5.2 Singular Integrals and the Method of Rotations

Remark 5.2.9. It follows from the proof of Theorem 5.2.7 and from Theorems 5.1.7 and 5.1.12 that whenever Ω is an odd function on S^{n-1}, we have

$$
\|T_\Omega\|_{L^p \to L^p} \leq \|\Omega\|_{L^1} \begin{cases}
ap \quad \text{when } p \geq 2, \\
ap \(p-1)^{-1} \quad \text{when } 1 < p \leq 2,
\end{cases}
$$

for some $a > 0$ independent of p and the dimension.

5.2.4 Singular Integrals with Even Kernels

Since a general integrable function Ω on S^{n-1} with mean value zero can be written as a sum of an odd and an even function, it suffices to study singular integral operators T_Ω with even kernels. For the rest of this section, fix an integrable even function Ω on S^{n-1} with mean value zero. The following idea is fundamental in the study of such singular integrals. Proposition 5.1.16 implies that

$$
T_\Omega = - \sum_{j=1}^{n} R_j R_j T_\Omega.
$$

(5.2.23)

If $R_j T_\Omega$ were another singular integral operator of the form T_{Ω_j} for some odd Ω_j, then the boundedness of T_Ω would follow from that of T_{Ω_j} via the identity (5.2.23) and Theorem 5.2.7. It turns out that $R_j T_\Omega$ does have an odd kernel, but it may not be integrable on S^{n-1} unless Ω itself possesses an additional amount of integrability. The amount of extra integrability needed is logarithmic, more precisely of this sort:

$$
c_\Omega = \int_{S^{n-1}} |\Omega(\theta)| \log(e + |\Omega(\theta)|) d\theta < \infty.
$$

(5.2.24)

Observe that we always have

$$
\|\Omega\|_{L^1} \leq c_\Omega.
$$

The following theorem is the main result of this section.

Theorem 5.2.10. Let $n \geq 2$ and let Ω be an even integrable function on S^{n-1} with mean value zero that satisfies (5.2.24). Then the corresponding singular integral T_Ω is bounded on $L^p(\mathbb{R}^n)$, $1 < p < \infty$, with norm at most a dimensional constant multiple of the quantity $\max\left(\((p-1)^{-2}, p^2\right) c_\Omega$.

If the operator T_Ω in Theorem 5.2.10 is weak type $(1, 1)$, then the estimate on the L^p operator norm of T_Ω can be improved to $\|T_\Omega\|_{L^p \to L^p} \leq C_n (p-1)^{-1} c_\Omega$ as $p \to 1$. This is indeed the case; see the historical comments at the end of this chapter.
Proof. Let W_{Ω} be the distributional kernel of T_{Ω}. We have that W_{Ω} coincides with the function $\Omega(x/|x|)|x|^{-n}$ on $\mathbb{R}^n \setminus \{0\}$. Using Proposition 5.2.3 and the fact that Ω is an even function, we obtain the formula

$$\hat{W}_{\Omega}(\xi) = \int_{S^{n-1}} \Omega(\theta) \log \frac{1}{|\xi \cdot \theta|} d\theta,$$

which implies that \hat{W}_{Ω} is itself an even function. Now, using Exercise 5.2.3 and condition (5.2.24), we conclude that \hat{W}_{Ω} is a bounded function. Therefore, T_{Ω} is L^2 bounded. To obtain the L^p boundedness of T_{Ω}, we use the idea mentioned earlier involving the Riesz transforms. In view of (5.1.46), we have that

$$T_{\Omega} = -\sum_{j=1}^{n} R_j T_j,$$

where $T_j = R_j T_{\Omega}$. Equality (5.2.26) makes sense as an operator identity on $L^2(\mathbb{R}^n)$, since T_{Ω} and each R_j are well defined and bounded on $L^2(\mathbb{R}^n)$.

The kernel of the operator T_j is the inverse Fourier transform of the distribution $-i \frac{\xi_j}{|\xi|} \hat{W}_{\Omega}(\xi)$, which we denote by K_j. At this point we know only that K_j is a tempered distribution whose Fourier transform is the function $-i \frac{\xi_j}{|\xi|} \hat{W}_{\Omega}(\xi)$. Our first goal is to show that K_j coincides with an integrable function on an annulus. To prove this assertion we write

$$W_{\Omega} = W_{\Omega}^0 + W_{\Omega}^1 + W_{\Omega}^\infty,$$

where W_{Ω}^0 is a distribution and $W_{\Omega}^1, W_{\Omega}^\infty$ are functions defined by

$$\langle W_{\Omega}^0, \varphi \rangle = \lim_{\epsilon \to 0} \int_{\epsilon < |x| \leq \frac{1}{2}} \frac{\Omega(x/|x|)}{|x|^n} \varphi(x) dx,$$

$$W_{\Omega}^1(x) = \frac{\Omega(x/|x|)}{|x|^n} \chi_{\frac{1}{2} \leq |x| \leq 2},$$

$$W_{\Omega}^\infty(x) = \frac{\Omega(x/|x|)}{|x|^n} \chi_{2 < |x|}.$$

We now fix a $j \in \{1, 2, \ldots, n\}$ and we write

$$K_j = K_j^0 + K_j^1 + K_j^\infty,$$

where

$$K_j^0 = (-i \frac{\xi_j}{|\xi|} \hat{W}_{\Omega}^0(\xi))^\vee,$$

$$K_j^1 = (-i \frac{\xi_j}{|\xi|} \hat{W}_{\Omega}^1(\xi))^\vee,$$

$$K_j^\infty = (-i \frac{\xi_j}{|\xi|} \hat{W}_{\Omega}^\infty(\xi))^\vee.$$

Notice that K_j^0 is well defined via Theorem 2.3.21.
5.2 Singular Integrals and the Method of Rotations

Define the annulus
\[A = \{ x \in \mathbb{R}^n : 2/3 < |x| < 3/2 \}. \]

For a smooth function \(\phi \) supported in the annulus \(2/3 < |x| < 3/2 \) we have
\[
\langle K_0^j, \phi \rangle = \langle \left(-i \frac{\xi_j}{|\xi|} \tilde{W}_0^j(\xi) \right) \hat{\mathcal{W}}_0^j \Omega(\xi), \phi \rangle \\
= \langle \tilde{W}_0^j(\xi) \left(-i \frac{\xi_j}{|\xi|} \hat{\mathcal{W}}_0^j \Omega(\xi) \right), \phi \rangle \\
= \langle \tilde{W}_0^j(\xi), \Omega \left(-i \frac{\xi_j}{|\xi|} \phi \right) \hat{\mathcal{W}}_0^j \Omega(\xi) \rangle \\
= -\langle \tilde{W}_0^j, R_j(\phi) \rangle \\
= -\lim_{\varepsilon \to 0} \int_{|y| < 1/2} \frac{\Omega(y/|y|)}{|y|^n} R_j(\phi)(-y) dy \quad (\Omega \text{ is even}) \\
= -\frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{|y| < 1/2} \frac{\Omega(y/|y|)}{|y|^n} \int_{\mathbb{R}^n} \frac{y_j - x_j}{|y - x|^{n+1}} \phi(x) dx dy,
\]

noticing that \(|y - x| \) stays away from zero when \(|y| < 1/2 \) and \(x \) lies in \(A \).

It follows that \(K_0^j \) coincides in \(A \) with the function inside the absolute value below:
\[
\left| \frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{|y| < 1/2} \frac{x_j - y_j}{|x - y|^{n+1}} \frac{\Omega(y/|y|)}{|y|^n} dy \right| \\
= \left| \frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{\frac{n+1}{2}}} \int_{|y| < 1/2} \left(\frac{x_j - y_j}{|x - y|^{n+1}} - \frac{x_j}{|x|^{n+1}} \right) \frac{\Omega(y/|y|)}{|y|^n} dy \right| \\
\leq \int_{|y| < 1/2} C_n |y| \frac{|\Omega(y/|y|)|}{|y|^n} dy \\
= C_n \| \Omega \|_{L^1},
\]

where we used the fact that \(\Omega(y/|y|)|y|^{-n} \) has integral zero over annuli of the form \(\varepsilon < |y| < \frac{1}{2} \), the mean value theorem applied to the function \(x_j/|x|^{-(n+1)} \), and the fact that \(|x - y| \geq 1/6 \) for \(x \) in the annulus \(A \). We conclude that on \(A \), \(K_0^j \) coincides with the bounded function inside the absolute value in (5.2.27).
Likewise, for \(x \in A \) we have

\[
\frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{n/2}} \left(\int_{|y| > 2} \frac{x_j - y_j}{|x-y|^{n+1}} \frac{\Omega(y/|y|)}{|y|^n} \, dy \right) \leq \frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{n/2}} \int_{|y| > 2} \frac{1}{|x-y|^n} \frac{\Omega(y/|y|)}{|y|^n} \, dy \\
\leq \frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi^{n/2}} \int_{|y| > 2} \frac{4^n}{|y|^{2n}} \frac{\Omega(y/|y|)}{|y|^n} \, dy \\
= C \| \Omega \|_\ell^1,
\]

from which it follows that on the annulus, \(K_j^\infty \) coincides with the bounded function inside the absolute value in (5.2.29) or in (5.2.28).

Now observe that condition (5.2.24) gives that the function \(W_j^1 \) satisfies

\[
\int_{|x| \leq 2} |W_j^1(x)| \log(e + |W_j^1(x)|) \, dx \\
\leq \int_{1/2}^2 \int_{S_{r^2}} \frac{\Omega(\theta)}{r^n} \log \left[e + 2^n |\Omega(\theta)| \right] d\theta r^{n-1} \, dr \\
\leq (\log 4) \left[n (\log 2) \| \Omega \|_\ell^1 + c_\Omega \right] \leq c'_n c_\Omega < \infty.
\]

Since the Riesz transform \(R_j \) is countably subadditive and maps \(L^p \) to \(L^p \) with norm at most \(4(p - 1)^{-1} \) for \(1 < p < 2 \), it follows from Exercise 1.3.7 that \(K_j^1 = R_j(W_j^1) \) is integrable over the ball \(|x| \leq 3/2 \) and moreover, it satisfies

\[
\int_{|x| \leq 2} |K_j^1(x)| \, dx \leq C_n \left[\int_{|x| \leq 2} |W_j^1(x)| \log^+ \| W_j^1(x) \|_1^1 \, dx + 1 \right] \leq C'_n c_\Omega.
\]

Furthermore, since \(\tilde{K}_j \) is homogeneous of degree zero, \(K_j \) is a homogeneous distribution of degree \(-n\) (Exercise 2.3.9). This means that for all test functions \(\varphi \) and all \(\lambda > 0 \) we have

\[
\langle K_j, \delta^\lambda(\varphi) \rangle = \langle K_j, \varphi \rangle,
\]

where \(\delta^\lambda(\varphi)(x) = \varphi(\lambda x) \). But for \(\varphi \in C_0^\infty \) supported in the annulus \(3/4 < |x| < 4/3 \) and for \(\lambda \) in \((8/9, 9/8) \) we have that \(\delta^\lambda(\varphi) \) is supported in \(A \) and thus we can express (5.2.30) as convergent integrals as follows:

\[
\int_{\mathbb{R}^n} K_j(x) \varphi(x) \, dx = \int_{\mathbb{R}^n} \tilde{K}_j(x) \varphi(\lambda^{-1} x) \, dx = \int_{\mathbb{R}^n} \lambda^n \tilde{K}_j(\lambda x) \varphi(x) \, dx.
\]

From this it would be ideal to be able to directly obtain that \(K_j(x) = \lambda^n K_j(\lambda x) \) for all \(8/9 < |x| < 9/8 \) and \(8/9 < \lambda < 9/8 \), in particular when \(\lambda = |x|^{-1} \). But unfortunately, we can only deduce that for every \(\lambda \in (8/9, 9/8) \), \(K_j(x) = \lambda^n K_j(\lambda x) \) holds for all \(x \) in the annulus except a set of measure zero that depends on \(\lambda \). To be able to define the restriction of \(K_j \) on \(S^{n-1} \), we employ a more delicate argument.
For any \(J \) subinterval of \([8/9, 9/8]\) we obtain from (5.2.31) that

\[
\int_{\mathbb{R}^n} K_{J}(x) \varphi(x) \, dx = \int_{\mathbb{R}^n} \int_{J} \lambda^n K_{J}(\lambda x) \, d\lambda \, \varphi(x) \, dx,
\]

where integral with the slashed integral denotes the average of a function over the set \(J \). Since \(\varphi \) was an arbitrary \(C^\infty \) function supported in the annulus \(3/4 < |x| < 4/3 \), it follows that for every \(J \) subinterval of \([8/9, 9/8]\), there is a null\(^1\) subset \(E_J \) of the annulus \(A' = \{ x : 27/32 < |x| < 32/27 \} \) such that

\[
K_{J}(x) = \int_{J} \lambda^n K_{J}(\lambda x) \, d\lambda \tag{5.2.32}
\]

for all \(x \in A' \setminus E_J \).

Let \(J_0 = [\sqrt{8/9}, \sqrt{9/8}] \). We claim that there is a null subset \(E \) of \(A' \) such that for all \(x \in A' \setminus E \) we have

\[
\int_{J_0} \lambda^n K_{J}(\lambda x) \, d\lambda = \int_{J_0} \lambda^n K_{J}(\lambda x) \, d\lambda \tag{5.2.33}
\]

for every \(r \) in \(J_0 \). Indeed, let \(E \) be the union of \(E_{rJ_0} \) over all \(r \) in \(J_0 \cap Q \). Then in view of (5.2.32), identity (5.2.33) holds for \(x \in A' \setminus E \) and \(J_0 \cap Q \). But for a fixed \(x \) in \(A' \setminus E \), the function of \(r \) on the right hand side of (5.2.33) is constant on the rationals and is also continuous (in \(r \)), hence it must be constant for all \(r \in J_0 \). Thus the claim follows since both sides of (5.2.33) are equal to (5.2.32).

Writing \(x = \delta \theta \), where \(27/32 < \delta < 32/27 \) and \(\theta \in S^{n-1} \), it follows by Fubini’s theorem that there is a \(\delta \in (27/32, 32/27) \) (in fact almost all \(\delta \) have this property) such that

\[
\int_{J_0} \lambda^n K_{J}(\lambda \delta \theta) \, d\lambda = \int_{J_0} \lambda^n K_{J}(\lambda \delta \theta) \, d\lambda \tag{5.2.34}
\]

for almost all \(\theta \in S^{n-1} \) and all \(r \in J_0 \). We fix such a \(\delta \), which we denote \(\delta_0 \).

We now define a function \(\Omega_j \) on \(S^{n-1} \) by setting

\[
\Omega_j(\theta) = \int_{J_0} \delta_0^n \lambda^n K_{J}(\lambda \delta_0 \theta) \, d\lambda = \int_{J_0} \delta_0^n \lambda^n K_{J}(\lambda \delta_0 \theta) \, d\lambda
\]

for all \(r \in J_0 \). The function \(\Omega_j \) is defined almost everywhere and is integrable over \(S^{n-1} \), since \(K_j \) is integrable over the annulus \(A \).

Let \(e_1 = (1, 0, \ldots, 0) \). Let \(\Psi \) be a \(C^\infty \) function supported in the annulus \(32/(27\sqrt{2}) < |x| < 27\sqrt{2}/32 \) around \(S^{n-1} \). We start with

\[
\Omega_j(\theta) = \int_{J_0} \delta_0^n \lambda^n K_{J}(\lambda \delta_0 \theta) \, d\lambda = \int_{J_0} \delta_0^n \lambda^n K_{J}(r \lambda \delta_0 \theta) \, d\lambda,
\]

which holds for all \(r \in J_0 \), we multiply by \(\Psi(re_1) \), and we integrate over \(S^{n-1} \) and over \((0, \infty) \) with respect to the measure \(dr/r \). We obtain

\(^1\) here we are making use of the following version of du Bois-Reymond’s lemma: if \(U \) is an open subset of \(\mathbb{R}^n \) and \(g \) is an integrable function on \(U \) such that \(\int_U g(x) \psi(x) \, dx = 0 \) for all \(\psi \) smooth functions with compact support contained in \(U \), then \(g = 0 \) a.e. on \(U \).
\[
\int_0^\infty \Psi(re_1) \frac{dr}{r} \int_{S^{n-1}} \Omega_j(\theta) \, d\theta = \int_{j_0}^\infty \int_{S^{n-1}} \delta_0^r \lambda^n K_j(\lambda \delta_0 r \theta) \Psi(re_1) r^n \, d\theta \frac{dr}{r} \, d\lambda \\
= \int_{j_0}^\infty \int_{R^n} \delta_0^r \lambda^n K_j(\lambda \delta_0 x) \Psi(x) \, dx \, d\lambda \\
= \int_{j_0}^\infty \int_{R^n} K_j(x) \Psi((\lambda \delta_0)^{-1} x) \, dx \, d\lambda \\
= \int_{j_0} \langle K_j, \Psi \rangle \, d\lambda , \\
= \langle K_j, \Psi \rangle
\]
in view of the homogeneity of \(K_j \). But, as \(\hat{\Psi} = \Psi^{\vee} \), for some constant \(c_\Psi \) we have

\[
\langle K_j, \Psi \rangle = \langle \hat{K}_j, \Psi^{\vee} \rangle = \int_{R^n} \frac{-i\xi}{|\xi|} \hat{\Omega}_j(\xi) \hat{\Psi}(\xi) \, d\xi = c_\Psi \int_{S^{n-1}} \frac{-i\theta}{|\theta|} \hat{\Omega}_j(\theta) \, d\theta = 0,
\]
since by (5.2.25), \(\frac{-i\xi}{|\xi|} \hat{\Omega}_j(\xi) \) is an odd function. We conclude that \(\Omega_j \) has mean value zero over \(S^{n-1} \).

Thus \(\Omega_j \in L^1(S^{n-1}) \) has mean value zero and the distribution \(\hat{W}_{\Omega_j} \) is well defined.

We claim that

\[
K_j = W_{\Omega_j}.
\]
(5.2.35)

To establish (5.2.35), we show first that \(\langle K_j, \varphi \rangle = \langle W_{\Omega_j}, \varphi \rangle \) whenever \(\varphi \) is supported in the annulus \(8/9 < |x| < 9/8 \). Using (5.2.32) we have

\[
\int_{R^n} K_j(x) \varphi(x) \, dx = \int_{R^n} \int_{R^n} K_j(\delta_0 \lambda x) \delta_0^n \lambda^n \, d\lambda \, \varphi(x) \, dx \\
= \int_0^\infty \int_{S^{n-1}} \int_{j_0}^\infty K_j(\delta_0 \lambda x) \delta_0^n \lambda^n r^n \, d\lambda \, \varphi(r \theta) \, d\theta \frac{dr}{r} \\
= \int_0^\infty \int_{S^{n-1}} \int_{j_0}^\infty K_j(\delta_0 \lambda' x) \delta_0^n (\lambda')^n \, d\lambda' \, \varphi(r \theta) \, d\theta \frac{dr}{r} \\
= \int_0^\infty \int_{S^{n-1}} \Omega_j(\theta) \varphi(r \theta) \, d\theta \frac{dr}{r} \\
= \langle W_{\Omega_j}, \varphi \rangle ,
\]
having used (5.2.34) in the second to last equality.

Given a general \(\mathcal{C}_0^\infty \) function \(\varphi \) whose support is contained in an annulus of the form \(M^{-1} < |x| < M \), for some \(M > 0 \), via a smooth partition of unity, we write \(\varphi \) as a finite sum of smooth functions \(\varphi_k \) whose supports are contained in annuli of the form \(8s/9 < |x| < 9s/8 \) for some \(s > 0 \). These annuli can be brought inside the annulus \(8/9 < |x| < 9/8 \) by a dilation. Since both \(K_j \) and \(W_{\Omega_j} \) are homogeneous distributions of degree \(-n \) and agree on the annulus \(8/9 < |x| < 9/8 \) they must agree on annuli \(8s/9 < |x| < 9s/8 \). Consequently, \(\langle K_j, \varphi \rangle = \langle W_{\Omega_j}, \varphi \rangle \) for all \(\varphi \in \mathcal{C}_0^\infty(R^n \setminus \{0\}) \).

Therefore, \(K_j - W_{\Omega_j} \) is supported at the origin, and since it is homogeneous of degree \(-n \), it must be equal to \(b\delta_0 \), a constant multiple of the Dirac mass. But \(\hat{K}_j \) is an
odd function and hence \(K_j \) is also odd. It follows that \(W_{\Omega_j} \) is an odd function on \(\mathbb{R}^n \setminus \{0\} \), which implies that \(\Omega_j \) is an odd function. We say that \(u \in \mathcal{S}'(\mathbb{R}^n) \) is odd if \(\tilde{u} = -u \), where \(\tilde{u} \) is defined by \((\tilde{u}, \psi) = (u, \tilde{\psi}) \) for all \(\psi \in \mathcal{S}(\mathbb{R}^n) \) and \(\tilde{\psi}(x) = \psi(-x) \). We have that \(K_j - W_{\Omega_j} \) is an odd distribution, and thus \(b\delta_0 \) must be an odd distribution. But if \(b\delta_0 \) is odd, then \(b = 0 \). We conclude that for each \(j \) there exists an odd integrable function \(\Omega_j \) on \(S^{n-1} \) with \(\|\Omega_j\|_{L^1} \) controlled by a constant multiple of \(c_\Omega \) such that (5.2.35) holds.

Then we use (5.2.26) and (5.2.35) to write

\[
T_\Omega = -\sum_{j=1}^n R_j T_{\Omega_j},
\]

and appealing to the boundedness of each \(T_{\Omega_j} \) (Theorem 5.2.7) and to that of the Riesz transforms, we obtain the required \(L^p \) boundedness for \(T_\Omega \).

We note that Theorem 5.2.10 holds for all \(\Omega \in L^1(S^{n-1}) \) that satisfy (5.2.24), not necessarily even \(\Omega \). Simply write \(\Omega = \Omega_e + \Omega_o \), where \(\Omega_e \) is even and \(\Omega_o \) is odd, and check that condition (5.2.24) holds for \(\Omega_o \).

5.2.5 Maximal Singular Integrals with Even Kernels

We have the corresponding theorem for maximal singular integrals.

Theorem 5.2.11. Let \(n \geq 2 \) and let \(\Omega \) be an even integrable function on \(S^{n-1} \) with mean value zero that satisfies (5.2.24). Then the corresponding maximal singular integral \(T^{(\ast \ast)}_\Omega \), defined in (5.2.4), is bounded on \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \) with norm at most a dimensional constant multiple of \(\max(p^2, (p-1)^{-1}) c_\Omega \).

Proof. For \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), we define the maximal function of \(f \) in the direction \(\theta \) by setting

\[
M_\theta(f)(x) = \sup_{a>0} \frac{1}{2a} \int_{|r| \leq a} |f(x-r\theta)| \, dr.
\]

(5.2.36)

In view of Exercise 5.2.5 we have that \(M_\theta \) is bounded on \(L^p(\mathbb{R}^n) \) with norm at most \(3p(p-1)^{-1} \).

Fix \(\Phi \) a smooth radial function such that \(\Phi(x) = 0 \) for \(|x| \leq 1/4 \), \(\Phi(x) = 1 \) for \(|x| \geq 3/4 \), and \(0 \leq \Phi(x) \leq 1 \) for all \(x \) in \(\mathbb{R}^n \). For \(f \in L^p(\mathbb{R}^n) \) and \(0 < \varepsilon < N < \infty \) we introduce the smoothly truncated singular integral

\[
\overline{T}^{(\varepsilon,N)}_\Omega(f)(x) = \int_{\mathbb{R}^n} \frac{\Omega(\frac{x}{|y|})}{|y|^n} \left(\Phi\left(\frac{x}{\varepsilon} \right) - \Phi\left(\frac{x}{N} \right) \right) f(x-y) \, dy
\]

and the corresponding maximal singular integral operator

\[
\overline{T}^{(\ast \ast)}_\Omega(f) = \sup_{0 < N < \infty} \sup_{0 < \varepsilon < N} |\overline{T}^{(\varepsilon,N)}_\Omega(f)|.
\]

(5.2.37)

It suffices to work with \(\overline{T}^{(\ast \ast)}_\Omega \) instead of \(T^{(\ast \ast)}_\Omega \) in view of the following argument.
For f in $L^p(\mathbb{R}^n)$ (for some $1 < p < \infty$), we have
\[
\left| \bar{T}_{\Omega}^{(e,N)}(f)(x) - \bar{T}_{\Omega}^{(e,N)}(f)(x) \right|
\leq \left| \bar{T}_{\Omega}^{(e,N)}(f)(x) - \bar{T}_{\Omega}^{(e,N)}(f)(x) \right|
\leq \left[\int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy \right] - \left[\int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy \right]
\leq \int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy \, dy
\leq \left(\int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy \right) = \left(\int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy \right)
\leq 16 \int_{|y| \geq \frac{1}{|x|}} \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \Phi \left(\frac{y}{|x|} \right) f(y) \, dy.
\]

Taking the supremum over $N > \varepsilon > 0$ and using the result of Exercise 5.2.5 we conclude that
\[
\left\| \bar{T}_{\Omega}^{(e,N)}(f) - \bar{T}_{\Omega}^{(e,N)}(f) \right\|_{L^p} \leq 100 \left\| \Omega \right\|_{L^1} \max \left(1, (p-1)^{-1} \right) \left\| f \right\|_{L^p}.
\]

This implies that it suffices to obtain the required L^p bound for the smoothly truncated maximal singular integral operator $\bar{T}_{\Omega}^{(e,N)}$.

In proving the required estimate, we may assume that the even function Ω is bounded. For, if we know that
\[
\left\| \bar{T}_{\Omega}^{(e,N)} \right\|_{L^p \rightarrow L^p} \leq C_n \max (p^2, (p-1)^{-3}) c_{\Omega}
\]
for Ω even and bounded, then we write a general even function Ω in $L \log L$ with vanishing integral as $\Omega = \Omega^0 + \sum_{m=1}^{\infty} \Omega^m$, where $\Omega^0 = \Omega \chi_{\Omega \leq 2} - \kappa^0$, $\Omega^m = \Omega \chi_{2^m \leq |\Omega| < 2^{m+1}} - \kappa^m$, and the κ^m are constants chosen so that $\int_{S^{n-1}} \Omega^m \, d\sigma = 0$ for all $m \geq 0$. Then Ω^m are even and bounded and we obtain
\[
\left\| \bar{T}_{\Omega}^{(e,N)} \right\|_{L^p \rightarrow L^p} \leq \sum_{m=0}^{\infty} \left\| \bar{T}_{\Omega^m}^{(e,N)} \right\|_{L^p \rightarrow L^p} \leq C_n c_{\Omega^0} \sum_{m=0}^{\infty} c_{\Omega^m} \leq C_n c_{\Omega} c(p) c_{\Omega}.
\]

where $C(p) = \max (p^2, (p-1)^{-3})$, for a general even function Ω in $L \log L(S^{n-1})$.

So we fix a bounded function Ω on S^{n-1} with integral zero. Let K_κ, Ω_j, and T_j be as in the previous theorem, and let F_j be the Riesz transform of the function $\Omega(x/|x|) \Phi(x)|x|^{-\sigma}$. Let $f \in L^p(\mathbb{R}^n)$. A calculation yields the identity
\[
\bar{T}_{\Omega}^{(e,N)}(f)(x) = \int_{\mathbb{R}^n} \left[\frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} - \frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \right] \Phi \left(\frac{y}{|x|} \right) - \frac{1}{N} \left[\frac{\Omega \left(\frac{y}{|x|} \right)}{|y|^n} \right] \Phi \left(\frac{y}{|x|} \right) f(y) \, dy
\leq \left(\sum_{j=1}^{n} \left[\frac{1}{N} F_j \left(\frac{y}{|x|} \right) - \frac{1}{N} F_j \left(\frac{y}{|x|} \right) \right] * R_j(f) \right)(x),
\]
where in the last step we used Proposition 5.1.16. Therefore we may write

\[-\mathcal{F}^{(e,N)}(f)(x) = \sum_{j=1}^{n} \int_{\mathbb{R}^n} \left[\frac{1}{\epsilon^{n}} F_j \left(\frac{x-y}{\epsilon} \right) - \frac{1}{\epsilon^{n}} F_j \left(\frac{z-y}{\epsilon} \right) \right] R_j(f)(y) \, dy \]

\[= A_1^{(e,N)}(f)(x) + A_2^{(e,N)}(f)(x) + A_3^{(e,N)}(f)(x), \tag{5.2.38} \]

where

\[A_1^{(e,N)}(f)(x) = \sum_{j=1}^{n} \frac{1}{\epsilon^n} \int_{|x-y| \leq \epsilon} F_j \left(\frac{x-y}{\epsilon} \right) R_j(f)(y) \, dy \]

\[\quad - \sum_{j=1}^{n} \frac{1}{\epsilon^n} \int_{|x-y| \leq \epsilon} F_j \left(\frac{z-y}{\epsilon} \right) R_j(f)(y) \, dy, \]

\[A_2^{(e,N)}(f)(x) = \sum_{j=1}^{n} \int_{\mathbb{R}^n} \left[\frac{1}{\epsilon^n} \chi_{|x-y| > \epsilon} \left\{ F_j \left(\frac{x-y}{\epsilon} \right) - K_j \left(\frac{z-y}{\epsilon} \right) \right\} \right] R_j(f)(y) \, dy, \]

\[A_3^{(e,N)}(f)(x) = \sum_{j=1}^{n} \int_{\mathbb{R}^n} \left[\frac{1}{\epsilon^n} \chi_{|x-y| > \epsilon} K_j \left(\frac{x-y}{\epsilon} \right) - \frac{1}{\epsilon^n} \chi_{|x-y| > \epsilon} K_j \left(\frac{z-y}{\epsilon} \right) \right] R_j(f)(y) \, dy. \]

It follows from the definitions of F_j and K_j that

\[F_j(z) - K_j(z) = \frac{\Gamma(n+1)}{\pi^n} \lim_{\epsilon \to 0} \int_{|y| < \epsilon} \frac{\Omega(y/|y|)}{|y|^{n+1}} (\Phi(y) - 1) \frac{z_j - y_j}{|z_j - y_j|^{n+1}} \, dy \]

\[= \frac{\Gamma(n+1)}{\pi^n} \int_{|y| \leq \frac{1}{2}} \frac{\Omega(y/|y|)}{|y|^{n+1}} (\Phi(y) - 1) \left\{ \frac{z_j - y_j}{|z_j - y_j|^{n+1}} - \frac{z_j}{|z_j|^{n+1}} \right\} \, dy \]

whenever $|z| \geq 1$. But using the mean value theorem, the last expression is easily seen to be bounded by

\[C_n \int_{|y| \leq \frac{1}{2}} \frac{|\Omega(y/|y|)|}{|y|^{n}|z_j|^{n+1}} \, dy = C_n \|\Omega\|_{L^1} |z|^{-(n+1)}, \]

whenever $|z| \geq 1$. Using this estimate, we obtain that the jth term in $A_2^{(e,N)}(f)(x)$ is bounded by

\[C_n \|\Omega\|_{L^1} \epsilon^n \int_{|x-y| > \epsilon} \frac{|R_j(f)(y)| \, dy}{(|x-y|/\epsilon)^{n+1}} \leq C_n \frac{2 \|\Omega\|_{L^1}}{2^{n-\epsilon^n}} \int_{\mathbb{R}^n} \frac{|R_j(f)(y)| \, dy}{(1 + |x-y|/\epsilon)^{n+1}}, \]

It follows that for functions f in L^p we have

\[\sup_{0 < \epsilon < N < \infty} |A_2^{(e,N)}(f)| \leq C_n \|\Omega\|_{L^1} M(R_j(f)), \]
in view of Theorem 2.1.10. \((M\) here is the Hardy–Littlewood maximal operator.) By Theorem 2.1.6, \(M\) maps \(L^p(\mathbb{R}^n)\) to itself with norm bounded by a dimensional constant multiple of \(\max(1, (p-1)^{-1})\). Since by Remark 5.2.9 the norm \(\|R_j\|_{L^p} \to L^p\) is controlled by a dimensional constant multiple of \(\max(p, (p-1)^{-1})\), it follows that

\[
\left\| \sup_{0 < \varepsilon < N < \infty} |A_2^{(\varepsilon,N)}(f)| \right\|_{L^p} \leq C_n \|\Omega\|_{L^1} \max(p, (p-1)^{-2}) \|f\|_{L^p}.
\] (5.2.39)

Next, recall that in the proof of Theorem 5.2.10 we showed that

\[
K_j(x) = \frac{\Omega_j(x/|x|)}{|x|^n},
\]

where \(\Omega_j\) are integrable functions on \(S^{n-1}\) that satisfy

\[
\left\| \Omega_j \right\|_{L^1} \leq C_n c_{\Omega}.
\] (5.2.40)

Consequently, for functions \(f\) in \(L^p(\mathbb{R}^n)\) we have

\[
\sup_{0 < \varepsilon < N < \infty} |A_3^{(\varepsilon,N)}(f)| \leq 2 \sum_{j=1}^n \mathcal{T}_{\Omega_j}^{(\varepsilon)}(R_j(f)),
\]

and by Remark 5.2.9 this last expression has \(L^p\) norm at most a dimensional constant multiple of \(\|\Omega\|_{L^1} \max(p, (p-1)^{-2}) \|R_j(f)\|_{L^p}\). It follows that

\[
\left\| \sup_{0 < \varepsilon < N < \infty} |A_3^{(\varepsilon,N)}(f)| \right\|_{L^p} \leq C_n \max(p, (p-1)^{-2})(c_{\Omega} + 1) \|f\|_{L^p}.
\] (5.2.41)

Finally, we turn our attention to the term \(A_4^{(\varepsilon,N)}(f)\). To prove the required estimate, we first show that there exist nonnegative homogeneous of degree zero functions \(G_j\) on \(\mathbb{R}^n\) that satisfy

\[
|F_j(x)| \leq G_j(x) \quad \text{when}\ |x| \leq 1
\] (5.2.42)

and

\[
\int_{S^{n-1}} |G_j(\theta)| d\theta \leq C_n c_{\Omega}.
\] (5.2.43)

To prove (5.2.42), first note that if \(|x| \leq 1/8\), then

\[
|F_j(x)| = \frac{\Gamma \left(\frac{n+1}{2} \right)}{\pi \frac{n+1}{2}} \left| \int_{\mathbb{R}^n} \frac{\Omega(y/|y|)}{|y|^n} \Phi(y) \frac{x_j - y_j}{|x - y|^{n+1}} dy \right|
\leq C_n \int_{|y| \geq \frac{1}{8}} \frac{\Omega(y/|y|)}{|y|^{2n}} dy
\leq C'_n \left\| \Omega \right\|_{L^1}.
\]
5.2 Singular Integrals and the Method of Rotations 351

We now fix an x satisfying $1/8 \leq |x| \leq 1$ and we write

$$|F_j(x)| \leq \Phi(x)|K_j(x)| + |F_j(x) - \Phi(x)K_j(x)|$$

$$\leq |K_j(x)| + \frac{\Gamma(n+1)}{\pi^{n+2}} \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \frac{x_j - y_j}{|x-y|^{n+1}} (\Phi(y) - \Phi(x)) \frac{\Omega(y/|y|)}{|y|^n} dy$$

$$= |K_j(x)| + \frac{\Gamma(n+1)}{\pi^{n+2}} (P_1(x) + P_2(x) + P_3(x)),$$

where

$$P_1(x) = \int_{|y| \leq \frac{1}{8}} \left(\frac{x_j - y_j}{|x-y|^{n+1}} - \frac{x_j}{|x|^{n+1}} \right) (\Phi(y) - \Phi(x)) \frac{\Omega(y/|y|)}{|y|^n} dy,$$

$$P_2(x) = \int_{\frac{1}{8} \leq |y| \leq 2} \frac{x_j - y_j}{|x-y|^{n+1}} (\Phi(y) - \Phi(x)) \frac{\Omega(y/|y|)}{|y|^n} dy,$$

$$P_3(x) = \int_{|y| \geq 2} \frac{x_j - y_j}{|x-y|^{n+1}} (\Phi(y) - \Phi(x)) \frac{\Omega(y/|y|)}{|y|^n} dy.$$

But since $1/8 \leq |x| \leq 1$, we see that

$$P_1(x) \leq C_n \int_{|y| \leq \frac{1}{8}} \frac{|y|}{|x|^{n+1}} \frac{|\Omega(y/|y|)|}{|y|^n} dy \leq C_n \|\Omega\|_{L^1}$$

and that

$$P_3(x) \leq C_n \int_{|y| \geq 2} \frac{|\Omega(y/|y|)|}{|y|^{2n}} dy \leq C_n \|\Omega\|_{L^1}.$$

For $P_2(x)$ we use the estimate $|\Phi(y) - \Phi(x)| \leq C|x-y|$ to obtain

$$P_2(x) \leq \int_{\frac{1}{8} \leq |y| \leq 2} \frac{C}{|x-y|} \frac{|\Omega(y/|y|)|}{|y|^{2n}} dy$$

$$\leq 4C \int_{\frac{1}{8} \leq |y| \leq 2} \frac{|\Omega(y/|y|)|}{|x-y|^{n-1} |y|^{n-\frac{1}{2}}} dy$$

$$\leq 4C \int_{\mathbb{R}^n} \frac{|\Omega(y/|y|)|}{|x-y|^{n-1} |y|^{n-\frac{1}{2}}} dy.$$

Recall that $K_j(x) = \Omega_j(x/|x|)|x|^{-n}$. We now set

$$G_j(x) = C_n \left(\|\Omega\|_{L^1} + \Omega_j \left(\frac{x}{|x|} \right) \right) + |x|^{n-\frac{3}{2}} \int_{\mathbb{R}^n} \frac{|\Omega(y/|y|)|}{|x-y|^{n-1} |y|^{n-\frac{1}{2}}} dy \right)$$

and we observe that G_j is a homogeneous of degree zero function, it satisfies (5.2.42), and it is integrable over the annulus $\frac{1}{2} \leq |x| \leq 2$. To verify the last assertion, we split up the double integral
\[I = \int_{\frac{1}{2} \leq |x| \leq 2} \int_{\mathbb{R}^n} \frac{|\Omega(y/|y|)| dy}{|x-y|^{n-\frac{3}{2}}} \, dx \]

into the pieces \(1/4 \leq |y| \leq 4\), \(|y| > 4\), and \(|y| < 1/4\). The part of \(I\) where \(1/4 \leq |y| \leq 4\) is pointwise bounded by a constant multiple of

\[\int_{\frac{1}{2} \leq |x| \leq 2} \int_{\frac{1}{2} \leq |y| \leq 4} \frac{dx}{|x-y|^{n-1}} \, dy \]

which is pointwise controlled by a constant multiple of \(\|\Omega\|_{L^1}\). In the part of \(I\) where \(|y| > 4\) we use that \(|x-y|^{-n+1} \leq (|y|/2)^{-n+1}\) to obtain rapid decay in \(y\) and hence a bound by a constant multiple of \(\|\Omega\|_{L^1}\). Finally, in the part of \(I\) where \(|y| < 1/4\) we use that \(|x-y|^{-n+1} \leq (1/4)^{-n+1}\), and then we also obtain a similar bound. It follows from (5.2.44) and (5.2.40) that

\[\int_{\frac{1}{2} \leq |x| \leq 2} |G_j(x)| \, dx \leq C_n \left(\|\Omega\|_{L^1} + \|\Omega\|_{L^1} + \|\Omega\|_{L^1} \right) \leq C_n \epsilon \Omega. \]

Since \(G_j\) is homogeneous of degree zero, we deduce (5.2.43).

To complete the proof, we argue as follows:

\[\sup_{0 < \epsilon < N < \infty} |A_{1}^{(\epsilon,N)}(f)(x)| \]

\[\leq 2 \sup_{\epsilon > 0} \sum_{j=1}^{n} \frac{1}{\epsilon^n} \int_{|z| \leq \epsilon} |F_j \left(\frac{z}{\epsilon} \right)| |R_j(f)(x-z)| \, dz \]

\[\leq 2 \sup_{\epsilon > 0} \sum_{j=1}^{n} \frac{1}{\epsilon^n} \int_{r=0}^{\epsilon} \int_{S^{n-1}} |F_j \left(\frac{r \theta}{\epsilon} \right)| |R_j(f)(x-r \theta)| \, r^{n-1} \, d\theta \, dr \]

\[\leq 2 \sum_{j=1}^{n} \int_{S^{n-1}} |G_j(\theta)| \left\{ \sup_{\epsilon > 0} \frac{1}{\epsilon^n} \int_{r=0}^{\epsilon} |R_j(f)(x-r \theta)| \, r^{n-1} \, dr \right\} \, d\theta \]

\[\leq 4 \sum_{j=1}^{n} \int_{S^{n-1}} |G_j(\theta)| |M_\theta(R_j(f))(x)| \, d\theta. \]

Using (5.2.43) together with the \(L^p\) boundedness of the Riesz transforms and of \(M_\theta\) we obtain

\[\left\| \sup_{0 < \epsilon < N < \infty} |A_{1}^{(\epsilon,N)}(f)| \right\|_{L^p} \leq C_n \max(p^2, (p-1)^{-3}) (c_\Omega + 1) \|f\|_{L^p}. \quad (5.2.45) \]

Combining (5.2.45), (5.2.39), and (5.2.41), we obtain the required conclusion. \(\square\)

The following corollary is a consequence of Theorem 5.2.11.

Corollary 5.2.12. Let \(n \geq 2\) and \(\Omega\) be as in Theorem 5.2.11. Then for \(1 < p < \infty\) and \(f \in L^p(\mathbb{R}^n)\) the functions \(T_{\Omega}^{(\epsilon,N)}(f)\) converge to \(T_{\Omega}(f)\) in \(L^p\) and almost everywhere as \(\epsilon \to 0\) and \(N \to \infty\).
Proof. The a.e. convergence is a consequence of Theorem 2.1.14. The L^p convergence is a consequence of the Lebesgue dominated convergence theorem since for $f \in L^p(\mathbb{R}^n)$ we have that $|T^{(\xi,N)}_{\Omega}(f)| \leq T^{(\ast)}_{\Omega}(f)$ and $T^{(\ast)}_{\Omega}(f)$ is in $L^p(\mathbb{R}^n)$. □

Exercises

5.2.1. Show that the directional Hilbert transform \mathcal{H}_θ is given by convolution with the distribution w_θ in $\mathscr{S}'(\mathbb{R}^n)$ defined by

$$\langle w_\theta, \phi \rangle = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{+\infty} \frac{\phi(t)}{t} \, dt.$$

Compute the Fourier transform of w_θ and prove that \mathcal{H}_θ maps $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$. [Hint: Use that H maps $L^1(\mathbb{R})$ to $L^{1,\infty}(\mathbb{R})$, which follows from Theorem 5.3.3.]

5.2.2. Extend the definitions of W_{Ω} and T_{Ω} to $\Omega = d\mu$ a finite signed Borel measure on S^{n-1} with mean value zero. Compute the Fourier transform of $W_{d\mu}$ and find a necessary and sufficient condition on measures $d\mu$ so that $T_{d\mu}$ is L^2 bounded. Notice that the directional Hilbert transform \mathcal{H}_θ is a special case of such an operator $T_{d\mu}$.

5.2.3. Use the inequality $AB \leq A \log A + e^B$ for $A \geq 1$ and $B > 0$ to prove that if Ω satisfies (5.2.24) then it must satisfy (5.2.16). Conclude that if $|\Omega| \log^+|\Omega|$ is in $L^1(S^{n-1})$, then T_{Ω} is L^2 bounded.

[Hint: Use that $\int_{S^{n-1}} |\xi - \theta|^{-\alpha} \, d\theta$ converges when $\alpha < 1$. See Appendix D.3.]

5.2.4. Let Ω be a nonzero integrable function on S^{n-1} with mean value zero. Let f be integrable over \mathbb{R}^n with nonzero integral. Prove that $T_{\Omega}(f)$ is not in $L^1(\mathbb{R}^n)$.

[Hint: Show that $T_{\Omega}(f)$ cannot be continuous at zero.]

5.2.5. Let $\theta \in S^{n-1}$. Use an identity similar to (5.2.18) to show that the maximal operators

$$\sup_{a > 0} \frac{1}{a} \int_{0}^{a} |f(x - r\theta)| \, dr, \quad \sup_{a > 0} \frac{1}{2a} \int_{-a}^{a} |f(x - r\theta)| \, dr$$

are $L^p(\mathbb{R}^n)$ bounded for $1 < p < \infty$ with norm at most $3p(p - 1)^{-1}$.

5.2.6. For $\Omega \in L^1(S^{n-1})$ and f locally integrable on \mathbb{R}^n, define

$$M_{\Omega}(f)(x) = \sup_{R>0} \frac{1}{v_{n} R^n} \int_{|y| \leq R} |\Omega(y/|y|)| |f(x - y)| \, dy.$$

Apply the method of rotations to prove that M_{Ω} maps $L^p(\mathbb{R}^n)$ to itself for $1 < p < \infty$.

5.2.7. Let $\Omega(x, \theta)$ be a function on $\mathbb{R}^n \times S^{n-1}$ satisfying

(a) $\Omega(x, -\theta) = -\Omega(x, \theta)$ for all x and θ.

(b) $\sup_r |\Omega(x, \theta)|$ is in $L^1(S^{n-1})$.