Presence of Essential Molecule in Space Could Support Life on Other Planets

COLUMBIA, Mo. - Some of the elements necessary to support life on Earth are widely known - oxygen, carbon and water, to name a few. Just as important in the existence of life as any other component is the presence of adenine, an essential organic molecule. Without it, the basic building blocks of life would not come together. Scientists have been trying to find the origin of Earth's adenine and where else it might exist in the solar system. University of Missouri-Columbia researcher Rainer Glaser may have the answer.

MU Researcher Presents Origin-Of-Life Theory for Young Earth

Presence of Essential Molecule in Space Could Support Life on Other Planets

Please log in for more thread options

Aug. 22, 2007

Contact: Kevin Carlson
Sr. Information Specialist
(573) 882-3346
CarlsonKE@missouri.edu

Copyright © 2007
Missouri University of Science and Technology
Glaser is hypothesizing the existence of adenine in interstellar dust clouds. Those same clouds may have showered young Earth with adenine as it began cooling billions of years ago, and could potentially hold the key for initiating a similar process on another planet.

"The idea that certain molecules came from space is not outrageous," said Glaser, professor of chemistry in MU's College of Arts and Science. "You can find large molecules in meteorites, including adenine. We know that adenine can be made elsewhere in the solar system, so why should one consider it impossible to make the building blocks somewhere in interstellar dust?"

This theory describing the fusion of early life-forming chemicals is presented in the latest issue of the peer-reviewed journal "Astrobiology" and is co-authored by Brian Hodgen (Creighton University), Dean Farrelly (University of Manchester) and Elliot McKee (St. Louis University). The paper, "Adenine Synthesis in Interstellar Space: Mechanisms of Prebiotic Pyrimidine-Ring Formation of Monocyclic HCN-Pentamers," describes the absence of a sizeable barrier that would prevent formation of the skeleton needed for adenine synthesis. The article is also featured in the Aug. 6 issue of "Chemical & Engineering News."

Glaser believes astronomers should look for interstellar dust clouds that have highly-concentrated hydrogen cyanide (HCN), which can indicate the presence of adenine. Finding such pockets would narrow the spectrum of where life could exist within the Milky Way galaxy.

"There is a lot of sky with a few areas that have dust clouds. In those dust clouds, a few of them have HCN. A few of those have enough HCN to support the synthesis of the molecules of life. Now, we have to look for the HCN concentrations, and that's where you want to look for adenine," Glaser said. "Chemistry in space and 'normal chemistry' can be very different because the concentrations and energy-exchange processes are different. These features make the study of chemistry in space very exciting and academically challenging; one really must think without prejudice."

There are no essential molecules for life, except possibly water.

There are no essential molecules for life, except possibly water.
inorganic minerals, and at least two specific chemicals that have different redox potentials so that they can be reacted against each other to yield useful energy. A symbiosis between such bacteria and a type of photosynthetic bacteria can survive on nothing except water, inorganic minerals, and sunlight.

All the adenine needed by life on Earth is synthesized by living cells. Thus adenine is no more necessary than gazillions of other specific chemicals also produced by life.

> Without it, the basic building blocks of life would not come together.

The building blocks of life don't "come together". They are specifically synthesized by some life and absorbed by others by preditation or seeping from the former.

> Scientists have been trying to find the origin of Earth’s adenine

It's synthesized inside cells.

> Life exists on Earth because of a delicate combination of chemical ingredients.

Bullshit!! Life exists on Earth because it existed yesterday and life is pretty good at surviving from day to day, and has been doing so for over thousands of millions of years. Life maintains within itself a delicate combination of chemicals, which are *not* ingredients in the sense implied by all the rest of this article down to this point.

<important>
> "Chemistry in space and 'normal chemistry' can be very different because the concentrations and energy-exchange processes are different. These features make the study of chemistry in space very exciting and academically challenging; one really must think without prejudice."
</important>

This is the only useful statement in the whole article.

<important>

Similar Threads

NASA Develops a Nugget to Search for Life in Space
New Carbon Dioxide Isotope Molecule Discovered in the Atmosphere of Venus and Mars
Hubble Monitors Jupiter in Support of the New Horizons Flyby

</important>