We now write \(f_L = f^1_L + f^2_L \), where
\[
\begin{align*}
f^1_L &= \sum_{j=-L}^{L} \Delta^0_\gamma(f) * \eta_{2^{-j}} * \eta_{2^{-j}}, \\
f^2_L &= \sum_{j=0}^{L} \Delta^0_\gamma(f) * \eta_{2^{-j}} * \eta_{2^{-j}}.
\end{align*}
\]

It follows from (1.4.13) that with \(C_0 = (2^\gamma + 1 + 2^{-\gamma})C_0 \) we have
\[
||\Delta^0_\gamma(f) * \eta_{2^{-j}} * \eta_{2^{-j}}||_{L^\infty} \leq ||\Delta^0_\gamma(f)||_{L^\infty} ||\eta_{2^{-j}} * \eta_{2^{-j}}||_{L^1} \leq C_0 ||\eta * \eta||_{L^2} 2^{-j\gamma};
\]

thus, \(f^2_L \) converges uniformly to a continuous and bounded function \(g_2 \) as \(L \to \infty \).

Also, \(\partial^\beta f^2_L \) converges uniformly for all \(|\beta| < \gamma \) as \(L \to \infty \). Using Lemma 1.4.7 we conclude that \(g_2 \) is in \(C^{[\gamma]} \) and that \(\partial^\beta f^2_L \) converges uniformly to \(\partial^\beta g_2 \) as \(L \to \infty \) for all \(|\beta| < \gamma \).

We now turn our attention to \(f^1_L \). Obviously, \(f^1_L \) is in \(C^{[\alpha]} \) and
\[
\partial^\alpha f^1_L = \sum_{j=-L}^{1} \Delta^0_\gamma(f) * 2^{j|\alpha|} (\partial^\alpha \eta)_{2^{-j}} * \eta_{2^{-j}}.
\]

Thus for all multi-indices \(\alpha \) with \(|\alpha| \geq |\gamma| + 1 \) we have
\[
\sup_{L \in \mathbb{Z}^+} ||\partial^\alpha f^1_L||_{L^\infty} \leq \sum_{j=-\infty}^{1} C_0 2^{-j(\gamma+1)} ||\partial^\alpha \eta * \eta||_{L^1} = c_{\alpha,\gamma} C_0 < \infty. \tag{1.4.19}
\]

Let \(P^d_L \) be the Taylor polynomial of \(f^1_L \) of degree \(d \). By Taylor’s theorem we have
\[
f^1_L(x) - P^d_L(x) = (|\gamma| + 1) \sum_{|\alpha|=|\gamma|+1} \frac{\alpha!}{\alpha!} \int_0^1 (1-t)^{\gamma}(\partial^\alpha f^1_L)(tx) \, dt. \tag{1.4.20}
\]

Using (1.4.19), with \(|\alpha| \in \{[|\gamma|] + 1, \ldots, [|\gamma|] + |\beta| + 2 \} \), we obtain that the sequence \(\{\nabla(\partial^\beta (f^1_L - P^d_L))\} \}_{L=1}^{\infty} \) is uniformly bounded on every ball \(B(0,K) \); thus, the sequence \(\{\partial^\beta (f^1_L - P^d_L)\} \}_{L=1}^{\infty} \) is equicontinuous on every such ball. By the Arzelà–Ascoli theorem, for every \(K = 1, 2, \ldots \) and for every \(|\beta| < \gamma \) there is a subsequence of \(\{\partial^\beta (f^1_L - P^d_L)\} \}_{L=1}^{\infty} \) that converges uniformly on \(B(0,K) \). The diagonal subsequence of these subsequences converges uniformly on every compact subset of \(\mathbb{R}^n \) for all \(|\beta| < \gamma \). Hence, there is a continuous function \(g_1 \) on \(\mathbb{R}^n \) and a subsequence \(L_m \) of \(\mathbb{Z}^+ \) such that \(f^1_{L_m} - P_{L_m}^d \to g_1 \) uniformly on compact sets as \(m \to \infty \) and \(\partial^\beta (f^1_{L_m} - P_{L_m}^d) \) converges uniformly on compact sets for all \(|\beta| \geq |\gamma| \). Using Lemma 1.4.7, stated at the end of this proof, we deduce that \(g_1 \) is \(C^{[\gamma]} \) and that \(\partial^\beta (f^1_{L_m} - P_{L_m}^d) \to \partial^\beta g_1 \) as \(m \to \infty \) for all \(|\beta| \leq |\gamma| \).

Set \(g = g_1 + g_2 \). It follows from (1.4.20) and from \(\sup_{L \in \mathbb{Z}^+} ||f^2_L||_{L^\infty} < \infty \) that \(|g(x)| \leq C_{n,\gamma} C_0(1 + |x|)^{[|\gamma|] + 1} \) for all \(x \in \mathbb{R}^n \). Thus, \(g \) can be viewed as an element of \(C^{[|\gamma|]}(\mathbb{R}^n) \). Since both \(g_1 \) and \(g_2 \) are in \(C^{[|\gamma|]} \), it follows that so is \(g \).