Thus
\[\max |f_n(z)g(z) - f(z)g(z)| \leq M \max |f_n(z) - f(z)| \to 0, \]
because \(f_n \) converges uniformly to \(f \) on \(E \). Thus \(f_n g \to fg \) uniformly on \(E \). To prove \((ii)\), apply \((i)\) to the sequence of partial sums \(u_1 + \cdots + u_n \) which converges to \(u \).

Proof (Theorem 4.1.10). (i) The function \(f \) is continuous by Theorem 4.1.3\((i)\). To prove that \(f \) is analytic, we apply Morera's theorem (Theorem 3.8.10). Let \(\gamma \) be an arbitrary closed triangular path lying in a closed disk in \(\Omega \). It is enough to show that \(\int_\gamma f(z)\,dz = 0 \). We have \(\int_\gamma f_n(z)\,dz = 0 \) for all \(n \), by Cauchy's theorem (Theorem 3.5.4), because \(f_n \) is analytic inside and on \(\gamma \); and by Theorem 4.1.5, \(\int_\gamma f_n(z)\,dz \to \int_\gamma f(z)\,dz \) as \(n \to \infty \). So \(\int_\gamma f(z)\,dz = 0 \) and \((i)\) follows.

(ii) Let \(z_0 \in \Omega \) and let \(B_R(z_0) \) be a closed disk contained in \(\Omega \), centered at \(z_0 \) with radius \(R > 0 \), with positively oriented boundary \(C_R(z_0) \). Since \(f_n \to f \) uniformly on \(C_R(z_0) \) and \(\frac{1}{(z-z_0)^k} \) is continuous on \(C_R(z_0) \), it follows from Lemma 4.1.11\((i)\) that
\[
\frac{f_n(z)}{(z-z_0)^{k+1}} \to \frac{f(z)}{(z-z_0)^{k+1}}
\]
uniformly for all \(z \) on \(C_R(z_0) \). Applying Theorem 4.1.5 and using the generalized Cauchy integral formula, we deduce
\[
f_n^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{C_R(z_0)} \frac{f_n(z)}{(z-z_0)^{k+1}}\,dz \to \frac{k!}{2\pi i} \int_{C_R(z_0)} \frac{f(z)}{(z-z_0)^{k+1}}\,dz = f^{(k)}(z_0),
\]
which proves \((ii)\).

Theorem 4.1.10 may fail if we replace analytic functions by differentiable functions of a real variable. That is, if \(E \) is a subset of the real line and \(f_n(x) \to f(x) \) uniformly on \(E \), it does not follow in general that \(f'_n \) converges to \(f' \), as the next example shows.

Example 4.1.12. (Failure of termwise differentiation) For \(0 \leq x \leq 2\pi \) and \(n = 1, 2, \ldots \), define \(f_n(x) = \frac{e^{nx}}{n^2} \). It is clear that \(f_n \to 0 \) uniformly on \([0,2\pi]\). But \(f'_n(x) = e^{nx} \) and this sequence does not converge except at \(x = 0 \) or \(x = 2\pi \). (See Example 1.5.9) Consequently, \(f'_n \) does not converge to \(0 \). Can we understand how this occurs within the larger framework of complex functions? Replace \(x \) by \(z \) and consider the sequence functions \(f_n(z) = \frac{e^{nz}}{n^2} \). We cannot find a complex neighborhood of the real interval \([0,2\pi]\) where \(f_n \) converges, as such a neighborhood would contain \(z \) with \(\text{Im} \, z < 0 \). Thus Theorem 4.1.10 does not apply.

Corollary 4.1.13. Suppose that \(\{u_n\}_{n=1}^{\infty} \) is a sequence of analytic functions on a region \(\Omega \) and that \(u = \sum_{n=1}^{\infty} u_n \) converges uniformly on every closed disk in \(\Omega \). Then \(u \) is analytic on \(\Omega \). Moreover, for all integers \(k \geq 1 \), the series may be differentiated term by term \(k \) times to yield