(x, y, y_i, y_j, \ldots, y_m \) belonging to \(\mathcal{X} \),

\[
|\theta_k(x, y_1, \ldots, y_m)| \leq A \prod_{i=1}^{m} \frac{1}{V_{2^{-k}}(x) + V(x, y_i)} \left[\frac{2^{-k} + d(x, y_i)}{2^{-k}} \right]^{\delta_2} \quad (7.5)
\]

and, for all \(j_0 \in \{1, \ldots, m\} \) and \(y_i, j_0 \in \mathcal{X} \) satisfying \(d(y_{j_0}, y_{j_0}') \leq [2^{-j_0} + d(x, y_{j_0})]/2 \),

\[
|\theta_k(x, y_1, \ldots, y_{j_0}, \ldots, y_m) - \theta_k(x, y_1, \ldots, y_{j_0}', \ldots, y_m)| \leq A \left[\frac{d(y_{j_0}, y_{j_0}')}{2^{-j_0} + d(x, y_{j_0})} \right]^{\delta_1} \prod_{i=1}^{m} \frac{1}{V_{2^{-k}}(x) + V(x, y_i)} \left[\frac{2^{-k} + d(x, y_i)}{2^{-k} + d(x, y_i)} \right]^{\delta_2} . \quad (7.6)
\]

In this case, write \(\{ \theta_k \}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2) \). Denote by \(\Theta_k \) the \(m \)-linear operator

\[
\Theta_k(f_1, \ldots, f_m)(x) := \int_{\mathcal{X}^m} \theta_k(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) \, d\mu(y_1) \cdots d\mu(y_m), \quad \forall x \in \mathcal{X},
\]

which is well defined if \(f_i \in \bigcup_{1 \leq p \leq \infty} L^p(\mathcal{X}) \) for all \(i \in \{1, \ldots, m\} \) in view of (7.5).

Remark 7.2. For the special case \(m = 1 \) and \((\mathcal{X}, d, \mu) := (\mathbb{R}^n, |\cdot|, dx) \), conditions (7.5) and (7.6) turn out to be that, for all \(x, y \in \mathbb{R}^n \),

\[
|\theta_k(x, y)| \leq A \frac{2^{-k\delta_2}}{(2^{-k} + |x - y|)^{n+\delta_2}} \quad (7.7)
\]

and, when \(|y - y'| \leq (2^{-k} + |x - y|)/2 \),

\[
|\theta_k(x, y) - \theta_k(x, y')| \leq A \frac{|y - y'|^{\delta_1}}{(2^{-k} + |x - y|)^{\delta_1}} \frac{2^{-k\delta_2}}{(2^{-k} + |x - y|)^{n+\delta_2}} . \quad (7.8)
\]

These two conditions are equivalent to (7.1) and (7.2) in the following sense:

(i) (7.7) is exactly (7.1);
(ii) if \(\theta_k \) satisfies (7.7) and (7.8), then it satisfies (7.2);
(iii) if \(\theta_k \) satisfies (7.1) and (7.2), then (7.8) holds true but with a new exponent \(\delta_2' \in (0, \delta_2) \).

Obviously (i) holds. To prove (ii), when \(|y - y'| \leq (2^{-k} + |x - y|)/2 \), we see that (7.8) directly implies (7.2) and, when \(|y - y'| > (2^{-k} + |x - y|)/2 \), we have \(\frac{|y - y'|^{\delta_2'}}{2^{-k\delta_2}} > 2^{\delta_2} \), which combined with (7.7), implies that

\[
|\theta_k(x, y) - \theta_k(x, y')| \leq \frac{2}{2^{-k\delta_2}} \leq \frac{2^{\delta_2+1}}{2^{-k\delta_2}} |y - y'|^{\delta_2} .
\]
we therefore know that (7.2) holds for all \(x, y,\) and \(y'.\) Finally, (iii) holds if we take the geometric mean between (7.1) and (7.2).

Basic examples of kernels, \(\{\theta_k\}_{k \in \mathbb{Z}},\) are given by the approximations of the identity. For instance, taking \(\{S_k\}_{k \in \mathbb{Z}}\) to be an \((\epsilon_1, \epsilon_2, \epsilon_3)\)-ATI for some \(\epsilon_1 \in (0, 1], \epsilon_2 > 0,\) and \(\epsilon_3 > 0,\) we consider
\[
\theta_k(x, y_1, \ldots, y_m) := D_k(x, y_1)S_k(x, y_2) \cdots S_k(x, y_m), \quad \forall x, y_1, \ldots, y_m \in \mathcal{X},
\]
where \(D_k := S_{k+1} - S_k\) for all \(k \in \mathbb{Z}.)\) It is easy to show that such \(\theta_k\) satisfies (7.5) and (7.6) with \(\delta_1 = \epsilon_1\) and \(\delta_2 = \epsilon_2;\) moreover, for all \(x, y_2, \ldots, y_m \in \mathcal{X}\) and \(k \in \mathbb{Z},\)
\[
\int_{\mathcal{X}} \theta_k(x, y_1, \ldots, y_m) d\mu(y_1) = 0.
\]

In what follows, we use the aforementioned notation \(\mathcal{K}(t; \epsilon, x, y)\): given \(\epsilon \in (0, \infty),\)
\[
\mathcal{K}(t; \epsilon, x, y) := \frac{1}{V_t(x) + V_t(y) + V(x, y)} \left[\frac{t}{t + d(x, y)} \right]^\epsilon.
\]

Regarding the family of functions, \(\{\theta_k\}_{k \in \mathbb{Z}} \in \text{Ker}(m, \epsilon_1, \epsilon_2, \epsilon_3),\) the following multilinear version off-diagonal estimates hold true.

Lemma 7.3. Let \(m \in \mathbb{Z},\) \(\epsilon_1 \in (0, 1],\) \(\epsilon_2 > 0\) and \(\{\theta_k\}_{k \in \mathbb{Z}} \in \text{Ker}(m, \epsilon_1, \epsilon_2, \epsilon_3)\) for some positive constants \(A, \epsilon_1\) and \(\epsilon_2.\) Moreover, assume that each \(\theta_k\) satisfies the cancelation condition with respect to the \(y_1\)-variable, namely, for all \(k \in \mathbb{Z}\) and \(x, y_2, \ldots, y_m \in \mathcal{X},\)
\[
\int_{\mathcal{X}} \theta_k(x, y_1, \ldots, y_m) d\mu(y_1) = 0.
\]

Suppose that there exists a positive constant \(B\) such that the functions, \(D_j : \mathcal{X} \times \mathcal{X} \to \mathbb{C},\)
\(j \in \mathbb{Z},\) satisfy that, for all \(x, x', y \in \mathcal{X},\)

(i)
\[
|D_j(x, y)| \leq B \frac{1}{V_{2^{-j}}(x) + V_{2^{-j}}(y) + V(x, y)} \left[\frac{2^{-j}}{2^{-j} + d(x, y)} \right]^\epsilon_2;
\]

(ii) when \(d(x, x') \leq [2^{-j} + d(x, y)]/2,\)
\[
|D_j(x, y) - D_j(x', y)| \leq B \left[\frac{d(x, x')}{2^{-j} + d(x, y)} \right]^\epsilon_1 \frac{1}{V_{2^{-j}}(x) + V_{2^{-j}}(y) + V(x, y)} \left[\frac{2^{-j}}{2^{-j} + d(x, y)} \right]^\epsilon_2;
\]

(iii)
\[
\int_{\mathcal{X}} D_j(w, y) d\mu(w) = 0.
\]

Then, for any given \(\epsilon'_1 \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge \delta_2),\) there exists a positive constant \(C\) (depending on \(\epsilon'_1\) and the doubling constant \(C_1\)) such that, for all \(k, j \in \mathbb{Z}\) and points \(x, u, y_2, \ldots, y_m \in \mathcal{X},\)
\[
\int_{\mathcal{X}} \theta_k(x, y_1, \ldots, y_m)D_j(y_1, u) d\mu(u)
\]
\[\leq C A B 2^{-|k-j|\epsilon_1} K(2^{-(k \wedge j)}; \epsilon_2 \wedge \delta_2, x, u) \prod_{i=2}^{m} K(2^{-k_i}; \delta_2, x, y_i). \]

Proof. The reader may easily find that the proof is essentially given in [60, Lemma 3.2] (see also Lemma 7.3), the details being omitted.

Remark 7.4. In Lemma 7.3 instead of assuming that \(\{ \theta_k \}_{k \in \mathbb{Z}} \) satisfies (7.6) for all \(j_0 \in \{1, \ldots, m\} \), it suffices to require that \(\{ \theta_k \}_{k \in \mathbb{Z}} \) satisfies (7.6) for \(j_0 = 1 \).

Lemma 7.5. Let \(m \in \mathbb{N} \), \(\epsilon_1 \in (0, 1] \), \(\epsilon_2 > 0 \) and \(\{ \theta_k \}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2) \) for some positive numbers \(A, \delta_1 \) and \(\delta_2 \). Moreover, assume that, for all \(k \in \mathbb{Z} \), \(i \in \{1, \ldots, m\} \) and \(x, y_1, \ldots, y_m \in \mathcal{X} \),

\[
\int_{\mathcal{X}} \theta_k(x, y_1, \ldots, y_i, \ldots, y_m) \, d\mu(y_i) = 0.
\tag{7.10}
\]

Suppose that, for every fixed \(i \in \{1, \ldots, m\} \), there exist positive constants \(\{ B_i \}_{i=1}^m \) such that the functions \(\{ D_{k_i} \}_{k_i \in \mathbb{Z}} \) satisfy that, for all \(x, x', y \in \mathcal{X} \) and \(k_i \in \mathbb{Z} \),

(i) \[|D_{k_i}(x, y)| \leq B_i \frac{1}{V_{2^{-k_i}}(x) + V_{2^{-k_i}}(y) + V(x, y)} \left[\frac{2^{-k_i}}{2^{-k_i} + d(x, y)} \right]^{\epsilon_2}; \]

(ii) when \(d(x, x') \leq [2^{-k_i} + d(x, y)]/2 \),

\[|D_{k_i}(x, y) - D_{k_i}(x', y)| \leq B_i \frac{d(x, x')}{2^{-k_i} + d(x, y)} \left[\frac{1}{V_{2^{-k_i}}(x) + V_{2^{-k_i}}(y) + V(x, y)} \left[\frac{2^{-k_i}}{2^{-k_i} + d(x, y)} \right]^{\epsilon_2}; \]

(iii)

\[
\int_{\mathcal{X}} D_{k_i}(w, y) \, d\mu(w) = 0.
\]

Then, for any given \(\sigma \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge \delta_2) \), there exists a positive constant \(C \), depending only on the doubling constant \(C_1 \) and \(\sigma \), such that, for all points \(y_1, y_2, \ldots, y_m \in \mathcal{X} \),

\[
|\Theta_k(D_{k_1}(:, y_1), D_{k_2}(:, y_2), \ldots, D_{k_m}(:, y_m))(x)|
\]

\[= \left| \int_{\mathcal{X}^m} \theta_k(x, z_1, \ldots, z_m) D_{k_1}(z_1, y_1) \cdots D_{k_m}(z_m, y_m) \, d\mu(z_1) \cdots d\mu(z_m) \right| \]

\[\leq C A^m \prod_{i=1}^{m} B_i 2^{-|k-k_i|\sigma K(2^{-(k \wedge k_i)}; \epsilon_2 \wedge \delta_2, x, y_i)}. \]

Proof. Fix \(k, k_1, \ldots, k_m \in \mathbb{Z} \) and \(x, y_1, \ldots, y_m \in \mathcal{X} \). Consider the function

\[
\theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_m) := \int_{\mathcal{X}} \theta_k(x, z_1, \ldots, z_m) D_{k_1}(z_1, y_1) \, d\mu(z_1).
\]

For all \(j \in \{2, \ldots, m\} \), by (7.10), we have

\[
\int_{\mathcal{X}} \theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_m) \, d\mu(z_j) = 0.
\]
Since \(\{\theta_k\}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2) \) and \(D_{k_1} \) satisfies (i) through (iii) as above, we apply Lemma 7.3 to conclude that, for all \(z_2, \ldots, z_m \in \mathcal{X} \) and \(\sigma \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge \delta_2) \),

\[
\theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_m) \lesssim AB_1 2^{-|k-k_1|} \left| \mathcal{K}(2^{-(k \wedge k_1)}; \; \sigma \wedge \delta_2, x, y_1) \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i). \right. \tag{7.11}
\]

Now fix \(j \in \{2, \ldots, m\} \). We prove that, for all \(z_2, \ldots, z_m, z_j' \in \mathcal{X} \) satisfying \(d(z_j, z_j') \leq [2^{-k} + d(x, z_j)]/2 \) and for all \(\theta_1 \in (0, 1) \) and \(\sigma \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge \delta_2) \),

\[
\theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_j, \ldots, z_m) - \theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_j', \ldots, z_m) \lesssim AB_1 2^{-|k-k_1|} \left| \mathcal{K}(2^{-(k \wedge k_1)}; \; \sigma \wedge \epsilon_2, x, y_1) \times \left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right] \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i). \right. \tag{7.12}
\]

Indeed, suppose, for the moment, that we have proved that, for all \(z_2, \ldots, z_m, z_j' \in \mathcal{X} \) satisfying \(d(z_j, z_j') \leq [2^{-k} + d(x, z_j)]/2 \),

\[
\theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_j, \ldots, z_m) - \theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_j', \ldots, z_m) \lesssim AB_1 \mathcal{K}(2^{-(k \wedge k_1)}; \; \delta_2 \wedge \epsilon_2, x, y_1) \left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right] \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i), \tag{7.13}
\]

then we obtain (7.12) by taking the geometric mean between (7.13) and using the following estimate: when \(d(z_j, z_j') \leq [2^{-k} + d(x, z_j)]/2 \),

\[
\left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right] \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i)
\]

\[
\sim AB_1 2^{-|k-k_1|} \left| \mathcal{K}(2^{-(k \wedge k_1)}; \; \delta_2 \wedge \epsilon_2, x, y_1) \prod_{2 \leq i \leq m, i \neq j} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i) \right. \tag{7.11}
\]

Next we show (7.13) by considering \(k \leq k_1 \) and \(k > k_1 \), respectively. If \(k \leq k_1 \) and \(d(z_j, z_j') \leq [2^{-k} + d(x, z_j)]/2 \), then

\[
\left| \frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right| \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i)
\]

\[
\sim AB_1 2^{-|k-k_1|} \left| \mathcal{K}(2^{-(k \wedge k_1)}; \; \delta_2 \wedge \epsilon_2, x, y_1) \prod_{2 \leq i \leq m} \mathcal{K}(2^{-k}; \; \delta_2, x, z_i) \right. \tag{7.11}
\]
\[
\lesssim A \left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right] \delta_2 \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \delta_2, x, z_i) \\
\times \int_{\mathcal{X}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1)| \, d\mu(z_1).
\]

(7.14)

To estimate the last integral above, we write
\[
\int_{\mathcal{X}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1)| \, d\mu(z_1)
\]
\[
= \int_{d(x, y_1) \leq 2[2^{-k} + d(x, z_1)]} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1)| \, d\mu(z_1)
\]
\[
+ \int_{d(x, y_1) > 2[2^{-k} + d(x, z_1)]} \ldots
\]
\[=: J_1 + J_2.
\]

When \(d(x, y_1) \leq 2[2^{-k} + d(x, z_1)]\), we have
\[
\mathcal{K}(2^{-k}; \delta_2, x, z_1) \lesssim \mathcal{K}(2^{-k}; \delta_2, x, y_1)
\]
and hence
\[
J_1 \lesssim \mathcal{K}(2^{-k}; \delta_2, x, y_1) \int_{d(x, y_1) \leq 2[2^{-k} + d(x, z_1)]} |D_{k_1}(z_1, y_1)| \, d\mu(z_1) \lesssim B_1 \mathcal{K}(2^{-k}; \delta_2, x, y_1).
\]

When \(d(x, y_1) > 2[2^{-k} + d(x, z_1)]\), we have
\[
d(z_1, y_1) \geq d(x, y_1) + 2^{-k} - [d(z_1, x) + 2^{-k}]
\]
\[> d(x, y_1) + 2^{-k} - d(x, y_1)/2,
\]
which, together with the fact \(k \leq k_1\) and the size condition of \(D_{k_1}\), implies that
\[
|D_{k_1}(z_1, y_1)| \leq B_1 \left[\frac{1}{\mu(B(y_1, 2^{-k} + d(x, y_1)))} \right]^{\epsilon_2}
\]
\[\leq B_1 \left[\frac{1}{1 + 2^{k_1} d(z_1, y_1)} \right]^{\epsilon_2}
\]
\[\sim B_1 \mathcal{K}(2^{-k}; \epsilon_2, x, y_1)
\]
and, furthermore,
\[
J_2 \lesssim B_1 \mathcal{K}(2^{-k}; \epsilon_2, x, y_1) \int_{d(x, y_1) > 2[2^{-k} + d(x, z_1)]} \mathcal{K}(2^{-k}; \delta_2, x, z_1) \, d\mu(z_1)
\]
\[\lesssim B_1 \mathcal{K}(2^{-k}; \epsilon_2, x, y_1).
\]

Combining the estimates for \(J_1\) and \(J_2\), we see that
\[
\int_{\mathcal{X}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1)| \, d\mu(z_1) \lesssim B_1 \mathcal{K}(2^{-k}; \epsilon_2 \land \delta_2, x, y_1).
\]

Inserting this into (7.14), we conclude that, when \(k \leq k_1\) and \(d(z_j, z_j') \leq [2^{-k} + d(x, z_j)]/2\),
\[
\left| \theta_{k, y_1}^{(m-1)}(x, z_2, \ldots, z_j, \ldots, z_m) - \theta_{k, y_1}^{(m-1)}(x, z_2, \ldots, z_j', \ldots, z_m) \right|
\]
\[
\lesssim AB_1 \left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right]^{\delta_2} \mathcal{K}(2^{-(k \wedge k_1)}; \epsilon_2 \wedge \delta_2, x, y_1) \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \delta_2, x, z_i).
\]

As for the case \(k > k_1 \), by (7.6), we see that, when \(d(z_j, z_j') \leq \frac{2^{-k} + d(x, z_j)}{2} \),
\[
\left| \theta_{k, y_1}^{(m-1)}(x, z_2, \ldots, z_j, \ldots, z_m) - \theta_{k, y_1}^{(m-1)}(x, z_2, \ldots, z_j', \ldots, z_m) \right|
= \left| \int_{\mathcal{X}} \left[\theta_k(x, z_1, \ldots, z_j, \ldots, z_m) - \theta_k(x, z_1, \ldots, z_j', \ldots, z_m) \right] \right|
\times [D_{k_1}(z_1, y_1) - D_{k_1}(x, y_1)] \ d\mu(z_1)
\leq A \left[\frac{d(z_j, z_j')}{2^{-k} + d(x, z_j)} \right]^{\delta_2} \prod_{i=2}^{m} \mathcal{K}(2^{-k}; \delta_2, x, z_i)
\times \int_{\mathcal{X}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1) - D_{k_1}(x, y_1)| \ d\mu(z_1).
\]

Write
\[
\int_{\mathcal{X}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1) - D_{k_1}(x, y_1)| \ d\mu(z_1)
\leq \int_{d(z_1, x) \leq \frac{2^{-k_1} + d(x, y_1)}{2}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1) - D_{k_1}(x, y_1)| \ d\mu(z_1)
+ \int_{d(z_1, x) > \frac{2^{-k_1} + d(x, y_1)}{2}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) |D_{k_1}(z_1, y_1)| \ d\mu(z_1)
+ |D_{k_1}(x, y_1)| \int_{d(z_1, x) > \frac{2^{-k_1} + d(x, y_1)}{2}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) \ d\mu(z_1)
=: Z_1 + Z_2 + Z_3.
\]

To estimate \(Z_1 \), for every \(z_1 \) satisfying \(d(z_1, x) \leq \frac{2^{-k_1} + d(x, y_1)}{2} \), we have
\[
|D_{k_1}(z_1, y_1)| \lesssim B_1 \mathcal{K}(2^{-k_1}; \epsilon_2, z_1, y_1) \sim B_1 \mathcal{K}(2^{-k_1}; \epsilon_2, x, y_1),
\]
which, together with \(|D_{k_1}(x, y_1)| \lesssim B_1 \mathcal{K}(2^{-k_1}; \epsilon_2, x, y_1) \), implies that
\[
Z_1 \lesssim \int_{d(z_1, x) \leq \frac{2^{-k_1} + d(x, y_1)}{2}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) \left[|D_{k_1}(z_1, y_1)| + |D_{k_1}(x, y_1)| \right] \ d\mu(z_1)
\lesssim B_1 \mathcal{K}(2^{-k_1}; \epsilon_2, x, y_1) \int_{d(z_1, x) \leq \frac{2^{-k_1} + d(x, y_1)}{2}} \mathcal{K}(2^{-k}; \delta_2, x, z_1) \ d\mu(z_1)
\lesssim B_1 \mathcal{K}(2^{-k_1}; \epsilon_2, x, y_1).
\]

If \(d(z_1, x) > \frac{2^{-k_1} + d(x, y_1)}{2} \), then invoking the fact that \(k > k_1 \), we obtain
\[
\mathcal{K}(2^{-k}; \delta_2, x, z_1) \lesssim \frac{1}{V(x, z_1)} \left[\frac{2^{-k}}{d(x, z_1)} \right]^{\delta_2} \lesssim \mathcal{K}(2^{-k_1}; \delta_2, x, y_1)
\]
and hence
\[
Z_2 \lesssim \mathcal{K}(2^{-k_1}; \delta_2, x, y_1) \int_{\mathcal{X}} |D_{k_1}(z_1, y_1)| \ d\mu(z_1) \lesssim B_1 \mathcal{K}(2^{-k_1}; \delta_2, x, y_1).
\]
Also, by the size condition of D_{k_1}, we see that

\[Z_3 \leq |D_{k_1}(x, y_1)| \int_{\mathcal{X}} \mathcal{K}(2^{-k_1}; \delta_2, x, z_1) \, d\mu(z_1) \lesssim |D_{k_1}(x, y_1)| \lesssim \mathcal{K}(2^{-k_1}; \epsilon_2, x, y_1). \]

From the estimates of Z_1, Z_2, Z_3 and \([7.15]\), it follows that \([7.13]\) also holds when $k > k_1$. Thus, we obtain \([7.13]\), and hence \([7.12]\) holds.

Summarizing, all these imply that, for all $\theta_1 \in (0, 1)$ and $\sigma \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge \delta_2)$,

\[\left\{ \theta^{(m-1)}_{k, y_1} \right\}_{k \in \mathbb{Z}} \in \text{Ker}(m-1, A^{(m-1)}; \sigma\delta_1, \epsilon_1, x, y_1) \]

where

\[A^{(m-1)} := CA_1 B_1 2^{-|k-k_1|} \mathcal{K}(2^{-(k\wedge k_1)}; \delta_1 \wedge \epsilon_1, x, y_1) \]

and C is a positive constant depending only on σ, θ_1 and C_1.

Likewise, for $z_3, \ldots, z_m \in \mathcal{X}$, we define

\[\theta^{(m-2)}_{k, y_1, y_2}(z_3, \ldots, z_m) := \int_{\mathcal{X}^2} \theta_k(x, z_1, \ldots, z_m) D_{k_1}(z_1, y_1) D_{k_2}(z_2, y_2) \, d\mu(z_1) \, d\mu(z_2). \]

Since

\[\theta^{(m-2)}_{k, y_1, y_2}(z_3, \ldots, z_m) = \int_{\mathcal{X}} \theta^{(m-1)}_{k, y_1}(x, z_2, \ldots, z_m) D_{k_2}(z_2, y_2) \, d\mu(z_2), \]

then an argument similar to above gives that, for all $\theta_1, \theta_2 \in (0, 1)$ and $\sigma \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge (\delta_2 \theta_1))$,

\[\left\{ \theta^{(m-2)}_{k, y_1, y_2} \right\}_{k \in \mathbb{Z}} \in \text{Ker}(m-2, A^{(m-2)}; \sigma\delta_1 \delta_2 \theta_1 \theta_2), \]

where

\[A^{(m-2)} := CA_1 B_1 B_2 2^{-|k-k_1|} \mathcal{K}(2^{-(k\wedge k_1)}; \delta_2 \wedge \epsilon_2, x, y_1) \mathcal{K}(2^{-(k\wedge k_2)}; \epsilon_2 \wedge (\delta_2 \theta_1), x, y_2) \]

and C is a positive constant depending only on $\sigma, \theta_1, \theta_2$ and C_1.

Iterating this process $(m - 1)$-times, we see that, for all $\theta_1, \ldots, \theta_{m-1} \in (0, 1)$ and $\delta \in (0, \epsilon_1 \wedge \epsilon_2 \wedge \delta_1 \wedge (\delta_2 \prod_{i=1}^{m-2} \theta_i))$, \[\theta^{(1)}_{k, y_1, y_2, \ldots, y_{m-1}}(z_m) \]

\[:= \int_{\mathcal{X}^{m-1}} \theta_k(x, z_1, \ldots, z_m) D_{k_1}(z_1, y_1) \cdots D_{k_{m-1}}(z_{m-1}, y_{m-1}) \, d\mu(z_1) \cdots d\mu(z_{m-1}) \]

belongs to $\text{Ker}(1, A^{(1)}; \delta_1, \delta_2 \prod_{i=1}^{m-1} \theta_i)$, where

\[A^{(1)} := CA_{m-1} \prod_{i=1}^{m-1} B_i 2^{-|k-k_i|} \mathcal{K}(2^{-(k\wedge k_i)}; \epsilon_2 \wedge (\delta_2 \theta_1 \cdots \theta_{m-2}), x, y_i) \]

and C is a positive constant depending only on $\sigma, \theta_1, \ldots, \theta_{m-1}$ and C_1.

Finally, since

\[\Theta_k(D_{k_1}(\cdot, y_1), \ldots, D_{k_m}(\cdot, y_m))(x) = \int_{\mathcal{X}} \theta^{(1)}_{k, y_1, y_2, \ldots, y_{m-1}}(z_m) D_{k_m}(z_m, y_m) \, d\mu(z_m), \]
we apply (8.5) to find that, for all $\theta_1, \ldots, \theta_m \in (0,1)$ and $\delta \in (0, \epsilon_1 \wedge \delta_1 \wedge (\delta_2 \prod_{i=1}^{m-1} \theta_i))$,

$$\left| \Theta_k \left(D_{k_1}(\cdot, y_1), \ldots, D_{k_m}(\cdot, y_m) \right)(x) \right|$$

$$\lesssim A^m \prod_{i=1}^{m} B_i 2^{-(k-k_i)|\sigma \prod_{\ell \leq i}(1-\theta_\ell) K(2^{-(k \wedge k_i)}; \epsilon_2 \wedge (\delta_2 \theta_1 \cdots \theta_{m-1}), x, y_i) \right).$$

From this and the arbitrariness of $\theta_i \in (0,1)$, $i \in \{1, \ldots, m\}$, we deduce the desired conclusion of Lemma 7.5.

7.2. Quadratic T_1 type theorems on Lebesgue spaces. The main goal of this subsection is to study the multilinear version of the square function estimate on products of Lebesgue and Besov (or Triebel–Lizorkin) spaces.

Theorem 7.6. Let $\{\theta_k\}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2)$ for some $\delta_1 > 0$, $\delta_2 > 0$ and $A > 0$. Assume that, for all $k \in \mathbb{Z}$ and $x, y_2, \ldots, y_m \in \mathcal{X}$,

$$\int_{\mathcal{X}} \theta_k(x, y_1, \ldots, y_m) \, d\mu(y_1) = 0. \quad (7.16)$$

Let $1 \leq p, p_1, \ldots, p_m \leq \infty$ such that $\frac{1}{p} = \sum_{i=1}^{m} \frac{1}{p_i}$. For $\epsilon, \delta_1 \in (0,1 \wedge \delta_1 \wedge \delta_2)$, and $q \in (0, \infty)$, as in Definition 6.9, the Besov space $\dot{B}_{p_1,q}^s(\mathcal{X})$ is defined as subspaces of the distribution spaces ($\dot{G}_0^s(\beta, \gamma)$)' with β, γ satisfying (6.18). Then, there exists a positive constant C such that, for all functions $f_1 \in \dot{B}_{p_1,q}^s(\mathcal{X})$ and $f_i \in L^{p_i}(\mathcal{X})$, $i \in \{2, \ldots, m\}$,

$$\left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} \| \Theta_k(f_1, \ldots, f_m) \|_{L^p(\mathcal{X})}^q \right\}^{1/q} \leq CA \| f_1 \|_{\dot{B}_{p_1,q}^s(\mathcal{X})} \prod_{i=2}^{m} \| f_i \|_{L^{p_i}(\mathcal{X})}, \quad (7.17)$$

where $C := C(\delta_1, \delta_2, \epsilon, s, q, p, p_1, \ldots, p_m, \mathcal{X}) > 0$.

A key tool to be used in the proof of Theorem 7.6 is the following continuous homogeneous Calderón reproducing formula; see [60, p. 79, Theorem 3.13].

Lemma 7.7. Let $\epsilon_1 \in (0,1]$, $\epsilon_2 > 0$, $\epsilon_3 > 0$ and $\epsilon \in (0, \epsilon_1 \wedge \epsilon_2)$. Let $\{S_k\}_{k \in \mathbb{Z}}$ be an $(\epsilon_1, \epsilon_2, \epsilon_3)$-ATI. Set $D_k := S_k - S_{k-1}$ for $k \in \mathbb{Z}$. Then there exist linear operators $\{D_k\}_{k \in \mathbb{Z}}$ and $\{\overline{D}_k\}_{k \in \mathbb{Z}}$ such that, for all $f \in (\dot{G}_0^s(\beta, \gamma))'$ (or $\dot{G}_0^s(\beta, \gamma)$) with $\beta, \gamma \in (0, \epsilon)$,

$$f = \sum_{k \in \mathbb{Z}} \tilde{D}_k D_k(f) = \sum_{k \in \mathbb{Z}} D_k \overline{D}_k(f),$$

where both series converge in $(\dot{G}_0^s(\beta, \gamma))'$ (or $\dot{G}_0^s(\beta, \gamma)$). Moreover, the kernels of the operators $\{\tilde{D}_k\}_{k \in \mathbb{Z}}$ satisfy that, for all $x, y \in \mathcal{X}$ and $k \in \mathbb{Z}$,

(a) $$|\tilde{D}_k(x, y)| \leq C \frac{1}{V_{2^{-k}}(x) + V(x, y)} \left[\frac{2^{-k}}{2^{-k} + d(x, y)} \right]^{\epsilon'};$$

(b) if $d(x, x') \leq |2^{-k} + d(x, y)|/2$,

$$|\tilde{D}_k(x, y) - \tilde{D}_k(x', y)| \leq C \left[\frac{d(x, x')}{2^{-k} + d(x, y)} \right]^{\epsilon'} \frac{1}{V_{2^{-k}}(x) + V(x, y)} \left[\frac{2^{-k}}{2^{-k} + d(x, y)} \right]^{\epsilon'};$$
that, for all $k, j \in \mathbb{Z}$, we have
\[|D_k(y, x) - D_k(y, x')| \leq C \left[\frac{d(x, x')}{2^{-k} + d(y, x)} \right]^{\varepsilon} \left[\frac{1}{V_{2^{-k}}(y) + V(x, y)} \right]^{2^{-k} + d(y, x)} \varepsilon' \]

Proof of Theorem 7.6. Fix $\varepsilon, \beta, \gamma, \delta_1, \delta_2, s, p, q$ and $\{p_i\}_{i=1}^m$ as in Theorem 7.6. Let $\{S_k\}_{k \in \mathbb{Z}}$ be a 1-ATI with bounded support and $D_k := S_k - S_k - 1$ for all $k \in \mathbb{Z}$. Of course, $\{S_k\}_{k \in \mathbb{Z}}$ is a $(1, 1, 1)$-ATI. Let $f_i \in \hat{B}_{p_i, q_i}(X)$. Then, the Calderón reproducing formula (see Lemma 7.7) implies that there exist linear operators $\{D_k\}_{k \in \mathbb{Z}}$ whose kernels satisfy properties (a), (b) and (c) of Lemma 7.7 for any exponent $\varepsilon' \in (\varepsilon, 1)$ such that
\[f_1 = \sum_{j \in \mathbb{Z}} D_j(f_1) \]
holds in $(\hat{G}_0^\beta(\gamma))'$. For any $x, y_2, \ldots, y_m \in X$, observe that $\theta_k(x, y_2, \ldots, y_m)$ can be viewed as an element of $\hat{G}_0^\beta(\gamma)$. Thus, for all $k \in \mathbb{Z}$,
\[\|2^{ks} \Theta_k(f_1, \ldots, f_m)\|_{L^p(X)} = \left\| \sum_{j \in \mathbb{Z}} 2^{ks} \Theta_k(D_j(f_1, f_2, \ldots, f_m)) \right\|_{L^p(X)} \quad (7.18) \]
Since $\varepsilon' > \varepsilon$, we fix ε'_1 such that $\varepsilon'_1 \in (\varepsilon \land \delta_1 \land \delta_2, \varepsilon' \land \delta_1 \land \delta_2)$. Using Lemma 7.3, we see that, for all $k, j \in \mathbb{Z}$ and $x \in X$,
\[\|\Theta_k(D_j(f_1, f_2, \ldots, f_m)(x))\|_{L^p(X)} \]
\[= \left| \int_X \left[\int_X \theta_k(x, y_1, \ldots, y_m) \frac{\partial D_j(z_1, y_1)}{\partial \mu(z_1)} \right] \right| \]
\[\times D_j(f_1(y_1)) \prod_{i=2}^m f_i(y_i) d\mu(y_1) \cdots d\mu(y_m) \]
\[\lesssim A^{2^{-(k-j)|\varepsilon'|}} \int_X K(2^{-(k-j)}; 1 \land \delta_2, x, y_1) \prod_{i=2}^m K(2^{-k}; \delta_1 \land \delta_2, x, y_i) \]
\[\times |D_j(f_1(y_1))| \prod_{i=2}^m |f_i(y_i)| d\mu(y_1) \cdots d\mu(y_m) \]
\[\sim A^{2^{-(k-j)|\varepsilon'|}} \left\{ \int_X K(2^{-(k-j)}; 1 \land \delta_2, x, y_1) |D_j(f_1(y_1))| d\mu(y_1) \right\} \]
\[\times \prod_{i=2}^m \int_X K(2^{-k}; \delta_1 \land \delta_2, x, y_i) f_i(y_i) d\mu(y_i). \quad (7.19) \]
Since $\frac{1}{p} = \sum_{i=1}^m \frac{1}{p_i}$, we apply Hölder’s inequality to obtain
\[\left\| \sum_{j \in \mathbb{Z}} 2^{ks} \Theta_k(D_j(f_1, f_2, \ldots, f_m)) \right\|_{L^p(X)} \]
\[A \left\| \sum_{j \in \mathbb{Z}} 2^{-|k-j|s'+(k-j)s} \int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, \cdot, y_1)|2^j D_j f_1(y_1)| d\mu(y_1) \right\|_{L^{p_1}(X)} \\
\times \prod_{i=2}^{m} \left\| \int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta_2, \cdot, y_i)|f_i(y_i)| d\mu(y_i) \right\|_{L^{p_1}(X)} \\
=: Z_1 \times \prod_{i=2}^{m} Z_i. \]

To estimate \(Z_i \) for \(2 \leq i \leq m \), we use the following fact: for all \(\delta > 0 \), \(k \in \mathbb{Z} \) and \(g \in L^r(X) \) with \(r \in [1, \infty) \),

\[\left\| \int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta, \cdot, w)|g(w)| d\mu(w) \right\|_{L^r(X)} \leq C \| g \|_{L^r(X)} \tag{7.20} \]

for some constant \(C \) depending only on \(\epsilon \) and the doubling constant \(C_1 \). To see \((7.20)\), for \(r \in (1, \infty) \), we apply Hölder’s inequality to see that, for all \(x \in X \),

\[\int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta, x, w)|g(w)| d\mu(w) \lesssim \left\{ \int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta, x, w)|g(w)|^r d\mu(w) \right\}^{1/r}, \]

and then, Fubini’s theorem further implies that

\[\left\| \int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta, \cdot, w)|g(w)| d\mu(w) \right\|_{L^r(X)} \lesssim \left\{ \int_{\mathcal{K}} \int_{\mathcal{K}} \mathcal{K}(2^{-k}; \delta, x, w)|g(w)|^r d\mu(w) d\mu(x) \right\}^{1/r} \leq \| g \|_{L^r(X)}; \]

suitable modifications also yield \((7.20)\) for \(r = 1 \) or \(\infty \). From \((7.20)\), it follows that

\[Z_i \lesssim \| f_i \|_{L^{p_i}(X)}, \quad \forall i \in \{2, \ldots, m\}. \]

Now we turn to the estimate of \(Z_1 \). By Hölder’s inequality, we obtain

\[\int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, x, y_1)|2^j D_j f_1(y_1)| d\mu(y_1) \]

\[\lesssim \left\{ \int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, x, y_1)|2^j D_j f_1(y_1)|^{p_1} d\mu(y_1) \right\}^{1/p_1}. \]

Combining this with Lemma \((6.13)\) and Fubini’s theorem, we see that

\[(Z_1)^q = \left\| \sum_{j \in \mathbb{Z}} 2^{-|k-j|s'(x)+|k-j|s} \int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, \cdot, y_1)|2^j D_j f_1(y_1)| d\mu(y_1) \right\|_{L^q(X)} \]

\[\lesssim \left\| \sum_{j \in \mathbb{Z}} 2^{-|k-j|s'(x)-|s|} \int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, \cdot, y_1)|2^j D_j f_1(y_1)| d\mu(y_1) \right\|_{L^q(X)} \]

\[\lesssim \left\{ \sum_{j \in \mathbb{Z}} 2^{-|k-j|s'(x)-|s|} \int_{\mathcal{K}} \mathcal{K}(2^{-(k\wedge j)}; 1 \wedge \delta_2, x, y_1) \right. \]

\[\times |2^j D_j f_1(y_1)|^{p_1} d\mu(y_1) d\mu(x) \}^{q/p_1}. \]
This, combined with (7.18), gives that
\[2^{-|k-j|(|\epsilon_1'|-|s|)}\|2^{js}D_j(f_1)\|_{L^{p_1}(\mathcal{X})}^{p_1} \] \[\lesssim \sum_{j \in \mathbb{Z}} 2^{-|k-j|(|\epsilon_1'|-|s|)(1 \wedge \frac{q}{p_1})}\|2^{js}D_j(f_1)\|_{L^{p_1}(\mathcal{X})}^{q}. \]

Summarizing the estimates of \(Z_1 \) through \(Z_m \), we conclude that
\[\left\| \sum_{j \in \mathbb{Z}} 2^{ks} \Theta_k(\tilde{D}_j D_j f_1, f_2, \ldots, f_m) \right\|_{L^p(\mathcal{X})}^{q} \]
\[\lesssim \sum_{j \in \mathbb{Z}} 2^{-|k-j|(|\epsilon_1'|-|s|)(1 \wedge \frac{q}{p_1})}\|2^{js}D_j(f_1)\|_{L^{p_1}(\mathcal{X})}^{q} \prod_{i=2}^{m} \|f_i\|_{L^{p_i}(\mathcal{X})}^{p_i}. \]

This, combined with (7.18), gives that
\[\left\{ \sum_{k \in \mathbb{Z}} 2^{ksq}\|\Theta_k(f_1, \ldots, f_m)\|_{L^p(\mathcal{X})}^{q} \right\}^{1/q} \]
\[\lesssim A \left\{ \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} 2^{-|k-j|(|\epsilon_1'|-|s|)(1 \wedge \frac{q}{p_1})}\|2^{js}D_j(f_1)\|_{L^{p_1}(\mathcal{X})}^{q} \prod_{i=2}^{m} \|f_i\|_{L^{p_i}(\mathcal{X})} \right\}^{1/q} \]
\[\lesssim A \left\{ \sum_{j \in \mathbb{Z}} \|2^{js}D_j(f_1)\|_{L^{p_1}(\mathcal{X})}^{q} \prod_{i=2}^{m} \|f_i\|_{L^{p_i}(\mathcal{X})} \right\}^{1/q} \]
\[\lesssim A \|f_1\|_{B^s_{p_1,q}(\mathcal{X})} \prod_{i=2}^{m} \|f_i\|_{L^{p_i}(\mathcal{X})}. \]

Thus, (7.17) holds, and we complete the proof of Theorem 7.6. ■

Theorem 7.8. Let \(\{\theta_k\}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2) \) for some \(\delta_1 > 0, \delta_2 > 0, \) and \(A > 0 \), and every \(\theta_k \) satisfies (7.16). Let \(p, \{p_i\}_{i=1}^{m} \) and \(q \) be given numbers such that \(\frac{1}{p} = \sum_{i=1}^{m} \frac{1}{p_i} \),
\[1 < q \leq \infty, \quad 1 < p_1 < \infty \quad \text{and} \quad 1 < p_i \leq \infty \quad \text{for} \ i \in \{2, \ldots, m\}. \]

For the indices \(p_1, q \) and \(s \in (-\epsilon, \epsilon) \) with \(\epsilon \in (0, 1, \delta_1 \wedge \delta_2) \), as in Definition 6.9, the Triebel–Lizorkin space \(B^s_{p_1,q}(\mathcal{X}) \) is defined as a subspace of the distribution spaces \((\mathcal{G}_0^{(\beta, \gamma)})' \) with \(\beta, \gamma \) satisfying (6.18). Then, there exists a positive constant \(C \) such that, for all functions \(f_1 \in B^s_{p_1,q}(\mathcal{X}) \) and \(f_i \in L^{p_i}(\mathcal{X}) \) with \(i \in \{2, \ldots, m\} \),
\[\left\{ \sum_{k \in \mathbb{Z}} 2^{ksq}\|\Theta_k(f_1, \ldots, f_m)\|_{L^p(\mathcal{X})}^{q} \right\}^{1/q} \leq CA\|f_1\|_{B^s_{p_1,q}(\mathcal{X})} \prod_{i=2}^{m} \|f_i\|_{L^{p_i}(\mathcal{X})}, \]
(7.21)

where \(C := C(\delta_1, \delta_2, \epsilon, s, q, p, p_1, \ldots, p_m, \mathcal{X}) > 0 \).

Proof. Let \(\{S_k\}_{k \in \mathbb{Z}} \) be a 1-ATI with bounded support, which is also a \((1,1,1)\)-ATI, and set \(D_k := S_k - S_{k-1} \) for all \(k \in \mathbb{Z} \). Let \(f_1 \in B^s_{p_1,q}(\mathcal{X}) \). The Calderón reproducing formula (see Lemma 7.7) implies that there exist linear operators \(\{\tilde{D}_k\}_{k \in \mathbb{Z}} \) with their
kernels satisfying properties (a), (b), and (c) of Lemma \[7.7\] for any \(\epsilon' \in (\epsilon, 1)\) such that
\[
f_1 = \sum_{j \in \mathbb{Z}} \tilde{D}_j D_j (f_1)
\]
holds in \((\mathcal{G}_0(\beta, \gamma))'\). By this, we write
\[
\left\| \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} |\Theta_k(f_1, \ldots, f_m)|^q \right\}^{1/q} \right\|_{L^p(\mathcal{X})} = \left\| \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} \sum_{j \in \mathbb{Z}} \Theta_k(\tilde{D}_j D_j f_1, f_2, \ldots, f_m) \right\}^{1/q} \right\|_{L^p(\mathcal{X})}. \tag{7.22}
\]

Since \(\epsilon' > \epsilon\), we choose \(\epsilon'_1\) such that \((\epsilon \wedge \delta_1 \wedge \delta_2) < \epsilon'_1 < (\epsilon' \wedge \delta_1 \wedge \delta_2)\). Then, \(\epsilon'_1 > |s|\). For such an \(\epsilon'_1\), by \(\tag{7.19}\), we see that, for all \(k, j \in \mathbb{Z}\) and \(x \in \mathcal{X}\),
\[
|\Theta_k(\tilde{D}_j D_j f_1, f_2, \ldots, f_m)(x)| \\
\lesssim A 2^{-|k-j|\epsilon'_1} \left\{ \int_{\mathcal{X}} K(2^{-\epsilon_1} x, y, 1 \wedge \delta_2, y, 1)|D_j(f_1)(y_1)| \, d\mu(y_1) \right\} \times \prod_{i=2}^m \int_{\mathcal{X}} K(2^{-k} \theta, x, y_i)|f_i(y_i)| \, d\mu(y_i) \\
\lesssim A 2^{-|k-j|\epsilon'_1} M(D_j(f_1))(x) \prod_{i=2}^m \mathcal{M}(f_i)(x), \tag{7.23}
\]
where \(\mathcal{M}\) is the Hardy–Littlewood maximal operator as in \(\tag{2.3}\) and the last inequality of \(\tag{7.23}\) is due to Lemma \(\tag{2.15}\) iv. Inserting \(\tag{7.23}\) into \(\tag{7.22}\), we obtain
\[
\left\| \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} |\Theta_k(f_1, \ldots, f_m)|^q \right\}^{1/q} \right\|_{L^p(\mathcal{X})} \lesssim A \left\| \left\{ \sum_{k \in \mathbb{Z}} \left[\sum_{j \in \mathbb{Z}} 2^{-|k-j|\epsilon'_1+(k-j)s} \mathcal{M}(2^{js} D_j(f_1)) \right]^q \right\}^{1/q} \prod_{i=2}^m \mathcal{M}(f_i) \right\|_{L^p(\mathcal{X})}.
\]
Notice that \(\epsilon'_1 > |s|\) and Lemma \(\tag{6.13}\) imply that
\[
\sum_{k \in \mathbb{Z}} \left[\sum_{j \in \mathbb{Z}} 2^{-|k-j|\epsilon'_1+(k-j)s} \mathcal{M}(2^{js} D_j(f_1)) \right]^q \lesssim \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} 2^{-|k-j|(|\epsilon'_1-|s|)(q\wedge 1)} \left[\mathcal{M}(2^{js} D_j(f_1)) \right]^q \\
\lesssim \sum_{j \in \mathbb{Z}} \left[\mathcal{M}(2^{js} D_j(f_1)) \right]^q.
\]
By this, Hölder’s inequality with exponents \(\frac{1}{p} = \sum_{i=1}^m \frac{1}{p_i}\), the Fefferman–Stein vector-valued maximal function inequality (see, for example, \(\text{[48]}\) and the boundedness of \(\mathcal{M}\) on \(L^p(\mathcal{X})\) for \(i \in \{2, \ldots, m\}\), we continue to estimate \(\tag{7.9}\) with
\[
\left\| \left\{ \sum_{k \in \mathbb{Z}} 2^{ksq} |\Theta_k(f_1, \ldots, f_m)|^q \right\}^{1/q} \right\|_{L^p(\mathcal{X})}
\]
Lemma 7.5) and the Calderón reproducing formulae, we prove the following main result applying the off-diagonal estimate for the sequence of multilinear kernels, \(\{ T_{j} \} \):

\[
\begin{align*}
&\lesssim A \left\{ \sum_{j \in \mathbb{Z}} \left[\mathcal{M}(2^j D_j(f_1)) \right]^q \right\}^{1/q} \prod_{i=2}^{m} \mathcal{M}(f_i) \|_{L^p(X)} \\
&\lesssim A \left\{ \sum_{j \in \mathbb{Z}} \left[\mathcal{M}(2^j D_j(f_1)) \right]^q \right\}^{1/q} \prod_{i=2}^{m} \| \mathcal{M}(f_i) \|_{L^p(X)} \\
&\lesssim A \left\{ \sum_{j \in \mathbb{Z}} \left[2^j D_j(f_1) \right]^q \right\}^{1/q} \prod_{i=2}^{m} \| f_i \|_{L^p(X)} \\
&\sim \| f_1 \| \dot{F}^{s_1,q}_{p_1,q}(X) \prod_{i=2}^{m} \| f_i \|_{L^p(X)}.
\end{align*}
\]

This proves (7.21), and finishes the proof of Theorem 7.8.

7.3. Quadratic T1 type theorems on Besov and Triebel–Lizorkin spaces. By applying the off-diagonal estimate for the sequence of multilinear kernels, \(\{ \theta_k \}_{k \in \mathbb{Z}} \), (see Lemma 7.5) and the Calderón reproducing formulae, we prove the following main result of this subsection.

Theorem 7.9. Let \(m \in \mathbb{N} \), and \(\{ \theta_k \}_{k \in \mathbb{Z}} \in \text{Ker}(m, A, \delta_1, \delta_2) \) for some \(\delta_1 > 0, \delta_2 > 0 \) and \(A > 0 \). Assume that, for all \(k \in \mathbb{Z} \), \(i \in \{ 1, \ldots, m \} \) and \(x, y_1, \ldots, y_m \in X \),

\[
\int_X \theta_k(x, y_1, \ldots, y_i, \ldots, y_m) d\mu(y_i) = 0.
\]

Let \(\epsilon \in (0, 1 \wedge \delta_1 \wedge \delta_2) \) and \(s, s_1, \ldots, s_m \in (-\epsilon, \epsilon) \) satisfy \(s = \sum_{i=1}^{m} s_i \). Then the following statements hold:

(i) if \(0 < p \leq \infty, 0 < q \leq \infty, p(s_i, \epsilon) < p_i < \infty \) and \(0 < q_i < \infty \) for all \(i \in \{ 1, \ldots, m \} \) such that \(\frac{1}{p} = \sum_{i=1}^{m} \frac{1}{p_i} \) and \(\frac{1}{q} = \sum_{i=1}^{m} \frac{1}{q_i} \), as in Definition 6.9, \(\dot{B}^{s_i}_{p_i,q_i}(X) \) is defined as a subspace of \((\dot{G}^{\infty}_{0}(\beta, \gamma))^\prime \) with certain \(\beta, \gamma \) satisfying that

\[
\max \{ s_i, 0, -s_i + n(1/p_i - 1)_+ \} < \beta < \epsilon \quad \text{and} \quad \max \{ s_i - \kappa/p_i, n(1/p_i - 1)_+, -s_i + n(1/p_i - 1)_+ - \kappa(1 - 1/p_i)_+ \} < \gamma < \epsilon,
\]

(7.24)

then there exists a positive constant \(C \) such that, for all \(i \in \{ 1, \ldots, m \} \) and \(f_i \in \dot{G}^{\infty}_{0}(\beta, \gamma) \subset \dot{B}^{s_i}_{p_i,q_i}(X) \),

\[
\left\{ \sum_{k=-\infty}^{\infty} 2^{ks} \| \Theta_k(f_1, \ldots, f_m) \|_{L^p(X)}^q \right\}^{1/q} \leq CA^m \prod_{i=1}^{m} \| f_i \| \dot{B}^{s_i}_{p_i,q_i}(X); \]

(ii) if \(0 < p < \infty, 0 < q \leq \infty, p(s_i, \epsilon) < p_i < \infty \) and \(p(s_i, \epsilon) < q_i < \infty \) for \(i \in \{ 1, \ldots, m \} \) such that \(\frac{1}{p} = \sum_{i=1}^{m} \frac{1}{p_i} \) and \(\frac{1}{q} = \sum_{i=1}^{m} \frac{1}{q_i} \), as in Definition 6.9, \(\dot{F}^{s_i}_{p_i,q_i}(X) \) is defined as a subspace of \((\dot{G}^{\infty}_{0}(\beta, \gamma))^\prime \) with certain \(\beta, \gamma \) satisfying (7.24), then there
exists a positive constant C such that, for all $f_i \in \mathcal{G}_0^\beta(\beta, \gamma) \subset \hat{F}_{p_i,q_i}^{\alpha_i}(\mathcal{X})$,
\[
\left\{ \sum_{k=-\infty}^{\infty} 2^{ksq} |\Theta_k(f_1, \ldots, f_m)|^q \right\}^{1/q} \leq CA^m \prod_{i=1}^{m} \|f_i\|_{F_{p_i,q_i}^{\alpha_i}(\mathcal{X})}. \tag{7.25}
\]

Remark 7.10. Using the fact that $\hat{F}_{p,2}^{0}(\mathcal{X})$ coincides with the space $L^p(\mathcal{X})$, we see that the conclusions of Theorem 7.9 do not cover those of Theorems 7.6 and 7.8. A result along the lines of Theorem 7.8 in the Euclidean setting, has recently and independently been proved by Hart [62] (Theorem 1.4). Examination indicates that Theorem 1.4 in [62] requires weaker cancelation condition and stronger regularity compared to Theorem 7.8 in our work. It should also be noticed that an alternative approach to the bilinear $T(1)$ theorem was also obtained by Hart [63] in the Euclidean setting. Quadratic estimates of the form (7.25) were also studied by Grafakos and Oliveira [49] via multilinear Carleson measure techniques.

Proof of Theorem 7.9. Let $\{S_k\}_{k \in \mathbb{Z}}$ be a 1-ATI with bounded support, which is also a $(1,1,1)$-ATI, and set $D_k := S_k - S_{k-1}$ for all $k \in \mathbb{Z}$. For every $i \in \{1, \ldots, m\}$ and $f_i \in \mathcal{G}_0^\beta(\beta, \gamma)$, the Calderón reproducing formula in Lemma 6.10, we know that there exist linear operators $\{\overline{D}_{k_i}\} \in \mathbb{Z}$ such that, for any fixed $y_{\tau_i}^{k_i,\nu_i} \in Q_{\tau_i}^{k_i,\nu_i}$ with $k_i \in \mathbb{Z}$, $\tau_i \in I_{k_i}$ and $\nu_i \in \{1, \ldots, N(k_i, \tau_i)\}$,
\[
f_i(\cdot) = \sum_{k_i \in \mathbb{Z}} \sum_{\tau_i \in I_{k_i}} \sum_{\nu_i=1}^{N(k_i, \tau_i)} \mu(Q_{\tau_i}^{k_i,\nu_i}) D_{k_i}(\cdot, y_{\tau_i}^{k_i,\nu_i}) \overline{D}_{k_i}(f_i)(y_{\tau_i}^{k_i,\nu_i}), \tag{7.26}
\]
where the series converges in $\mathcal{G}_0^\beta(\beta, \gamma)$, and the kernels of the operators $\{\overline{D}_{k_i}\} \in \mathbb{Z}$ satisfy (a), (b') and (c) of Lemma 6.10 for any $\epsilon' \in (\epsilon, 1)$. In what follows, for the sake of simplicity, we use the notation $\sum_{(k_1, \tau_1, \nu_1)}$ to denote $\sum_{k_1 \in \mathbb{Z}} \sum_{\tau_1 \in I_{k_1}} \sum_{\nu_1=1}^{N(k_1, \tau_1)}$ for all $i \in \{1, \ldots, m\}$.

To show (i), applying (7.26) to each f_i and then using Lemma 7.4, we see that, for any given $\sigma \in (0, 1 \wedge \delta_1 \wedge \delta_2)$ and all $x \in \mathcal{X}$,
\[
|\Theta_k(f_1, \ldots, f_m)(x)|
\leq \sum_{(k_1, \tau_1, \nu_1)} \cdots \sum_{(k_m, \tau_m, \nu_m)} \mu(Q_{\tau_1}^{k_1,\nu_1}) \cdots \mu(Q_{\tau_m}^{k_m,\nu_m}) \times |\Theta_k(D_{k_1}(\cdot, y_{\tau_1}^{k_1,\nu_1}), \ldots, D_{k_m}(\cdot, y_{\tau_m}^{k_m,\nu_m}))(x)| |\overline{D}_{k_1}(f_1)(y_{\tau_1}^{k_1,\nu_1}) \cdots \overline{D}_{k_m}(f_m)(y_{\tau_m}^{k_m,\nu_m})|
\lesssim A^m \prod_{i=1}^{m} \sum_{(k_i, \tau_i, \nu_i)} 2^{-|k-k_i|} \mu(Q_{\tau_i}^{k_i,\nu_i}) K(2^{-(k \wedge k_i)}, 1 \wedge \delta_2, x, y_{\tau_i}^{k_i,\nu_i}) |\overline{D}_{k_i}(f_i)(y_{\tau_i}^{k_i,\nu_i})|.
\]

By Lemma 6.12 the last quantity above is bounded by
\[
A^m \prod_{i=1}^{m} \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i|} \mu[\mathcal{G}_0^\beta(\beta, \gamma) \cap [k_i - (k \wedge k_i) \cap n(1/\tau_i - 1)] \cap \mathcal{X}]
\times \left\{ \mathcal{M} \left(\sum_{\tau_i \in I_{k_i}} \sum_{\nu_i=1}^{N(k_i, \tau_i)} |\overline{D}_{k_i}(f_i)(y_{\tau_i}^{k_i,\nu_i})|^{\tau_i} \right)^{1/\tau_i} \right\}^{1/\tau_i},
\]
whenever \(r_i \in (\frac{n}{n+(1-\delta_2)}, 1] \). In particular, since \(\epsilon \in (0, 1 \land \delta_1 \land \delta_2) \) and

\[
\min(p_i, q_i) > p(s_i, \epsilon) = \max\left\{ \frac{n}{n+\epsilon}, \frac{n}{n+s_i+\epsilon} \right\}, \quad \forall i \in \{1, \ldots, m\},
\]

there exist \(\sigma \in (0, 1 \land \delta_1 \land \delta_2) \) and \(\{r_i\}_{i=1}^m \) such that, for all \(i \in \{1, \ldots, m\} \),

\[
\frac{n}{n+(1-\delta_2)} < r_i \leq 1, \quad r_i < \min(p_i, q_i) \quad \text{and} \quad n(1/r_i - 1) < \sigma + s_i. \quad (7.27)
\]

Fix such \(\sigma \) and \(\{r_i\}_{i=1}^m \). Set

\[
F_i := \left\{ \mathcal{M}\left(\sum_{\tau_i \in I_{k_i}} \sum_{\nu_i=1}^N \mathcal{D}_{k_i}(f_i)(y_{\tau_i}^{k_i,\nu_i})\right)^{r_i} \right\}^{1/r_i}.
\]

Thus, we have proved that, for \(\sigma \) and \(\{r_i\}_{i=1}^m \) as in (7.27), and all \(x \in \mathcal{X} \),

\[
|\Theta_k(f_1, \ldots, f_m)(x)| \lesssim A_{\mathcal{M}} \prod_{i=1}^m \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma-n(1/r_i-1)|} |F_i(x)|. \quad (7.28)
\]

Since \(\frac{1}{p} = \sum_{i=1}^m \frac{1}{p_i} \), it follows, from (7.28) and Hölder’s inequality, that

\[
\|\Theta_k(f_1, \ldots, f_m)\|_{L^p(\mathcal{X})} \lesssim A_{\mathcal{M}} \prod_{i=1}^m \left\| \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma-n(1/r_i-1)|} |F_i(x)| \right\|_{L^{p_i}(\mathcal{X})}.
\]

Notice that \(s = \sum_{i=1}^m s_i \). Again, using \(\frac{1}{q} = \sum_{i=1}^m \frac{1}{q_i} \) and Hölder’s inequality, we obtain

\[
\left\{ \sum_{k=-\infty}^{\infty} 2^{ks_i} \|\Theta_k(f_1, \ldots, f_m)\|_{L^p(\mathcal{X})}^q \right\}^{1/q} \lesssim A_{\mathcal{M}} \prod_{i=1}^m \left\{ \sum_{k=-\infty}^{\infty} 2^{ks_i} \|\Theta_k(f_1, \ldots, f_m)\|_{L^p(\mathcal{X})}^{q_i} \right\}^{1/q}.
\]

For every \(i \in \{1, \ldots, m\} \), by \(\sigma + s_i - n(1/r_i - 1) > 0 \), Lemma 6.13 and the boundedness of \(\mathcal{M} \) on \(L^{p_i/r_i}(\mathcal{X}) \), we conclude that

\[
\left\| \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma+n(1/r_i-1)|} 2^{k_i s_i} |F_i(x)| \right\|_{L^{p_i}(\mathcal{X})} = \left\{ \int_{\mathcal{X}} \left(\sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma+n(1/r_i-1)|} 2^{k_i s_i} |F_i(x)| \right)^{p_i} \, d\mu(x) \right\}^{p_i/q_i} \lesssim \left\{ \int_{\mathcal{X}} \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma+n(1/r_i-1)|} 2^{k_i s_i} |F_i(x)| \, d\mu(x) \right\}^{p_i/q_i}.
\]
\[
\sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma+s_i-n(1/r_1-1)|} (p_i, \Lambda_1) \\
\times \int_x M \left(\sum_{\tau_i \in I_{k_i}} \sum_{\nu = 1}^{N(k_i, \tau_i)} \left| 2^{k_i s_i} D_{k_i} (f_i)(y_{\tau_i}^{k_i, \nu_i}) \right|^{p_i} \mu(Q_{\tau_i}^{k_i, \nu_i}) \right)^{p_i/r_i} d\mu(x) \}
\]

\[
\sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i||\sigma+s_i-n(1/r_1-1)|} (p_i, \Lambda_1) \\
\times \left[\sum_{\tau_i \in I_{k_i}} \sum_{\nu = 1}^{N(k_i, \tau_i)} \left| 2^{k_i s_i} D_{k_i} (f_i)(y_{\tau_i}^{k_i, \nu_i}) \right|^{p_i} \mu(Q_{\tau_i}^{k_i, \nu_i}) \right]^{q_i/p_i}
\]

With this estimate, we continue (7.29) with

\[
\left\{ \sum_{k=-\infty}^{\infty} 2^{ks} \| \Theta_k (f_1, \ldots, f_m) \|_{L^p(X)} \right\}^{1/q}
\]

\[
\lesssim A^m \prod_{i=1}^{m} \left\{ \sum_{k_i \in \mathbb{Z}} \sum_{\nu = 1}^{N(k_i, \tau_i)} \left| 2^{k_i s_i} D_{k_i} (f_i)(y_{\tau_i}^{k_i, \nu_i}) \right|^{p_i} \mu(Q_{\tau_i}^{k_i, \nu_i}) \right\}^{q_i/p_i} \frac{1}{q_i}
\]

\[
\lesssim A^m \prod_{i=1}^{m} \left\{ \| f_i \|_{L^p(X)} \right\}^{\epsilon_i}
\]

This concludes the proof of (i).

Next we turn to (ii). For \(\{ f_i \}_{i=1}^{m} \subset \tilde{G}_0^p(\beta, \gamma) \) as in (i), using the Calderón reproducing formula and Lemma 6.12, we see that (7.28) holds for some \(\sigma \) and a sequence \(\{ r_i \}_{i=1}^{m} \) satisfying (7.27). By (7.28) and \(s = \sum_{i=1}^{m} s_i \), we obtain

\[
\left\| \left\{ \sum_{k=-\infty}^{\infty} 2^{ks} |\Theta_k (f_1, \ldots, f_m)| \right\}^{1/q} \right\|_{L^p(X)}
\]

\[
\lesssim A^m \left\| \left\{ \sum_{k=-\infty}^{\infty} \prod_{i=1}^{m} 2^{ks_i} 2^{-|k-k_i||\sigma-n(1/r_i-1)|} f_i \right\}^{q} \right\|_{L^p(X)}
\]
\[\lesssim A^m \left\| \left\{ \sum_{k=-\infty}^{\infty} \prod_{i=1}^{\infty} \left(\sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i|(\sigma+s_i-n(1/r_i-1))} 2^{k_i s_i} F_i \right)^q \right\} \right\|_{L^p(X)}. \quad (7.30) \]

Since \(\frac{1}{q} = \sum_{i=1}^{m} \frac{1}{q_i} \) and \(\sigma + s_i - n(1/r_i - 1) > 0 \) for all \(i \in \{1, \ldots, m\} \), from Hölder’s inequality and Lemma 6.13, it follows that

\[\lesssim \prod_{i=1}^{m} \left\{ \sum_{k=-\infty}^{\infty} \left(\sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i|(\sigma+s_i-n(1/r_i-1))} 2^{k_i s_i} F_i \right)^{q_i} \right\}^{1/q_i} \]

\[\lesssim \prod_{i=1}^{m} \left\{ \sum_{k=-\infty}^{\infty} \sum_{k_i \in \mathbb{Z}} 2^{-|k-k_i|(\sigma+s_i-n(1/r_i-1))} 2^{k_i s_i} F_i \right\}^{1/q_i} \]

\[\lesssim \prod_{i=1}^{m} \left\{ \sum_{k_i \in \mathbb{Z}} |2^{k_i s_i} F_i|^{q_i} \right\}^{1/q_i}. \]

Inserting this into (7.30) and applying Hölder’s inequality with indices \(\frac{1}{p} = \sum_{i=1}^{m} \frac{1}{p_i} \), we know that

\[\left\| \left\{ \sum_{k=-\infty}^{\infty} 2^{k s q} |\Theta_k(f_0, \ldots, f_m)|^q \right\} \right\|_{L^p(X)} \]

\[\lesssim A^m \left\| \prod_{i=1}^{m} \left\{ \sum_{k_i \in \mathbb{Z}} |2^{k_i s_i} F_i|^{q_i} \right\} \right\|_{L^p(X)} \]

\[\lesssim A^m \prod_{i=1}^{m} \left\{ \sum_{k_i \in \mathbb{Z}} |2^{k_i s_i} F_i|^{q_i} \right\} \] \(L^p(X). \quad (7.31) \)

For any \(i \in \{1, \ldots, m\} \), since \(p_i / r_i > 1 \) and \(q_i / r_i > 1 \), we use the Fefferman–Stein vector-valued maximal function inequality (see, for example, [48]) to find that

\[\left\| \left\{ \sum_{k_i \in \mathbb{Z}} |2^{k_i s_i} F_i|^{q_i} \right\} \right\|_{L^{p_i}(X)} \]

\[\lesssim \left\| M \left(\sum_{\tau_i \in I_{k_i}} \left(\sum_{\nu=1}^{N(k_i, \tau_i)} 2^{k_i s_i} D_{k_i}(f_i)(y_{\tau_i}^{k_i, \nu})|_{\tau_i} X_{Q_{\tau_i}^{k_i, \nu}} \right) \right) \right\|_{L^{p_i}(X)} \]

\[\lesssim \left\| \left\{ \sum_{k_i \in \mathbb{Z}} \sum_{\tau_i \in I_{k_i}} \sum_{\nu=1}^{N(k_i, \tau_i)} 2^{k_i s_i} D_{k_i}(f_i)(y_{\tau_i}^{k_i, \nu})|_{\tau_i} X_{Q_{\tau_i}^{k_i, \nu}} \right\} \right\|_{L^{p_i}(X)} \]

\[\lesssim \left\| f_i \right\|_{F_{p_i, q_i}(X)}. \]
Then, applying (7.31), we conclude that
\[
\left\| \left\{ \sum_{k=-\infty}^{\infty} 2^{ksq} |\Theta_k(f_1, \ldots, f_m)|^q \right\}^{1/q} \right\|_{L^p(X)} \lesssim A^m \prod_{i=1}^{m} \|f_i\|_{\dot{F}^{s_i}_{p_i,q_i}(X)}.
\]
This proves (ii) and completes the proof of Theorem 7.9. \qed
8. Paraproducts as bilinear Calderón–Zygmund operators

In this section, we prove that paraproducts on spaces of homogeneous type can be viewed as bilinear Calderón–Zygmund singular integrals of the kind considered in Sections 3 and 4. As applications, such paraproducts possess the weighted boundedness properties as in Corollaries 4.14 and 4.15. In the special case $X = \mathbb{R}^n$, these paraproducts go back to the classical ones investigated by Coifman and Meyer [21, 82], Muscalu, Tao, Thiele [85], Grafakos and Kalton [44, Section 8], and Gilbert and Nahmod [37, 38]. More recent developments on paraproducts and their applications can be found in Bernicot’s works [7, 8, 9]. The unweighted Euclidean counterparts to the results in this section were obtained by Bényi, Maldonado, Nahmod and Torres [5].

8.1. Paraproducts. Paraproducts were first introduced and systematically studied by J.-M. Bony in [12] and they now play a central role in numerous areas of analysis and PDEs; see, for example, [4] for an exposition on the evolution of the concept of paraproducts.

Definition 8.1. Given $\beta, \gamma > 0$ and a dyadic cube $Q \in Q$, say $Q := Q^k_\alpha$ for some $k \in \mathbb{Z}$ and $\alpha \in I_k$, a function ψ is called a bump function adapted to Q if, for all $x, y \in X$,

$$|\psi(x)| \leq \frac{\mu(Q)^{1/2}}{\mu(Q) + V(x, c_Q)} \left[\frac{1}{1 + 2^k d(x, c_Q)} \right]^\gamma \tag{8.1}$$

and, when $d(x, y) \leq [2^{-k} + d(x, y)]/2$,

$$|\psi(x) - \psi(y)| \leq \frac{\mu(Q)^{1/2}}{\mu(Q) + V(x, c_Q)} \left[\frac{d(x, y)}{2^{-k} + d(x, c_Q)} \right]^\beta \left[\frac{1}{1 + 2^k d(x, c_Q)} \right]^\gamma, \tag{8.2}$$

where c_Q denotes the center of Q, namely, $B(c_Q, C_6 2^{-k}) \subset Q \subset B(c_Q, C_5 2^{-k})$ as in Lemma 2.5.

In this case, write ψ_Q to indicate that ψ is a bump function adapted to Q. If, in addition, ψ_Q satisfies $\int_X \psi(x) \, d\mu(x) = 0$, then ψ_Q is called a (β, γ)-smooth molecule for Q. From now on, β and γ are assumed to be uniform in ψ_Q.

Bump functions are actually test functions as Definition 2.12. Obviously, if ψ_Q is a bump function adapted to the dyadic cube $Q := Q^k_\alpha$, then $\mu(Q)^{-1/2} \psi_Q$ is a test function of type $(c_Q, 2^{-k}, \beta, \gamma)$, vice versa. Also, ψ_Q is a molecule if and only if $\mu(Q)^{-1/2} \psi_Q \in \mathcal{G}(c_Q, 2^{-k}, \beta, \gamma)$.

The paraproducts are defined as follows.
DEFINITION 8.2. For any given three families of bump functions, \(\{\psi_Q^{(0)}\}_{Q \in Q}, \{\psi_Q^{(1)}\}_{Q \in Q}, \) and \(\{\psi_Q^{(2)}\}_{Q \in Q}, \) the bilinear (discrete) paraproduct is defined as follows:

\[
\Pi(f, g)(x) := \sum_{Q \in Q} \mu(Q)^{-1/2} \left(\psi_Q^{(1)}(x) \left(\psi_Q^{(2)} \right) \psi_Q^{(0)}(x), \; \forall x \in X. \quad (8.3)
\]

In Lemma 8.9 below, we prove that if \(\{\psi_Q^{(0)}\}_{Q \in Q} \) and \(\{\psi_Q^{(2)}\}_{Q \in Q} \) are smooth molecules and \(\{\psi_Q^{(1)}\}_{Q \in Q} \) are bump functions, then \(\Pi \) as in (8.3) is bounded from \(L^2(X) \times L^2(X) \) to \(L^1(X) \). Notice that the kernel of \(\Pi \) is given by

\[
K_{\Pi}(x_0, x_1, x_2) = \sum_{Q \in Q} \mu(Q)^{-1/2} \psi_Q^{(0)}(x_0) \psi_Q^{(1)}(x_1) \psi_Q^{(2)}(x_2), \; \forall x_0, x_1, x_2 \in X.
\]

Indeed, \(K \) is a bilinear Calderón–Zygmund kernel provided that \(\{\psi_Q^{(0)}\}_{Q \in Q}, \{\psi_Q^{(1)}\}_{Q \in Q}, \) and \(\{\psi_Q^{(2)}\}_{Q \in Q} \) are bump functions with fast decay; see Lemma 8.10 below. Therefore, weighted estimates of \(\Pi \) on the 2-fold product of Lebesgue spaces follow from the multilinear Calderón–Zygmund theory in Section 4.

8.2. Almost diagonal estimates. For the sake of simplicity, in what follows, we use the following notation: for any given \(\epsilon \in (0, \infty), t > 0 \) and all \(x, y \in X, \)

\[
\mathcal{K}(t; \epsilon, x, y) := \frac{1}{V_t(x) + V_t(y) + V(x, y)} \left[\frac{t}{t + d(x, y)} \right]^{\epsilon}.
\]

A very useful observation is that the doubling property of \(\mu \) implies that, when \(d(x', x) \leq a \epsilon \) and \(d(y, y') \leq a \epsilon, \)

\[
\mathcal{K}(t; \epsilon, x, y) \sim \mathcal{K}(t; \epsilon, x', y')
\]

with implicit equivalent positive constants depending only on \(a, \epsilon \) and \(C_1. \)

The following off-diagonal estimates for any two test functions are proved in [60, Lemmas 3.2 and 3.19].

Lemma 8.3. Let \(\epsilon_1 \in (0, 1], \epsilon_2 > 0 \) and \(\epsilon_3 > 0. \) Fix \(\epsilon'_1 \in (0, \epsilon_1 \wedge \epsilon_2). \) Assume that there exist positive constants \(A_1 \) and \(A_2 \) such that, for any \(k \in \mathbb{Z}, \) the functions \(Q_k : X \times X \to \mathbb{C} \) and \(P_k : X \times X \to \mathbb{C} \) satisfy that for all \(x, y \in X, \)

\[
|Q_k(x, y)| \leq A_1 \mathcal{K}(2^{-k}; \epsilon_2, x, y),
\]

\[
|P_k(x, y)| \leq A_2 \mathcal{K}(2^{-k}; \epsilon_2, x, y)
\]

and

\[
Q_k P_k(x, y) := \int_X Q_k(x, w) P_k(w, y) d\mu(w).
\]

Then there exists a positive constant \(C \) (depending on \(\epsilon'_1, \epsilon_1, \epsilon_2, \) and \(\epsilon_3 \)) and \(\delta \) (depending on \(\epsilon'_1, \epsilon_1 \) and \(\epsilon_2 \)) such that the following hold:

(i) when \(\ell = k, \) for all \(x, y \in X, \) it holds true that

\[
|P_k Q_k(x, y)| \leq C A_1 A_2 \mathcal{K}(2^{-k}; \epsilon_2, x, y); \quad (8.4)
\]
(ii) when \(\ell > k \), if
\[
\int_{\mathcal{X}} P_{\ell}(x, w) \, d\mu(w) = 0, \quad \forall x \in \mathcal{X}
\]
and, for all \(x, x', y \in \mathcal{X} \) satisfying \(d(x, x') \leq [2^{-k} + d(x, y)]/2 \),
\[
|Q_k(x, y) - Q_k(x', y)| \leq A_1 \left[\frac{d(x, x')}{2^{-k} + d(x, y)} \right]^{\epsilon_2} \mathcal{K}(2^{-k}; \epsilon_2, x, y),
\]
then, for all \(x, y \in \mathcal{X} \), it holds true that
\[
|P_{\ell}Q_k(x, y)| \leq C A_1 A_2 2^{-|k - \ell|\epsilon_1} \mathcal{K}(2^{-|k - \ell|}; \epsilon_2, x, y). \tag{8.5}
\]
An extension of (8.4) and (8.5) to the estimate of three test functions is as follows.

Lemma 8.4. Let \(\gamma > 0 \). Then, for any \(\gamma' \in (0, \gamma) \) and \(\gamma'' \in (0, \gamma - \gamma') \), there exists a positive constant \(C \), depending only on \(\gamma, \gamma', \gamma'' \) and \(C_1 \), such that, for all \(x_0, x_1, x_2 \in \mathcal{X} \),
\[
\int_{\mathcal{X}} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, x, x_j) \, d\mu(x) \leq C \mathcal{K}(2^{-k}; \gamma', x_0, x_1) \mathcal{K}(2^{-k}; \gamma'', x_2, x_1). \tag{8.6}
\]

The proof of Lemma 8.4 is based on Lemma 8.5 below. In the Euclidean case, Lemma 8.5 was proved in [51, Lemma 1]; see [46] for its extension to spaces of homogeneous type.

Lemma 8.5. Let \(\epsilon \in (0, \infty) \). Then, there exists a positive constant \(C \), depending only on \(\epsilon, C_1 \) and \(n \), such that, for all \(x, w \in \mathcal{X} \), \(\epsilon \in (0, \infty) \) and \(R \in (0, \infty) \),
\[
\int_{d(x, y) < R} \mathcal{K}(r; \epsilon, y, w) \, d\mu(y) \leq C \max \left\{ \left(\frac{R}{r} \right)^{\epsilon}, 1 \right\} V_R(x) \mathcal{K}(r; \epsilon, x, w).
\]

Proof of Lemma 8.4. We decompose the space \(\mathcal{X} \) as follows:
\[
\int_{\mathcal{X}} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, x, x_j) \, d\mu(x)
\]
\[
= \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \int_{d(x, x_1) \sim 2^{-k+s}} \int_{d(x, x_2) \sim 2^{-k+t}} \prod_{j=0}^{2} \frac{1}{V_{2^{-k}}(x) + V_{2^{-k}}(x_j) + V(x, x_j)} \left[\frac{1}{1 + 2^k d(x, x_j)} \right]^{\gamma} \, d\mu(x)
\]
\[
\lesssim \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} 2^{-s\gamma} 2^{-t\gamma} \frac{1}{\mu(B(x_1, 2^{-k+s}))} \frac{1}{\mu(B(x_2, 2^{-k+t}))}
\]
\[
\times \int_{d(x, x_1) \sim 2^{-k+s}} \int_{d(x, x_2) \sim 2^{-k+t}} \frac{1}{V_{2^{-k}}(x) + V_{2^{-k}}(x_0) + V(x, x_0)} \left[\frac{1}{1 + 2^k d(x, x_0)} \right]^{\gamma} \, d\mu(x),
\]
where the notation \(d(x, x_1) \sim 2^{-k+s} \) means \(2^{-k+s} \leq d(x, x_1) < 2^{-k+s+1} \) if \(s \geq 1 \) and \(d(x, x_1) \leq 2^{-k} \) when \(s = 0 \); likewise for \(d(x, x_2) \sim 2^{-k+t} \).

Assume first that \(s \leq t \). Take \(\gamma' \in (0, \gamma) \) and \(\gamma'' \in (0, \gamma - \gamma') \). Observe that, if there exists an \(x \in \mathcal{X} \) such that \(d(x, x_1) \sim 2^{-k+s} \) and \(d(x, x_2) \sim 2^{-k+t} \), then
\[
d(x_1, x_2) \leq d(x_1, x) + d(x_2, x) \leq 2^{-k+2} \max\{2^s, 2^t\},
\]
and hence
\[
\frac{1}{\mu(B(x_2, 2^{-k+t}))} = \frac{V_{2^{-k}}(x) + V_{2^{-k}}(x_2) + V(x, x_2)}{\mu(B(x_2, 2^{-k+t}))} [1 + 2^k d(x_2, x_1)]^{\gamma''} \mathcal{K}(2^{-k}; \gamma'', x_2, x_1)
\]

\[
\frac{1}{\mu(B(x_1, 2^{-k+s}))} = \frac{V_{2^{-k}}(x) + V_{2^{-k}}(x_0) + V(x, x_0)}{\mu(B(x_1, 2^{-k+s}))} [1 + 2^k d(x_1, x_0)]^{\gamma'} \mathcal{K}(2^{-k}; \gamma', x_1, x_0)
\]
where the last inequality is due to the fact that, when

From the last two estimates, it follows that

Define the sets

Likewise, a symmetric argument (by reversing the roles of x and x_0

Applying Lemma 8.5 with $\epsilon = \gamma'$, we see that

Combining (8.7) and (8.8), we obtain the desired estimate (8.6).

where the last inequality is due to the fact that, when $\gamma' \in (0, \gamma - n)$ and $\gamma'' \in (0, \gamma - n - \gamma')$,

Likewise, a symmetric argument (by reversing the roles of x_1 and x_2) also implies that

Combining (8.7) and (8.8), we obtain the desired estimate (8.6). ■

Lemma 8.6. Suppose that $x_0, x_1, x_2 \in X$ such that

If $\beta' > 0$, $\gamma' > n + \beta'$ and $\gamma'' > 0$, then there exists a positive constant C, independent of k and $\{x_j\}_{j=0}^2$, such that

Proof. Define the sets

A_1 := \{k \in \mathbb{Z} : 2^k d(x_0, x_1) \leq 1\},
8. Paraproducts as bilinear Calderón–Zygmund operators

Let

$$\Lambda_2 := \{k \in \mathbb{Z} : 2^k d(x_0, x_1) > 1 > 2^k d(x_1, x_2)\} \quad \text{and} \quad \Lambda_3 := \mathbb{Z} \setminus \{\Lambda_1, \Lambda_2\}.$$

By the reverse doubling property of μ, we find that

$$\sum_{k \in \Lambda_1} [2^k d(x_0, x_1)]^{\beta'} \mathcal{K}(2^{-k}; \gamma', x_0, x_1) \mathcal{K}(2^{-k}; \gamma'', x_2, x_1) \lesssim \sum_{k \in \Lambda_1} \frac{1}{V(x_0, x_1)} \frac{1}{V_{2^{-k}}(x_1)} \lesssim \frac{1}{[V(x_0, x_1)]^2}.$$

Since $\gamma' > \beta'$, it follows that

$$\sum_{k \in \Lambda_2} [2^k d(x_0, x_1)]^{\beta'} \mathcal{K}(2^{-k}; \gamma', x_0, x_1) \mathcal{K}(2^{-k}; \gamma'', x_2, x_1) \lesssim \sum_{k \in \Lambda_2} \frac{1}{[V(x_0, x_1)]^2} \sum_{\{k \in \mathbb{Z} : 2^k d(x_0, x_1) > 1\}} [2^k d(x_0, x_1)]^{\beta' - \gamma'} \lesssim \frac{1}{[V(x_0, x_1)]^2}.$$

For any $k \in \Lambda_3$, we have $1 \leq 2^k d(x_1, x_2) \leq 2^k d(x_0, x_1)$ and hence, by using $\gamma' > n + \beta'$ and the doubling property of μ, we obtain

$$\sum_{k \in \Lambda_3} [2^k d(x_0, x_1)]^{\beta'} \mathcal{K}(2^{-k}; \gamma', x_0, x_1) \mathcal{K}(2^{-k}; \gamma'', x_2, x_1) \lesssim \sum_{k \in \Lambda_3} \frac{1}{V(x_0, x_1)} \frac{1}{V_{2^{-k}}(x_1)} [2^k d(x_0, x_1)]^{\beta' - \gamma'} [2^k d(x_1, x_2)]^{-\gamma''} \lesssim \frac{1}{[V(x_0, x_1)]^2} \sum_{k \in \Lambda_3} \frac{\mu(B(x_1, d(x_1, x_0)))}{\mu(B(x_1, 2^{-k}))} [2^k d(x_0, x_1)]^{\beta' - \gamma'} [2^k d(x_1, x_2)]^{-\gamma''} \lesssim \frac{1}{[V(x_0, x_1)]^2} \sum_{\{k \in \mathbb{Z} : 2^k d(x_1, x_2) \geq 1\}} [2^k d(x_0, x_1)]^{\beta' + n - \gamma'} [2^k d(x_1, x_2)]^{-\gamma''} \lesssim \frac{1}{[V(x_0, x_1)]^2}.$$

Also, the doubling condition of μ and the assumption $d(x_0, x_1) \geq d(x_1, x_2) \geq d(x_0, x_2)$ imply that

$$V(x_0, x_1) \sim V(x_0, x_1) + V(x_0, x_2) + V(x_1, x_2).$$

Therefore, summarizing all these estimates, we obtain (8.9).

8.3. Paraproducts as bilinear Calderón–Zygmund operators. This subsection is concerned the weighted boundedness of the following paraproducts. The approach taken here is that these paraproducts can be viewed as bilinear Calderón–Zygmund operators; see Bényi, Maldonado and Nahmod and Torres \footnote{Bényi, A., Maldonado, D. and Nahmod, A.: \textit{Weighted boundedness of commutators of bilinear Hilbert transform and maximal function}, J. Funct. Anal. 261 (2011), 1743-1761.} for the special case $X = \mathbb{R}^n$.

\textbf{Lemma 8.7.} There exists a positive constant N_∞, depending only on C_1, C_5, C_6, γ and
\(\beta\), such that, for all \(Q \in \mathcal{Q}\), bump functions \(\psi_Q\) adapted to \(Q\) and \(h \in L^\infty(\mathcal{X})\),
\[
|\langle \psi_Q, h \rangle| \leq N_\infty \mu(Q)^{1/2} \|h\|_{L^\infty(\mathcal{X})}.
\]

Proof. The size condition of \(\psi_Q\) implies that
\[
|\langle \psi_Q, h \rangle| \leq \|h\|_{L^\infty(\mathcal{X})} \mu(Q)^{1/2} \int_{\mathcal{X}} \frac{1}{\mu(Q) + V(x, c_Q)} \left[\frac{1}{1 + 2kd(x, c_Q)} \right]^\gamma d\mu(x).
\]
Without loss of generality, we may as well assume that \(Q \in I_k\) for some constant \(k \in \mathbb{Z}\), that is, \(B(c_Q, C_02^{-k}) \subset Q \subset B(c_Q, C_52^{-k})\). Therefore, by splitting the integral over \(\mathcal{X}\) into annulus \(d(x, c_Q) < 2^{-k}\) and \(2^{-k+\nu} \leq d(x, c_Q) < 2^{-k+\nu+1}\) for \(\nu \geq 1\), we apply the doubling condition of \(\mu\) to conclude that
\[
\int_{\mathcal{X}} \frac{1}{\mu(Q) + V(x, c_Q)} \left[\frac{1}{1 + 2kd(x, c_Q)} \right]^\gamma d\mu(x) < \infty,
\]
which completes the proof of Lemma 8.7. \(\blacksquare\)

Lemma 8.8. Given a family \(\{\psi_Q\}\) of smooth molecules, there exists a positive constant \(N_2\), depending only on \(C_1, C_5, C_6, \gamma,\) and \(\beta\), such that, for all \(f \in L^2(\mathcal{X})\),
\[
\sum_{Q \in \mathcal{Q}} |\langle \psi_Q, f \rangle|^2 \leq N_2 \|f\|^2_{L^2(\mathcal{X})}. \tag{8.10}
\]

Proof. Without loss of generality, we may assume that \(\sum_{Q \in \mathcal{Q}} |\langle \psi_Q, f \rangle|^2\) is finite; otherwise we only need to prove that (8.10) holds for finite \(N\) terms of the summation and then let \(N \to \infty\). Given \(f \in L^2(\mathcal{X})\) with \(\|f\|_{L^2(\mathcal{X})} = 1\), by Hölder’s inequality, we have
\[
\sum_{Q \in \mathcal{Q}} |\langle \psi_Q, f \rangle|^2 = \sum_{Q \in \mathcal{Q}} \langle \psi_Q, f \rangle \langle f, \psi_Q \rangle \leq \left\| \sum_{Q \in \mathcal{Q}} \langle f, \psi_Q \rangle \psi_Q \right\|_{L^2(\mathcal{X})}.
\]
Hence
\[
\left[\sum_{Q \in \mathcal{Q}} |\langle \psi_Q, f \rangle|^2 \right]^2 = \sum_{Q, R \in \mathcal{Q}} \langle \psi_Q, f \rangle \langle \psi_Q, \psi_R \rangle \langle f, \psi_R \rangle.
\]
Suppose that \(Q = Q^k_\alpha\) for some \(k \in \mathbb{Z}\) and \(\alpha \in I_k\), and \(R = R^k_{\alpha'}\) for some \(k' \in \mathbb{Z}\) and \(\alpha' \in I_{k'}\). Then, the decay, the regularity, and the cancelation conditions for the molecules imply that we can apply (8.5) and (8.4) to know that
\[
|\langle \psi_Q, \psi_R \rangle| \lesssim \mu(Q^k_\alpha)^{1/2} \mu(R^k_{\alpha'})^{1/2} 2^{-|k-k'|} \epsilon \mathcal{K} \left(2^{-(k \wedge j)}; \gamma, c_Q, c_R, y, z\right),
\]
\[
\sim \mu(Q^k_\alpha)^{1/2} \mu(R^k_{\alpha'})^{1/2} 2^{-|k-k'|} \epsilon \inf_{y \in Q^k_\alpha, z \in R^k_{\alpha'}} \mathcal{K} \left(2^{-(k \wedge j)}; \gamma, y, z\right),
\]
where \(\epsilon \in (0, \beta \wedge \gamma)\). Thus,
\[
\left[\sum_{Q \in \mathcal{Q}} |\langle \psi_Q, f \rangle|^2 \right]^2 \lesssim \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \sum_{k' \in \mathbb{Z}} \sum_{\alpha' \in I_{k'}} 2^{-|k-k'|} \epsilon \mu(Q^k_\alpha) \mu(R^k_{\alpha'}) \mu(Q^k_\alpha)^{-1/2} \psi_Q^k \psi_{R^k_{\alpha'}} \times |\langle f, \mu(R^k_{\alpha'})^{-1/2} \psi_{R^k_{\alpha'}} \rangle| \inf_{y \in Q^k_\alpha, z \in R^k_{\alpha'}} \mathcal{K} \left(2^{-(k \wedge j)}; \gamma, y, z\right).
\]
By symmetry and estimating the factors \(|\langle \mu(Q_h)\rangle_{1/2}^k \psi_Q, f \rangle | \) and \(|\langle f, \mu(R_{\alpha}^k)_{1/2} \psi_{R_{\alpha}^k} \rangle | \) by the bigger one, we continue the above estimate with

\[
\left[\sum_{Q \in 2} \left| \langle \psi_Q, f \rangle \right|^2 \right]^2 \leq \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \sum_{k' \in \mathbb{Z}} \sum_{\alpha' \in I_k'} 2^{-|k-k'|} \left| \langle \psi_Q, f \rangle \right|^2 \mu(R_{\alpha}^k) \inf_{y \in Q_h, z \in R_{\alpha}^k} \mathcal{K} \left(2^{-(k+\alpha)}; \gamma, y, z \right)
\]

\[
\leq \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \left| \langle \psi_Q, f \rangle \right|^2 \sum_{k' \in \mathbb{Z}} 2^{-|k-k'|} \mathcal{K} \left(2^{-(k+\alpha)}; \gamma, y, z \right) d\mu(z)
\]

\[
\leq \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \left| \langle \psi_Q, f \rangle \right|^2 \sim \sum_{Q \in 2} \left| \langle \psi_Q, f \rangle \right|^2.
\]

Dividing both sides of this inequality by \(\sum_{Q \in 2} \left| \langle \psi_Q, f \rangle \right|^2\) yields (8.10).

Lemma 8.9. Let \(\Pi\) be the bilinear paraproduct defined as in (8.3) with \(\{\psi_Q\} \) smooth molecules and \(\{\psi_Q\} \) bump functions. Then, \(\Pi\) is bounded from \(L^2(\mathcal{X}) \times L^2(\mathcal{X})\) to \(L^1(\mathcal{X})\) with norm at most a positive constant multiple of \(N_2N_\infty\).

Proof. By duality and Lemmas 8.8 and 8.7 given \(h \in L^\infty(\mathcal{X})\), we have

\[
|\langle \Pi(f, g), h \rangle| = \left| \sum_{Q \in 2} \mu(Q)^{-1/2} \langle \psi_Q^1, f \rangle \langle \psi_Q^2, g \rangle \langle \psi_Q^0, h \rangle \right|
\]

\[
\leq N_\infty \|h\|_{L^\infty(\mathcal{X})} \sum_{Q \in 2} \left| \langle \psi_Q^1, f \rangle \right| \left| \langle \psi_Q^2, g \rangle \right|
\]

\[
\leq N_\infty \|h\|_{L^\infty(\mathcal{X})} \left[\sum_{Q \in 2} \left| \langle \psi_Q^1, f \rangle \right|^2 \right]^{1/2} \left[\sum_{Q \in 2} \left| \langle \psi_Q^2, g \rangle \right|^2 \right]^{1/2}
\]

\[
\leq N_2N_\infty \|f\|_{L^2(\mathcal{X})} \|g\|_{L^2(\mathcal{X})} \|h\|_{L^\infty(\mathcal{X})}.
\]

This finishes the proof of Lemma 8.9.

Lemma 8.10. Let \(\Pi\) be the bilinear paraproduct defined as in (8.3) with \(\{\psi_Q\} \) smooth molecules and \(\{\psi_Q\} \) bump functions satisfying (8.1) and (8.2) with \(\beta > 0\) and \(\gamma > n\). Then, for any given \(\beta' \in (0, \beta \land (\gamma - n))\), \(\Pi\) has a Calderón–Zygmund kernel \(K_\Pi \in \text{Ker}(2, C_K, \beta')\), where \(C_K\) is a positive constant depending only on \(C_1, C_5, C_6, \gamma, \beta, \) and \(\beta'\).

Proof. Notice that the kernel of \(\Pi\) is given by

\[
K_\Pi(x_0, x_1, x_2) = \sum_{Q \in 2} \mu(Q)^{-1/2} \psi_Q^0(x_0) \psi_Q^1(x_1) \psi_Q^2(x_2).
\]

By Lemma 2.5, we may as well assume that \(Q = Q^k_{\alpha}\) for some \(k \in \mathbb{Z}\) and \(\alpha \in I_k\). Without loss of generality we may also assume that

\[
d(x_0, x_1) \geq d(x_1, x_2) \geq d(x_0, x_2).
\]
For any $\gamma' \in (0, \gamma - n)$ and $\gamma'' \in (0, \gamma - n - \gamma')$, by Lemmas 8.4 and 8.6 there exists a positive constant C, independent of $\{x_j\}_{j=0}^2$, such that, for all $x_0, x_1, x_2 / X$,

$$|K_\Pi(x_0, x_1, x_2)| \leq \sum_{Q \in \mathcal{Q}} \mu(Q)^{-1/2} \left| \psi_Q^0(x_0) \psi_Q^1(x_1) \psi_Q^2(x_2) \right|$$

$$\lesssim \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \mu(Q_\alpha^k) \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q_\alpha^k}, x_j)$$

$$\lesssim \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \mu(Q_\alpha^k) \inf_{x \in Q_\alpha^k} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, x, x_j)$$

$$\lesssim \sum_{k \in \mathbb{Z}} \int_{X} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, x, x_j) \, d\mu(x)$$

$$\lesssim \sum_{k \in \mathbb{Z}} \mathcal{K}(2^{-k}; \gamma', x_0, x_1) \mathcal{K}(2^{-k}; \gamma'', x_2, x_1)$$

$$\lesssim \frac{1}{[V(x_0, x_1) + V(x_0, x_2) + V(x_1, x_2)]^2}.$$

Now we prove the regularity of K_Π. Fix $\beta' \in (0, \beta \wedge (\gamma - n))$. Given any $x_1, x'_1 \in X$ with

$$d(x_1, x'_1) \leq \max_{0 \leq i, j \leq 2} \{d(x_i, x_j)/2 \} = d(x_0, x_1)/2,$$

we write

$$|K_\Pi(x_0, x_1, x_2) - K_\Pi(x_0, x'_1, x_2)|$$

$$= \left| \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_k} \mu(Q_\alpha^k)^{-1/2} \left[\psi_Q^1(x_1) - \psi_Q^1(x'_1) \right] \psi_Q^2(x_2) \psi_Q^0(x_0) \right|.$$

(8.11)

For every $k \in \mathbb{Z}$, set

$$I_{k, 1} := \{ \alpha \in I_k : d(x_1, x'_1) \leq (2^{-k} + d(x_1, c_{Q_\alpha^k}))/2 \} \quad \text{and} \quad I_{k, 2} := I_k \setminus I_{k, 1}.$$

Observe that, when $\alpha \in I_{k, 1}$, we have $d(x_1, x'_1) \leq (2^{-k} + d(x_1, c_{Q_\alpha^k}))/2$ and hence, by (8.2),

$$\mu(Q_\alpha^k)^{-1/2} \left| \psi_Q^1(x_1) - \psi_Q^1(x'_1) \right| \left| \psi_Q^2(x_2) \psi_Q^0(x_0) \right|$$

$$\lesssim \mu(Q_\alpha^k) \left[\frac{d(x_1, x'_1)}{2^{-k} + d(x_1, c_{Q_\alpha^k})} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q_\alpha^k}, x_j)$$

$$\lesssim \mu(Q_\alpha^k) \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q_\alpha^k}, x_j).$$

By this, we apply Lemmas 8.4 and 8.6 to see that, for $\gamma' \in (n + \beta', \gamma)$ and $\gamma'' \in (0, \gamma),$

$$\sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_{k, 1}} \mu(Q_\alpha^k)^{-1/2} \left[\psi_Q^1(x_1) - \psi_Q^1(x'_1) \right] \psi_Q^2(x_2) \psi_Q^0(x_0)$$

$$\lesssim \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_{k, 1}} \mu(Q_\alpha^k) \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q_\alpha^k}, x_j)$$

$$\lesssim \sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_{k, 1}} \mu(Q_\alpha^k) \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q_\alpha^k}, x_j).$$
When $\alpha \in I_{k,2}$, we have $1 < \frac{2d(x_1, x'_1)}{2^{-k} + d(x_1, c_{Q^k_\alpha})}$, and hence

\[
\mu(Q^k_\alpha)^{-1/2} \left| \psi^{(1)}_{Q^k_\alpha}(x_1) \psi^{(2)}_{Q^k_\alpha}(x_2) \psi^{(0)}_{Q^k_\alpha}(x_0) \right| \\
\leq \mu(Q^k_\alpha) \left[\frac{d(x_1, x'_1)}{2^{-k} + d(x_1, c_{Q^k_\alpha})} \right] \beta' \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j) \\
\leq \mu(Q^k_\alpha) \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \left[2^{k} d(x_0, x_1) \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j),
\]

so an argument similar to that used in (8.12) gives us that

\[
\sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_{k,2}} \mu(Q^k_\alpha)^{-1/2} \left| \psi^{(1)}_{Q^k_\alpha}(x_1) \psi^{(2)}_{Q^k_\alpha}(x_2) \psi^{(0)}_{Q^k_\alpha}(x_0) \right| \\
\leq \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j),
\]

The assumption $d(x_1, x'_1) \leq d(x_0, x_1)/2$ implies that $d(x_0, x_1) \leq 2d(x_0, x'_1)$ and

\[
2d(x'_1, x_0) \geq d(x_1, x_2) \geq d(x_0, x_2).
\]

Also, when $\alpha \in I_{k,2}$, we have $d(x_1, x'_1) > [2^{-k} + d(x_1, c_{Q^k_\alpha})]/3$ and hence

\[
\mu(Q^k_\alpha)^{-1/2} \left| \psi^{(1)}_{Q^k_\alpha}(x_1) \psi^{(2)}_{Q^k_\alpha}(x_2) \psi^{(0)}_{Q^k_\alpha}(x_0) \right| \\
\leq \mu(Q^k_\alpha) \left[\frac{d(x_1, x'_1)}{2^{-k} + d(x'_1, c_{Q^k_\alpha})} \right]^{\beta'} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x'_1) \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j) \\
\leq \mu(Q^k_\alpha) \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \left[2^{k} d(x_0, x_1) \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j),
\]

so an argument similar to that used in (8.12) gives that

\[
\sum_{k \in \mathbb{Z}} \sum_{\alpha \in I_{k,2}} \mu(Q^k_\alpha)^{-1/2} \left| \psi^{(1)}_{Q^k_\alpha}(x_1) \psi^{(2)}_{Q^k_\alpha}(x_2) \psi^{(0)}_{Q^k_\alpha}(x_0) \right| \\
\leq \left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j),
\]

\[
\left[\frac{d(x_1, x'_1)}{d(x_1, x_0)} \right]^{\beta'} \prod_{j=0}^{2} \mathcal{K}(2^{-k}; \gamma, c_{Q^k_\alpha}, x_j).
\]
Inserting the estimates \(\text{(8.12)}, \text{(8.13)}, \text{(8.14)}\) into \(\text{(8.11)}\), we see that \(K_{II}\) satisfies the regularity condition in the \(x_1\)-variable. Similar proofs show the regularity of \(K_{II}\) in the \(x_0\)- and \(x_2\)-variables. Thus, \(K_{II}\) satisfies \(\text{(3.1)}\) and \(\text{(3.2)}\) in the definition of a Calderón–Zygmund kernel, which completes the proof of Lemma \(\text{8.10}\). □

Consequently, applying Lemmas \(\text{8.9}\) and \(\text{8.10}\) and the theory of weighted multilinear singular integrals in Section 4 (see Corollaries \(\text{4.14}\) and \(\text{4.15}\)) as well as Theorem \(\text{5.6}\), we have the following conclusions, the details being omitted.

Theorem 8.11. Let \(\Pi\) be the bilinear paraproduct defined as in \(\text{(8.3)}\), with \(\{\psi_Q^{(1)}\}_{Q \in \mathcal{Q}}\) and \(\{\psi_Q^{(2)}\}_{Q \in \mathcal{Q}}\) being smooth molecules, and \(\{\psi_Q^{(0)}\}_{Q \in \mathcal{Q}}\) being bump functions, satisfying \(\text{(8.1)}\) and \(\text{(8.2)}\) with \(\beta > 0\) and \(\gamma > n\). Let \(1/2 < p < \infty\) and \(1 \leq p_1, p_2 < \infty\) such that \(1/p_1 + 1/p_2 = 1/p\). Let \(\nu \in A_\infty\), \(\{w_j\}_{j=1}^2\) be weights and \(\vec{w} := (w_1, w_2)\). Then the following hold true:

(i) \(\Pi\) is a bilinear Calderón–Zygmund singular integral operator;

(ii) if \(p_j \geq 1\) for all \(j \in \{1,2\}\) and \((\nu; \vec{w})\) satisfies \(\text{(4.1)}\), then \(\Pi\) is bounded from \(L^{p_1}(w_1) \times L^{p_2}(w_2)\) to \(L^p(\nu)\);

(iii) if \(p_j > 1\) for all \(j \in \{1,2\}\) and \((\nu, \vec{w})\) satisfies the bump weight condition \(\text{(4.8)}\) for some \(r > 1\), then \(\Pi\) is bounded from \(L^{p_1}(w_1) \times L^{p_2}(w_2)\) to \(L^p(\nu)\).

Theorem 8.12. Let \(\Pi\) be as in Theorem \(\text{8.11}\). For any \(1/2 \leq p < \infty\) and \(1 \leq p_1, p_2 < \infty\) such that \(1/p_1 + 1/p_2 = 1/p\), and \(\vec{w} := (w_1, w_2) \in A_{(p,q)}\) with \(\nu_{\vec{w}} := w_1^{p/p_1} w_2^{p/p_2}\), the following hold:

(i) \(\Pi\) is bounded from \(L^{p_1}(w_1) \times L^{p_2}(w_2)\) to \(L^p(\nu_{\vec{w}})\) if \(p_1, p_2 \in (1, \infty)\);

(ii) \(\Pi\) is bounded from \(L^{p_1}(w_1) \times L^{p_2}(w_2)\) to \(L^p(\nu_{\vec{w}})\) if \(p_1 = 1\) or \(p_2 = 1\).

8.4. Boundedness of paraproducts on Triebel–Lizorkin and Besov spaces

Recall that paraproducts considered in Subsection 8.3 can be viewed as bilinear Calderón–Zygmund operators. Consequently, Theorems \(\text{6.14}\) and \(\text{6.15}\) imply the boundedness of such paraproducts on products of Triebel–Lizorkin or Besov spaces. We have the following conclusion.

Theorem 8.13. Let \(\Pi\) be the bilinear paraproduct defined by

\[
\Pi(f, g)(x) := \sum_{Q \in \mathcal{Q}} \mu(Q)^{-1/2} \langle \psi_Q^{(1)}, f \rangle \langle \psi_Q^{(2)}, g \rangle \psi_Q^{(0)}(x), \quad \forall x \in \mathcal{X},
\]

where, for \(i \in \{0, 1, 2\}\), \(\{\psi_Q^{(i)}\}_{Q \in \mathcal{Q}}\) are \((\beta, \gamma)\)-molecules with \(\beta > 0\) and \(\gamma > n\). Let \(\kappa\) be the constant appearing in the reverse doubling condition \(\text{(2.2)}\) and \(\epsilon\) satisfy

\[
0 < \epsilon \leq \kappa \quad \text{and} \quad 0 < \epsilon < \min \left\{1, \frac{1}{2} \beta \wedge (\gamma - n) \right\}.
\]

Then the following hold:

(a) For every \(j \in \{0,1,2\}\), let \(|s_j| < \epsilon\), \(p(s_j, \epsilon) < p_j < \infty\) and \(p(s_j, \epsilon) < q_j < \infty\) such that

\[
s_0 = s_1 + s_2, \quad \frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} \quad \text{and} \quad 1 - \frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2},
\]
and let $\dot{F}_{p_j,q_j}^s(\mathcal{X})$ be the Triebel–Lizorkin space as defined in Definition \ref{def:triestelizorkin}(ii). Then, Π can be extended to a bounded bilinear operator from $\dot{F}_{p_1,q_1}^{s_1}(\mathcal{X}) \times \dot{F}_{p_2,q_2}^{s_2}(\mathcal{X})$ to $\dot{F}_{p_0,q_0}^{s_0}(\mathcal{X})$.

(b) For every $j \in \{0,1,2\}$, let $|s_j| < \epsilon$, $p(s_j,\epsilon) < p_j < \infty$ and $0 < q_j < \infty$ such that

\[
s_{0} = s_{1} + s_{2} , \quad \frac{1}{p_{0}} = \frac{1}{p_{1}} + \frac{1}{p_{2}} \quad \text{and} \quad \frac{1}{q_{0}} = \frac{1}{q_{1}} + \frac{1}{q_{2}} ,
\]

and let $\dot{B}_{p_j,q_j}^s(\mathcal{X})$ be the Besov space as defined in Definition \ref{def:triestelizorkin}(i). Then, Π can be extended to a bounded bilinear operator from $\dot{B}_{p_1,q_1}^{s_1}(\mathcal{X}) \times \dot{B}_{p_2,q_2}^{s_2}(\mathcal{X})$ to $\dot{B}_{p_0,q_0}^{s_0}(\mathcal{X})$.

Proof. From Lemma \ref{lem:kernelboundedness} it follows that the kernel of Π is of the class $\text{Ker}(2,C,\beta')$ for some positive constant C and $\beta' \in (0,\beta \wedge (\gamma - n))$ as in Definition \ref{def:kernelfunctions}. Also, by Lemma \ref{lem:boundedness} Π is bounded from $L^2(\mathcal{X}) \times L^2(\mathcal{X})$ to $L^1(\mathcal{X})$, so $\Pi \in \text{BWBP}(\eta)$ for all $\eta \in (0,\epsilon]$.

Since every $\psi^{(i)}_Q$ is a molecule, we have $\int_{\mathcal{X}} \psi^{(i)}_Q(x) \, d\mu(x) = 0$ and hence

\[\Pi(1,g) = \Pi(g,1) = \Pi^{*,-1}(1,g) = 0, \quad \forall \ g \in (C^\infty_b(\mathcal{X}))'.\]

Applying Theorems \ref{thm:variableexponent} and \ref{thm:variableexponent2} implies (a) and (b), respectively. This finishes the proof of Theorem \ref{thm:paraproductboundedness}. \qed
9. Bilinear multiplier operators on Triebel–Lizorkin and Besov spaces

It is well known that the boundedness of pseudodifferential operators associated with some classes of symbols is a typical application of the Calderón–Zygmund theory. The main goal of this section is to apply the previous bilinear T_1-theorems to obtain the boundedness of the bilinear multiplier operators on products of Triebel–Lizorkin and Besov spaces.

9.1. Bilinear multiplier operators. Consider the bilinear multiplier operators of the form

$$T_\sigma(f, g)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(\xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi \, d\eta, \quad \forall \, x \in \mathbb{R}^n,$$

where \hat{f} denotes the Fourier transform of the function f, namely,

$$\hat{f}(x) := \int_{\mathbb{R}^n} f(\xi) e^{-i\xi \cdot x} \, d\xi, \quad \forall \, x \in \mathbb{R}^n,$$

and the symbol σ is an infinitely differentiable function on $(\mathbb{R}^n \times \mathbb{R}^n) \setminus \{(0, 0)\}$ satisfying that, for any multiindices $\beta \in \mathbb{Z}^n_+$ and $\gamma \in \mathbb{Z}^n_+$, there exists a positive constant $C_{\gamma, \beta}$ such that, for all points $(\xi, \eta) \in (\mathbb{R}^n \times \mathbb{R}^n) \setminus \{(0, 0)\}$,

$$|\partial_\xi^{\beta_\xi} \partial_\eta^{\beta_\eta} \sigma(\xi, \eta)| \leq C_{\gamma, \beta}(|\xi| + |\eta|)^{-|\gamma| - |\beta|}.$$

These bilinear multipliers are also known as Coifman-Meyer multipliers and render the bilinear version of the (linear) Mihlin multipliers. The basic mapping properties for these operators in Lebesgue spaces have been obtained in [19, 20, 21].

Using the molecular decompositions of homogeneous Besov spaces, Grafakos and Torres in [52, Theorem 3] also proved that T_σ is bounded from $\dot{F}^\alpha_{p,1}((\mathbb{R}^n) \times \dot{F}^\alpha_q((\mathbb{R}^n))$ to $\dot{B}^{\alpha_1 + \alpha_2}_{r,1}((\mathbb{R}^n)$ for all $\alpha_1, \alpha_2 > 0$, $1 < p, q, r < \infty$ and $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, provided that σ satisfies (9.2) and the following cancelation conditions: for all $\xi \neq 0$,

$$\partial_\xi^{\beta_\xi} \sigma(0, \xi) = \partial_\xi^{\beta_\xi} \sigma(\xi, 0) = \partial_\xi^{\beta_\xi} \sigma(\xi, -\xi) = 0$$

for all multiindices β up to a suitable order and all $\xi \in \mathbb{R}^n \setminus \{0\}$. Under the assumptions that σ satisfies (9.2) and (9.3) for all $|\beta| \leq 1$, Bényi [3, Proposition 3] proved that

$$T_\sigma : \dot{F}^\alpha_{p_1,q_1}((\mathbb{R}^n) \times \dot{F}^\alpha_{p_2,q_2}((\mathbb{R}^n)) \rightarrow \dot{F}^0_{p_0,q_0}((\mathbb{R}^n))$$

when $1 < p_1, p_2, q_0 < \infty$, $1 < q_1, q_2, q_0 \leq \infty$, $\frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2}$ and $\frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2}$. For $1 \leq p_1, p_2, q_0 \leq \infty$, $\frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2}$, $1 \leq q \leq \infty$ and $s \in \mathbb{R}$, the boundedness of

$$T_\sigma : \dot{B}^s_{p_1,q}((\mathbb{R}^n) \times L^p((\mathbb{R}^n)) \rightarrow \dot{B}^s_{p_0,q}((\mathbb{R}^n))$$

for the bilinear fractional maximal operator T_σ, which is defined as

$$T_\sigma(f, g)(x) := \sup_{\varepsilon > 0} \left\{ \left(\int_{\mathbb{R}^n} \left(\int_{|\xi - \eta| < \varepsilon} \sigma(\xi, \eta) |\hat{f}(\xi)\hat{g}(\eta)|^2 \, d\eta \right)^{\frac{p}{2}} d\xi \right)^{\frac{1}{p}} \right\}$$

for $f, g \in L^p((\mathbb{R}^n) \times L^q((\mathbb{R}^n))$ and $1 < p, q < \infty$. The boundedness of T_σ is a key result in the theory of bilinear operators and has been extensively studied in the literature.
was studied by Maldonado and Naibo [78, Theorem 3.1].

The operator \(T_\sigma\) as in (9.1) is related to the bilinear operators in the following way: for all compactly supported Schwartz functions \(f, g\) and for all \(x \notin \text{supp} \ f \cap \text{supp} \ g\),
\[
T_\sigma(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_\sigma(x, y_1, y_2) f(y_1) g(y_2) \, dy_1 \, dy_2,
\]
where the kernel \(K_\sigma\) is defined by
\[
K_\sigma(x, y_1, y_2) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(\xi, \eta) e^{i\xi \cdot (x - y_1)} e^{i\eta \cdot (x - y_2)} \, d\xi \, d\eta, \quad \forall \ x, y_1, y_2 \in \mathbb{R}^n.
\]
By using \(K(x, y_1, y_2) = K^{*, 1}(y_1, y_2, x) = K^{*, 2}(y_2, y_1, x)\) and the Fourier transform, for all \(x \in \mathbb{R}^n\), we obtain
\[
T^{*, 1}_\sigma(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(-\xi - \eta) \hat{f}(\xi) \hat{g}(\eta) e^{i\xi \cdot (\xi + \eta)} \, d\xi \, d\eta
\]
and
\[
T^{*, 2}_\sigma(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(-\xi - \eta) \hat{f}(\xi) \hat{g}(\eta) e^{i\xi \cdot (\xi + \eta)} \, d\xi \, d\eta.
\]
In what follows, for the notation convenience, we denote by \(T^{*, 0}_\sigma\) the operator \(T_\sigma\).

9.2. Off-diagonal estimates for bilinear multiplier operators

Now we fix a real-valued radial function \(\phi \in \mathcal{S}(\mathbb{R}^n)\) such that
\[
\text{supp} \ \hat{\phi} \subset \{ \xi \in \mathbb{R}^n : \pi/4 \leq |\xi| \leq \pi \},
\]
\(\hat{\phi}\) is bounded away from zero on the annulus \(\{ \xi \in \mathbb{R}^n : \frac{\pi}{2} \leq |\xi| \leq \frac{3\pi}{4} \}\) and, for all \(\xi \neq 0\),
\[
\sum_{\nu \in \mathbb{Z}} |\hat{\phi}(2^\nu \xi)|^2 = 1. \tag{9.4}
\]
For \(\nu \in \mathbb{Z}\) and \(k \in \mathbb{Z}^n\), let \(Q_{\nu, k}\) be the dyadic cube
\[
Q_{\nu, k} := \{(x_1, \ldots, x_n) \in \mathbb{R}^n : k_i \leq 2^\nu x_i < k_i + 1 \text{ for all } i \in \{1, \ldots, n\}\}.
\]
The lower left-corner of \(Q_{\nu, k}\) is denoted by \(2^{-\nu} k\) and set
\[
\phi_{\nu, k}(x) := 2^{\nu n/2} \phi(2^\nu x - k), \quad \forall \ x \in \mathbb{R}^n.
\]
Obviously, \(\hat{\phi}_{\nu, k}(x) = 2^{-\nu n/2} 2^{-i2^{-\nu} x \cdot k} \hat{\phi}(2^\nu x)\) for all \(x \in \mathbb{R}^n\) and
\[
\text{supp} \ \hat{\phi}_{\nu, k} \subset \{ \xi \in \mathbb{R}^n : 2^{\nu - 2\pi} \leq |\xi| \leq 2^{\nu \pi} \}.
\]
Also, for any given multiindex \(\gamma\) and \(N \in \mathbb{N}\), there exists a positive constant \(C_{\gamma, N, n}\), depending only on \(\gamma, N, n\), such that, for all \(x \in \mathbb{R}^n\),
\[
|\partial^\gamma \phi_{\nu, k}(x)| \leq C_{\gamma, N, n} 2^{\nu n/2} \frac{2 |\gamma| \nu}{(1 + 2^{\nu |x - 2^{-\nu} k|})^N}.
\]
The condition (9.4) implies the following Calderón reproducing formula: if \(f \in \mathcal{S}(\mathbb{R}^n)\) (or \((\mathcal{S}(\mathbb{R}^n))'\)), then \(f\) can be written as
\[
f = \sum_{\nu \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} \langle f, \phi_{\nu, k} \rangle \phi_{\nu, k}, \tag{9.5}
\]
where the series converges in \(\mathcal{S}(\mathbb{R}^n)\) (or \((\mathcal{S}(\mathbb{R}^n))'\)); see Frazier and Jawerth [33].
Regarding the wavelets \{ϕν,k\}ν∈Z,k∈Z^n, we have the following off-diagonal estimates, which are indeed parallel to those of Theorem 6.8.

Lemma 9.1. Let \(T_σ \) be as in (9.1) and the symbol \(σ \) satisfy (9.2) and the cancelation condition: for all \(ξ \neq 0 \),

\[
σ(ξ,0) = σ(0,ξ) = σ(ξ,−ξ) = 0.
\]

Then, for all integers \(N > n \), there exists a positive constant \(C_{N,n} \) such that, for all \(x ∈ \mathbb{R}^n, ν, μ ∈ \mathbb{Z} \) and \(k, ℓ ∈ \mathbb{Z}^n \) and all \(i \in \{0, 1, 2\} \),

\[
|T^{σ,i}_σ(ϕν,k,ϕμ,ℓ)(x)| ≤ C_{N,n} \frac{2^{−|ν−μ|} 2^{νn/2} 2^{μn/2}}{(1 + 2^ν|x−2^νk|)^N (1 + 2^μ|x−2^μℓ|)^N}.
\]

Moreover, if \(ν ≥ λ ≥ μ \), then, for all \(i \in \{0, 1, 2\} \),

\[
|⟨ϕλ,m, T^{σ,i}_σ(ϕν,k,ϕμ,ℓ)⟩| ≤ C_{N,n} \frac{2^{−|ν−μ|} 2^{−νn/2} 2^{λn/2} 2^{μn/2}}{(1 + 2^λ|2^λm−2^λk|)^N (1 + 2^μ|2^λm−2^μℓ|)^N}.
\]

Proof. Observe that (9.8) follows easily from (9.7) and [51] Proposition 3. So it suffices to prove (9.7). Without loss of generality, we may as well assume that \(ν ≥ μ \).

First we prove that (9.7) holds when \(i = 0 \). By a simple change of variables and the cancelation condition \(σ(ξ,0) = 0 \), we see that, for all \(x ∈ \mathbb{R}^n \),

\[
T_σ(ϕν,k,ϕμ,ℓ)(x) = \frac{2^{νn/2} 2^{μn/2}}{(1 + |2^νx−k|)^N} \int_{\mathbb{R}^n} e^{i((2^νx−k)ξ+(2^μx−ℓ)η)} σ(2^νξ,2^μη) ˆϕ(ξ) ˆϕ(η) dξ dη
\]

\[
= \frac{2^{νn/2} 2^{μn/2}}{(1 + |2^νx−k|)^N} \int_{\mathbb{R}^n} e^{i((2^νx−k)ξ+(2^μx−ℓ)η)} [σ(2^νξ,2^μη) − σ(2^νξ,0)] ˆϕ(ξ) ˆϕ(η) dξ dη,
\]

where the integration indeed takes place for \(\frac{π}{4} ≤ |ξ| ≤ π \) and \(\frac{π}{4} ≤ |η| ≤ π \). If \(Δ_ξ \) denotes the laplace operator in \(ξ \), then

\[
(1 − Δ_ξ)^N e^{i((2^νx−k)ξ+(2^μx−ℓ)η)} = (1 + |2^νx−k|)^N e^{i((2^νx−k)ξ+(2^μx−ℓ)η)}.
\]

Therefore, integration by parts gives that

\[
T_σ(ϕν,k,ϕμ,ℓ)(x) = \frac{2^{νn/2} 2^{μn/2}}{(1 + |2^νx−k|)^N} \int_{\mathbb{R}^n} e^{i((2^νx−k)ξ+(2^μx−ℓ)η)}
\times(1 − Δ_ξ)^N \left[[σ(2^νξ,2^μη) − σ(2^νξ,0)] ˆϕ(ξ) \right] ˆϕ(η) dξ dη.
\]

Notice that

\[
\left| (1 − Δ_ξ)^N \left[[σ(2^νξ,2^μη) − σ(2^νξ,0)] ˆϕ(ξ) \right] \right| ≲ \sum_{α_1, α_2 ∈ \mathbb{Z}^n_+: |α_1| + |α_2| ≤ 2N} \left| ∂ξ^{α_1} [σ(2^νξ,2^μη) − σ(2^νξ,0)] \right| \left| ∂ξ^{α_2} ˆϕ(ξ) \right|.
\]

By the mean value theorem and (9.2), we conclude that, for some \(θ ∈ (0, 1) \),

\[
\left| ∂ξ^{α_1} [σ(2^νξ,2^μη) − σ(2^νξ,0)] \right| ≲ \frac{2^{|α_1|} 2^{|μη|}}{(|2^νξ| + |2^μθη|)^{|α_1|+1}} ≲ \frac{2^{|α_1|} 2^{|μη|}}{|2^νξ| |α_1|+1} ≲ 2^{ν−ν},
\]
where the second inequality is due to the facts \(\nu \geq \mu, |\xi| \sim 1 \) and \(|\eta| \sim 1 \). Since \(\phi \in \mathcal{S}(\mathbb{R}^n) \), it follows that \(|\partial^\alpha \phi(\xi)| \lesssim 1 \). Summarizing these estimates gives that
\[
\left| (1 - \triangle \xi)^N \left([\sigma(2^\nu \xi, 2^\mu \eta) - \sigma(2^\nu \xi, 0)] \hat{\phi}(\xi) \right) \right| \lesssim 2^{-|\nu - \mu|}.
\]
Inserting this estimate into (9.9) further implies that, for all \(x \in \mathbb{R}^n \),
\[
|T_\sigma(\phi_{\nu,k}, \phi_{\mu,l})(x)| \lesssim \frac{2^{\nu n/2}2^{\mu n/2}2^{-|\nu - \mu|}}{(1 + |2^\nu x - k|)^N}.
\]
(9.10)
The same computations using integration by parts in the variable \(\eta \) give us that, for all \(x \in \mathbb{R}^n \),
\[
|T_\sigma(\phi_{\nu,k}, \phi_{\mu,l})(x)| \lesssim \frac{2^{\nu n/2}2^{\mu n/2}2^{-|\nu - \mu|}}{(1 + |2^\mu x - \ell|)^N}.
\]
(9.11)
Considering the geometric mean between (9.10) and (9.11) gives that (9.7) holds for \(i = 1 \) and \(i = 2 \).

To prove that (9.7) holds for \(i = 1 \) or \(i = 2 \), we repeat the above computations but using the expression of \(T_{\sigma}^{*,i} \) and the cancelation condition \(\sigma(\xi, -\xi) = 0 \), the details being omitted. This concludes the proof of (9.7), and hence Lemma 9.1.

Remark 9.2. (i) The decay coefficient \(2^{-|\nu - \mu|} \) in (9.7) and (9.8) comes from the cancelation condition (9.6). Indeed, instead of (9.6), if we assume that \(\partial^{\gamma} \sigma(\xi, 0) = \partial^{\gamma} \sigma(0, \xi) = \partial^{\gamma} \sigma(-\xi, \xi) = 0 \) for multiindices \(\gamma \) such that \(|\gamma| \leq L \), then both (9.7) and (9.8) hold with the decay \(2^{-|\nu - \mu|} \) there replaced by \(2^{-|\nu - \mu|(L+1)} \).

(ii) From the conclusion that (9.8) holds for \(T_{\sigma}^{*,i} \) with \(i \in \{0, 1, 2\} \), it follows easily that \(T_\sigma \) satisfies all off-diagonal estimates (i)–(vi) listed in Theorem 6.8 but with the indices \(\gamma, \gamma' \) and \(\sigma \) there being chosen as \(N, N \) and 1, respectively.

9.3. Boundedness of bilinear multiplier operators

In analogy with Lemma 6.12 we have the following estimate from [33, p. 147, Lemma 4.2 and Remark 4.3].

Lemma 9.3. Let \(\nu \in \mathbb{Z} \) and \(\nu' \in \mathbb{Z} \). Then, for any given \(r \in (0, 1] \) and \(N > n/r \), there exists a positive constant \(C \), depending on \(r, n, N \), such that, for all \(\nu, \nu' \in \mathbb{Z} \), sequences \(\{a_{\nu,k}\}_{k \in \mathbb{Z}^n} \subset \mathbb{C} \) and \(x \in \mathbb{R}^n \),
\[
\sum_{k \in \mathbb{Z}^n} \frac{2^{-|\nu - (\nu \wedge \nu')|n}}{(1 + 2^{(\nu \wedge \nu')|x - 2^{-\nu k}|})^N} |a_{\nu,k}|
\leq C\left(\sum_{k \in \mathbb{Z}^n} |a_{\nu,k}|^{r} \chi_{Q_{\nu,k}}(x) \right)^{1/r},
\]
where \(M \) denotes the Hardy–Littlewood maximal function on \(\mathbb{R}^n \).

Applying Lemmas 9.1 and 9.3, Remark 9.2 (ii), and the Calderón reproducing formula (9.5), we obtain the corresponding \(T_1 \)-theorem for bilinear multiplier operator \(T_\sigma \). The proofs are essentially contained in the proof of Theorems 6.14 and 6.15, the details being omitted here.
Theorem 9.4. Let T_{σ} be as in (9.1) and the symbol σ satisfy (9.2) and the cancelation condition: for all $\xi \neq 0$,
\[
\sigma(\xi, 0) = \sigma(0, \xi) = \sigma(-\xi, \xi) = 0.
\]
(a) For every $j \in \{0, 1, 2\}$, let $|s_j| < 1$, $0 < p_j < \infty$ and $0 < q_j < \infty$ such that
\[
s_0 = s_1 + s_2, \quad \frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} \quad \text{and} \quad \frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2}.
\]
Then, T_{σ} can be extended to a bounded bilinear operator from the product space $\dot{F}^{s_1}_{p_1, q_1}(\mathbb{R}^n) \times \dot{F}^{s_2}_{p_2, q_2}(\mathbb{R}^n)$ to $\dot{F}^{s_0}_{p_0, q_0}(\mathbb{R}^n)$.

(b) For every $j \in \{0, 1, 2\}$, let $|s_j| < 1$, $0 < p_j < \infty$ and $0 < q_j < \infty$ such that
\[
s_0 = s_1 + s_2, \quad \frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} \quad \text{and} \quad \frac{1}{q_0} = \frac{1}{q_1} + \frac{1}{q_2}.
\]
Then, T_{σ} can be extended to a bounded bilinear operator from the product space $\dot{B}^{s_1}_{p_1, q_1}(\mathbb{R}^n) \times \dot{B}^{s_2}_{p_2, q_2}(\mathbb{R}^n)$ to $\dot{B}^{s_0}_{p_0, q_0}(\mathbb{R}^n)$.

Remark 9.5. Theorem 9.4 extends the results in [51, 52], where the diagonal cases $p_1 = q_1$, $p_2 = q_2$ and $p_0 = q_0$ were considered.

Remark 9.6. (i) According to Remark 9.2(i), if, in Theorem 9.4, we further assume that
\[
\partial^\gamma \sigma(\xi, 0) = \partial^\gamma \sigma(0, \xi) = \partial^\gamma \sigma(-\xi, \xi) = 0,
\]
then, for all integers $N > n$ and $L \in \mathbb{N}$, there exists a positive constant $C_{N,n,L}$ such that, for all $m, k, \ell \in \mathbb{Z}^n$, $\lambda, \nu, \mu \in \mathbb{Z}$ satisfying $\nu \leq \lambda \leq \mu$, and $i \in \{0, 1, 2\}$,
\[
|\langle \phi_{\lambda,m}, T_{\sigma}^{*,i}(\phi_{\nu,k}, \phi_{\mu,\ell}) \rangle| \leq C_{N,n,L} \left(1 + 2^\lambda |2^{-\lambda}m - 2^{-\nu}k| \right)^N \left(1 + 2^\mu |2^{-\lambda}m - 2^{-\mu}\ell| \right)^N.
\]
Using (9.12), Lemma 9.3 and following the proofs of Theorems 6.14 and 6.15, we see that (a) and (b) of Theorem 9.4 hold for all $s_0, s_1, s_2 \in \mathbb{R}$ satisfying $s_0 = s_1 + s_2$.

(ii) In principle, if the symbol σ satisfies (9.12), then the operator T_{σ} satisfies (a) and (b) of Theorem 9.4 for all $s_0, s_1, s_2 \in \mathbb{R}$ satisfying $s_0 = s_1 + s_2$.
References

[124]
<table>
<thead>
<tr>
<th>References</th>
<th>125</th>
</tr>
</thead>
</table>

J. Hart, *Bilinear square functions and vector-valued Calderón–Zygmund operators*, J.
References

