ABSTRACT: The mechanism-based inactivations of a number of serine proteases, including human leukocyte (HL) elastase, cathepsin G, rat mast cell proteases I and II, several human and bovine blood coagulation proteases, and human factor D by substituted isocoumarins and phthalides which contain masked acyl chloride or anhydride moieties, are reported. 3,4-Dichloroisocoumarin, the most potent inhibitor investigated here, inactivated all the serine proteases tested but did not inhibit papain, leucine aminopeptidase, or β-lactamase. 3,4-Dichloroisocoumarin was fairly selective toward HL elastase ($k_{\text{obsd}}/[I] = 8920 \text{ M}^{-1} \text{s}^{-1}$); the inhibited enzyme was quite stable to reactivation ($k_{\text{reacty}} = 2 \times 10^5 \text{ s}^{-1}$), while enzymes inhibited by 3-acetoxyisocoumarin and 3,3-dichlorophthalide regained full activity upon standing. The rate of inactivation was decreased dramatically in the presence of reversible inhibitors or substrates, and ultraviolet spectral measurements indicate that the isocoumarin ring structure is lost upon inactivation. Chymotrypsin A$_G$ is totally inactivated by 1.2 equiv of 3-chloroisocoumarin or 3,4-dichloroisocoumarin, and approximately 1 equiv of protons is released upon inactivation. These results indicate that these compounds react with serine proteases to release a reactive acyl chloride moiety which can acylate another active site residue. These are the first mechanism-based inhibitors reported for many of the enzymes tested, and 3,4-dichloroisocoumarin should find wide applicability as a general serine protease inhibitor.

Serine proteases are involved in a number of important physiological processes including blood coagulation, the complement system, fertilization, and protein turnover, and many of these enzymes are believed to be involved in diseases such as emphysema, arthritis, and tumorigenesis. Two examples are human leukocyte (HL) elastase and cathepsin G, which are primarily responsible for the destruction of lung elastin which occurs in chronic emphysema (Powers, 1983; Boudier et al., 1982). Selective regulation of these and other proteases in the disease state is an important clinical problem.

Recently, significant progress has been made in the design of mechanism-based irreversible inhibitors for serine proteases. These include haloenol lactones (Daniels et al., 1983; Chakravarty et al., 1982), substituted 6-chloro-2-pyrones (Westerveld et al., 1982), substituted isocoumarins and phthalide derivatives. We have shown that 3-chloroisocoumarin (3-CI) and 3,4-dichloroisocoumarin (3,4-DCI) are extremely potent inhibitors of several of the enzymes tested and the inactivation is an enzyme-mediated process. We have discovered that 3,4-dichloroisocoumarin is a general serine protease inhibitor, since it inactivated a wide variety of serine proteases but did not react with the thiol protease papain, the metalloprotease leucine aminopeptidase, or β-lactamase. This inhibitor should find wide applicability in the prevention of proteolysis due to serine proteases. A portion of this work has been communicated earlier (Harper et al., 1983).

MATERIALS AND METHODS

HL elastase and cathepsin G were generous gifts from Dr. James Travis and his research group at the University of Georgia. Rat mast cell proteases I and II were kindly provided by Dr. Richard Woodbury and Dr. Hans Neurath of the University of Washington. Bovine factor X$_G$, bovine factor XI$_G$, and human β-factor XII$_G$ were gifts from Dr. Kotoku Kurachi and Dr. Earl Davie of the University of Washington. Streptomyces griseus protease A was provided by Dr. Michael James of the University of Alberta. The human skin chymase was a gift from Dr. Norman M. Schechter and Dr. Gerald

1 Abbreviations: HL, human leukocyte; HLE, human leukocyte elastase; PP, porcine pancreatic; PFE, porcine pancreatic elastase; Cat G, cathepsin G; ChYt, chymotrypsin; SGPA, Streptomyces griseus protease A; V-8, Staphylococcus aureus protease V-8; RMCP I, rat mast cell protease I; RMCP II, rat mast cell protease II; 3-CI, 3-chloroisocoumarin; 3,4-DCI, 3,4-dichloroisocoumarin; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Boc, tert-butyloxycarbonyl; Z, benzoyloxycarbonyl; NA, 4-nitroaniline; SBzl, -SCH$_2$C$_6$H$_5$; MeO-Suc, methansucinyl; Tris, tris(hydroxymethyl)aminomethane; EDTA, ethylenediaminetetraacetic acid.
S. Lazarus of the University of Pennsylvania. Human factor D was a gift from Dr. John Volanakis of the University of Alabama. Bovine chymotrypsin Aβ, chymotrypsin Aγ, human thrombin, human plasmin, porcine pancreatic elastase, bovine thrombin, porcine pancreatic kallikrein, bovine trypsin, β-lactamase (type II), Staphylococcus aureus protease V-8, acetylcholinesterase, subtilisin, leucine aminopeptidase, papain, Tris-HCl, ethylenediaminetetraacetic acid, glutathione, human albumin, Leu-NA-HCl, and phenoxymethylpenicillinic acid were obtained from Sigma Chemical Co., St. Louis, MO, and were of the highest purity available. Homophthalic acid, 2-carboxybenzaldehyde, 4-nitrophenyl acetate, and HEPES were purchased from Aldrich Chemical Co., Milwaukee, WI. Benzoyl-L-Arg-NA-HCl was a product of Bachem Inc., Torrence, CA. MeO-Suc-Ala-Ala-Pro-Val-NA (Nakajima et al., 1979), Suc-Ala-Ala-NA (Bieth et al., 1974), Suc-Phe-Pro-Phe-NA (Yoshida et al., 1980), Suc-Ala-Ala-Pro-SBzl (Harper et al., 1981), Boc-Ala-Ala-Glu-SBzl (Harper et al., 1984), Z-Phe-Phe-Arg-NA-HCl, and Z-Phe-Gly-Arg-NA-HCl (Cho et al., 1984), Z-Arg-SBzl-HCl and Z-Lys-Arg-SBzl-2HCl (McRae et al., 1981), CF₃CO-Lys-Ala-4-methylaniidine (Renaud et al., 1983), and 2-(heptafluoropropyl)-4-1,3-benzoxazin-4-one (Teshima et al., 1982) were prepared as previously described. The concentrations of chymotrypsin Aβ and chymotrypsin Aγ were determined by active site titration using 4-nitrophenyl acetate (Bender et al., 1966).

Synthesis. Isocoumarin (Narasimhan & Mali, 1975), 3,3,4-trichloro-3,4-dihydroisocoumarin (Milevska et al., 1973a,b), 3,3-dichlorophthalide (Ott, 1943), 3-chlorophthalide (Bhatt et al., 1980), 3-acetoxyisocoumarin (Schneckenburger & Kaiser, 1971), and homophthalic anhydride (Grummitt et al., 1955) were prepared as reported earlier. The 3-chloroisocoumarin (Davies & Poole, 1928) and 3,4-dichloroisocoumarin (Milevska et al., 1973a,b) were prepared as described previously with some modifications in the purification methods. Pure 3-chloroisocoumarin was obtained only after successive column chromatography on silica gel, first by using methylene chloride as the eluent (this step removes most of the polar impurities) followed by a second chromatography using benzene as the eluent (this step removes small quantities of 3,4-dichloroisocoumarin and 3,3,4-trichloro-3,4-dihydroisocoumarin). Some preparations required a third chromatography with benzene. The final product was obtained as a crystalline solid (mp 95-96 °C) upon evaporation of the solvent. The 3,4-dichloroisocoumarin was purified by silica gel chromatography using benzene as the eluent and could be crystallized from several solvents including methylene chloride/petroleum ether (mp 97-98 °C). The purity of each compound was checked by NMR, IR, mass spectrum, melting point, thin-layer chromatography (silica gel plates), and recrystallized from several solvents including methylene chloride, and the product recrystallized from hexane to give a white solid (440 mg); mp 65-66 °C; IR (nujol), 1790 cm⁻¹. Anal. Calcd for C₁₇H₂₂O₂F: C, 63.16; H, 3.31. Found: C, 63.18; H, 3.33.

Enzyme Inactivation: Incubation Method. Inactivation was initiated by adding a 5-50-µL aliquot of inhibitor in Me₂SO to 0.3-0.5 mL of a buffered enzyme solution (0.1-2.0 µM) such that the final Me₂SO concentration was 8-12% v/v at 25 °C. Aliquots were removed with time and diluted into substrate solution (40-200-fold dilution), and the residual activity was measured spectrophotometrically as described below. Unless otherwise noted, 0.1 M HEPES-0.5 M NaCl, pH 7.5, buffer was utilized throughout, and inhibitor concentrations are shown in the appropriate table. All spectrophotometric measurements were carried out on either a Beckman 25, Beckman 35, or Varian DMS 90 spectrophotometer.

Chymotrypsin Aβ, cathepsin G, RMCP II, and S. griseus protease A were assayed with either Suc-Val-Pro-Pro-NA (0.2-0.8 mM) or Suc-Phe-Pro-Phe-NA (0.3-0.9 mM). Human skin chymase, subtilisin, and RMCP I were assayed with Suc-Ala-Ala-Pro-SBzl (0.095 mM). HL elastase was assayed with MeO-Suc-Ala-Ala-Pro-Val-NA (0.1-0.4 mM), and PP elastase was assayed with Suc-Ala-Ala-NA (0.6-1.2 mM). S. aureus protease V-8 was assayed with Boc-Ala-Ala-Glu-SBzl (0.1 mM). Trypsin was assayed with Z-Phe-Phe-Arg-NA-HCl (0.030 mM). Papain was assayed with benzoyl-L-Arg-NA-HCl (0.49 mM, assay buffer was 50 mM Tris-HCl, 5 mM cysteine, and 2 mM ethylenediaminetetraacetic acid, pH 8.2). Bovine thrombin, human thrombin, human β-factor XII, bovine factor XI, human plasmin, and porcine pancreatic kallikrein were assayed with Z-Arg-SBzl (0.05-0.2 mM). Human factor D was assayed with Z-Lys-SBzl-2HCl (0.48 mM). Factor Xa was assayed with Z-Phe-Gly-Arg-NA-HCl (0.12 mM). β-Lactamase was assayed with phenoxymethylpenicillinic acid (3.6 mM) (Fish et al., 1978). Acetylcholinesterase was assayed with 4-nitrophenyl acetate (0.50 mM). Leucine aminopeptidase was assayed with Leu-NA-HCl (0.18 mM). All peptide thio ester hydrolysis rates were measured by using either 4,4'-dithiopyridine (€₄₁₀ = 19800 M⁻¹ cm⁻¹) (Grassetti & Murray, 1967) or 5,5'-dithiobis-(2-nitrobenzoic acid) (€₄₁₀ = 13600 M⁻¹ cm⁻¹) (Ellman, 1959). Peptide 4-nitroanilide hydrolysis was measured at 410 nm (€₄₁₀ = 8800 M⁻¹ cm⁻¹) (Erlanger et al., 1961).

Second-order inactivation rate constants (kₐbsd/[I]) were obtained by plotting ln [E]/[E]₀ vs. time and dividing the slope (kₐbsd) by the inhibitor concentration. All inactivation rates shown in Tables I and II are the average of duplicate or triplicate experiments, and the correlation coefficients were greater than 0.98 and most were greater than 0.99.

Determination of Inactivation Rates in the Presence of Substrate: Progress Curve Method. In some cases (see Tables I and II), kₐbsd/[I] values were obtained in the presence of substrate as described by Tian & Tsou (1982). In the case of the reaction of HL elastase (78 nM, final concentration) with 3-C1, a 0.025-mL aliquot of enzyme was added to a buffered solution of MeO-Suc-Ala-Ala-Pro-Val-NA (0.171 mM) which contained between 7 and 35 µM inhibitor and 10% Me₃SO. The increase in absorbance was monitored (410 nm) with time until no further release of 4-nitroaniline was observed. kₐbsd/[I], kₐs, and kₐv values were calculated as previously described (Tian & Tsou, 1982). Inactivation of HL elastase (8 mM) by 3,4-DCI (0.4-4.0 µM) was carried out similarly. Inactivation of PP elastase (8.7 mM) by 3-C1 (7-35 µM) was carried out with Suc-Ala-Ala-NA (1.63 mM).
as the substrate. Reaction rates of RMCP II (0.19 µM) with 3-CI (0.61 mM) and 3,4-DCI (0.011 mM) were measured in the presence of Suc-Val-Pro-Phe-NA (0.13 mM). Inhibition of bovine factor XI (3.6 mM) by 3,4-DCI (0.239 mM) was measured with Z-Arg-SBzI-HCl (0.05 mM) was a substrate.

Reactivation Kinetics. Enzymatic activity (measured as described above) was followed upon incubation of the inactivated enzyme at 25 °C under the conditions specified without removal of any residual inhibitor. Controls lost less than 10% activity over the time periods investigated. Reactivation half-lives were calculated from plots of percent activity vs. times. Decacylation rate constants of enzymes inactivated by 3-CI and 3,4-DCI were determined after dialysis of the inactivated enzymes against 0.1 M phosphate (pH 7.5) for 3 h at 5 °C from plots of ln (percent activity) vs. times. Decacylation rates of HL elastase and PP elastase inhibited by homopthalic anhydride (0.01 and 0.1 mM, respectively) were determined from the substrate hydrolysis progress curve measured upon dilution (100-200-fold) of inactivated enzymes into substrate solutions as described above. Plots of ln (v/v₀) vs. times, where v is the tangent of the substrate hydrolysis curve at time t and v₀ is the velocity in the absence of inhibitor, gave correlation coefficients of 0.98 or greater.

Determination of Spontaneous Hydrolysis Rates of Inhibitors in Buffer and in the Presence of Glutathione, Human Albumin, or Plasma. An aliquot of the isocoumarin derivative (0.05-0.15 mM final concentration) in Me₂SO was added to the appropriate buffered solution or plasma such that the final Me₂SO concentration was 10% v/v and the spontaneous hydrolysis monitored by following the decrease in absorbance at 325 nm. The hydrolysis product had negligible absorbance at 325 nm. First-order hydrolysis constants were obtained from a plots of ln ([A₀ - A]/[A₀ - A₀]) vs. time and these constants converted to half-lives. All plots gave correlation coefficients of 0.99 or greater.

The spontaneous hydrolysis of 3-chlorophthalide and 3-fluorophthalide (29 and 66 µM, respectively) in buffer (100% Me₂SO) were measured by following the absorbance increase at 295 nm. The hydrolysis product, 4-carboxybenzaldehyde, has an extinction coefficient of 1800 M⁻¹ cm⁻¹ at 295 nm while the halo derivatives have negligible absorbance. The first-order hydrolysis rates were determined from plots of ln ([A₀ - A]/[A₀ - A₀]) vs. time.

Determination of Enzyme-Catalyzed Rates of Inhibitor Ring Opening. Rates of enzyme-catalyzed ring opening of 3-CI and 3,4-DCI were measured spectrophotometrically as described above for hydrolysis in buffer. In a typical experiment, a 0.050-mL aliquot of inhibitor (0.069 mM final concentration) was added to 1.98 mL of a buffered enzyme solution (0.015 mM final concentration) and the decrease in absorbance at 325 nm recorded. Under these conditions, extinction coefficients of 3330 and 3500 M⁻¹ cm⁻¹ were obtained for 3,4-DCI and 3-CI, respectively. Ring opening rate constants were determined as described under Results. Enzymatic hydrolysis rates of 3-chlorophthalide and 3-fluorophthalide were measured similarly by following an increase in absorbance at 295 nm.

Proton Release Experiments. Active site titrated chymotrypsin A₅ (5.0 mL, 1.0 mM in 1 mM HCl) was added to a mixture of distilled water (13.0 mL) and Me₂SO (1.5 mL) and the pH of the solution adjusted to 7.5 with 0.1 N NaOH by using a pH stat. A 0.50-mL aliquot of inhibitor in Me₂SO was rapidly added (0.25-0.261 mM final concentration) and the release of protons at pH 7.5 measured with time by titration with 0.1 N NaOH utilizing an automatic buret (buret volume = 0.250 mL) and chart recorder (full scale = 0.250 mL). All measurements were carried out under a nitrogen atmosphere, and control experiments showed negligible uptake of CO₂ from the atmosphere during the time span of the experiments (by titration with 0.1 N NaOH). Residual enzymatic activity was measured by removing 1-µL aliquots from the reaction mixture and assaying with Suc-Val-Pro-Phe-NA as described above. Measurements at pH 8.5 were done similarly. All pH stat measurements were carried out on a Radiometer/Copenhagen automatic titration apparatus.

RESULTS

Inactivation of Serine Proteases by Substituted Isocoumarins and 3,3-Dichlorophthalide. The structures of the new inhibitors investigated are shown in Figure 1. Incubation of 3-chloroisocoumarin (3-CI), 3,4-dichloroisocoumarin (3,4-DCI), 3-acetoxyisocoumarin, and 3,3-dichlorophthalide with a number of serine proteases resulted in a time-dependent and complete elimination of enzymatic activity (Table I). Unsubstituted isocoumarin did not inactivate several enzymes at concentrations as high as 0.3 mM. In addition, the hydrolysis product of 3-CI, homopthalic acid (1 mM), showed no inhibition of HL elastase, PP elastase, cathepsin G, or chymotrypsin A₅. In every case, 3,4-DCI gave higher k_{obsd}/[I⁻¹] values (1.5-6.8 fold) than 3-CI, and in every case except

![Table I: Inactivation Rates (k_{obsd}/[I]) for Inhibition of Serine Proteases by Substituted Isocoumarin and Phthalide Derivatives^a](image-url)
the progress curve method. We obtained k_{obsd}/θ values of $55 \mu M$ and $65 \mu M$, and k_2 values of 0.59s^{-1} and 0.22s^{-1}, respectively.

Inactivation of HL elastase (0.5 \text{ \mu M}) by increasing concentrations of 3,4-DCI (0.38-4.0 \text{ \mu M}) using the incubation method allowed estimation of the number of equivalents of inhibitor required for total inactivation. When I/E was 3.1, a residual activity of 3.7\% was obtained while 10 equiv resulted in total inactivation (<0.5\%). Therefore, between 3.1 and 10 equiv of 3,4-DCI is required for total inactivation of HL elastase. Similar studies on the inactivation of HL and PP elastase by 3-CI indicated that at least 15 and 4 equiv of inhibitor, respectively, is required for complete inactivation of these enzymes.

Inactivation rates were decreased dramatically when substrates or reversible inhibitors were included in the incubation mixture. The reaction of HL elastase with 3,4-DCI decreased 4-fold ($k_{\text{obsd}}/\theta = 2100 \text{ M}^{-1} \text{s}^{-1}$) whenSuc-Val-Pro-Phe-NA (0.69 mM) was included in the incubation mixture, and the inactivation rate of chymotrypsin A_{θ} decreased 2.5-fold ($k_{\text{obsd}}/\theta = 230 \text{ M}^{-1} \text{s}^{-1}$) when Suc-Val-Pro-Phe-NA (0.33 mM) was added to the incubation mixture. Inactivation of HL elastase by 3-CI in the presence of the reversible inhibitor 2-(heptafluoropropyl)-4H-3,1-benzoxazin-4-one (0.054 mM) (Teshima et al., 1982) gave a k_{obsd}/θ value of 8.6 \text{ M}^{-1} \text{s}^{-1}. By use of equations reported previously (Kitz & Wilson, 1962), a k_{obsd}/θ value of 4300 \text{ M}^{-1} \text{s}^{-1} for inactivation in the absence of the competitive inhibitor was calculated, which is in good agreement with the experimentally determined inactivation rate (3900 \text{ M}^{-1} \text{s}^{-1}). Inclusion of CF$_3$CO-Lys-Ala-Val-NA (0.022 mM) (Renaud et al., 1983) in the incubation mixture containing PP elastase and 3-CI (5 \mu M) resulted in a 26-fold decrease in inactivation rate. These results indicate that inactivation occurs at the enzyme active site.

Since 3,4-dichloroisocoumarin was found to be quite reactive with a number of elastase-like and chymotrypsin-like serine proteases, we decided to try it with a wide variety of serine proteases including bovine blood coagulation factors X_1 and X_{11}, human blood coagulation factor X_{11}, and thrombin, porcine pancreatic kallikrein, and the human complement enzyme factor D. All the trypsin-like enzymes were inhibited but with a rather wide range of rate constants (Table II).
to the incubation mixture also resulted in reactivation of enzymatic activity (Table IV). With all enzymes specified above, regained activity quite rapidly and completely after incubation for at least 1 h. Acetylcholinesterase was inhibited very poorly. 3,4-DCI is a substrate for subtilisin, trypsin, and a-chymotrypsin A, and isocoumarins and 3,3-dichlorophthalide obtained without reactivation of residual inhibitor are given in Table II. In most cases, enzymes inactivated by 3-CI and 3,4-DCI regained deacylation rates (measured as described subsequently) with 3-CI concentrations of 0.15 mM or less.

The half-lives for reactivation in the presence of residual inhibitor were determined as described under Materials and Methods. Conditions were 0.1 M HEPES, pH 7.5, 0.5 M NaCl, and 10% Me2SO at 25 °C, unless otherwise indicated. The metalloprotease leucine aminopeptidase, the cysteine protease papain, and β-lactamase (type II) were not inhibited by 3-CI and 3,4-DCI.

Reactivation of Serine Proteases Inhibited by Substituted Isocoumarins and 3,3-Dichlorophthalide

<table>
<thead>
<tr>
<th>enzyme</th>
<th>3-chloroisocoumarin [I] (µM)</th>
<th>3,4-dichloroisocoumarin [I] (µM)</th>
<th>3-acetoxyisocoumarin [I] (µM)</th>
<th>3,3-dichlorophthalide [I] (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL elastase</td>
<td>30</td>
<td>0.0008</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>PP elastase</td>
<td>200</td>
<td>0.0016</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>cathepsin G</td>
<td>8</td>
<td>0.0006</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>chymotrypsin Aa</td>
<td>50</td>
<td>0.001</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>S. griseus protease A</td>
<td>30</td>
<td>0.0012</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>RMCP II</td>
<td>50</td>
<td>0.0015</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>S. aureus protease V-8</td>
<td>55</td>
<td>0.0012</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>PP kallikrein</td>
<td>130</td>
<td>0.0015</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>trypsin</td>
<td>130</td>
<td>0.0015</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The trypsin-like enzymes, bovine trypsin, were 45–890-fold less reactive toward 3,4-DCI than HL elastase.

The metalloprotease leucine aminopeptidase, the cysteine protease papain, and β-lactamase (type II) were not inhibited by 3,4-DCI at inhibitor concentrations of 0.385 mM or greater after incubation for at least 1 h. Acetylcholinesterase was inhibited very poorly. 3,4-DCI is a substrate for subtilisin, and a kcat/Km of 50 M⁻¹ s⁻¹ was obtained from initial hydrolysis rates (measured as described subsequently) with 3,4-DCI concentrations of 0.15 mM or less.

Reactivation of Serine Proteases Inhibited by Substituted Isocoumarins and 3,3-Dichlorophthalide

The half-lives for reactivation of serine proteases inactivated by substituted isocoumarins and 3,3-dichlorophthalide obtained without removal of residual inhibitor are given in Table III. In most cases, enzymes inactivated by 3-CI and 3,4-DCI regained activity much more slowly than those inactivated by 3-acetoxyisocoumarin and 3,3-dichlorophthalide under the conditions used. RMCP II gave the longest reactivation half-lives with both 3-CI and 3,4-DCI. In addition, HL and PP elastase, which had been inactivated by homoplastic anhydride under conditions specified above, regained activity quite rapidly and had first-order deacylation rate constants of 3 × 10⁻³ s⁻¹ (t1/2 = 3.9 min) and 2.5 × 10⁻³ s⁻¹ (t1/2 = 4.6 min), respectively.

Addition of buffered hydroxylamine (0.5 M final concentration) to inhibited enzyme resulted in a rapid and complete regain in enzymatic activity (Table IV). With all enzymes tested, reactivation rates were higher with 3-CI than with 3,4-DCI. While addition of buffered hydrazine (0.1–0.2 M) to the incubation mixture also resulted in reactivation of enzymatic activity, the rates were much slower than with hydroxylamine; its use was therefore discontinued.

The rate constants for deacylation of several enzymes inactivated by 3-CI and 3,4-DCI are shown in Table V. After the dialysis period, specific activities of 1.3, 3.9, 1, and 10% were determined with HL elastase, PP elastase, chymotrypsin Aa, and trypsin, respectively. Deacylation of enzymes inactivated by 3,4-DCI were 2.5–10-fold slower than with 3-CI. The finding that the 3,4-DCI forms an enzyme–inhibitor complex which is more stable toward deacylation than the enzyme complex formed with 3-CI is consistent with the trends observed with hydroxylamine reactivation.

Ultraviolet Spectral Changes. In order to gain a clearer understanding of the mechanism of inactivation, we investigated the ultraviolet spectral changes that occur upon inactivation of chymotrypsin Aa by 3-CI and 3,4-DCI. As shown in Figure 2 (curve a), 3,4-DCI has a long wavelength absorbance band near 325 nm (ε225 = 3330 M⁻¹ cm⁻¹); 0.1 M HEPES, 0.5 M NaCl, and 10% Me2SO, pH 7.5) which is associated with the isocoumarin ring system. The hydrolysis product, α-chlorohomophthalic acid, has negligible absorbance at this wavelength and a substantially decreased absorbance near 280 nm (Figure 2, curve c). Addition of 3,4-DCI (25 µM final concentration) to a buffered chymotrypsin Aa solution (18 µM) resulted in an ultraviolet spectrum, after 2 min (42% enzymatic activity), which was distinctly different from that of inhibitor alone (Figure 2, curve b). The chromophore at 325 nm was almost totally absent, and the absorbance near 280 nm was about 30% of inhibitor alone. Addition of excess chymotrypsin Aa (13.4
μM) to 3,4-dichloroisocoumarin (9 μM) gave a spectra after 1.8 min (45% activity) which was indistinguishable from that of enzyme alone. Thus, no new chromophores were observed upon inactivation. Reaction of the active site serine with 3,4-DCI in a 1,6-conjugate addition would have given the same chromophore present in 3-ethoxy-4-chloroisooumarin which has an extinction coefficient of 2920 M⁻¹ cm⁻¹ at 350 nm under these conditions. Similar results (not shown) were obtained with 3-CI and chymotrypsin Aₐ.

Chymotrypsin-Catalyzed Rates of Ring Opening of Iso-
coumarin and Phthalide Derivatives. The decrease in absorbance at 325 nm was used to measure the enzymatic ring opening rates of 3-CI and 3,4-DCI. As shown in Figure 3 (curve b), addition of 3,4-DCI (0.069 mM final concentration) to chymotrypsin Aₐ (14.9 μM) resulted in a rapid (<60 s) decrease in absorbance at 325 nm, which was followed by a slow decrease in absorbance (ΔA/min = 2.5 × 10⁻³ min⁻¹). The slow decrease is exactly the same as that of the inhibitor alone (Figure 3, curve a). After 1.05 min, less than 1% residual enzymatic activity was detected. Extrapolation of the slower absorbance decrease to zero time allowed the determination of the number of equivalents of inhibitor reacted per inactivation. Three duplicate determinations gave an average value of 1.20 ± 0.05 3,4-DCI’s reacted per inactivation. A plot of ln (Aₒ – Aₐ)/(Aₒ – Aₐ) vs. time, where Aₐ is the absorbance value at total inactivation, gave kₒbsd which in this case was the rate of enzymatic ring opening. Such a plot gave a straight line with a correlation coefficient of 0.997 and a kₒbsd of 0.048 ± 0.001 s⁻¹. Division of this rate constant by the inhibitor concentration and 1.2 3,4-DCI’s reacted per inactivation gave a kₒbsd/[I] value of 580 M⁻¹ s⁻¹ which is in excellent agreement with the value obtained by the incubation method (570 M⁻¹ s⁻¹).

Reaction of 3-CI (0.060 mM) with chymotrypsin Aₐ, under similar conditions gave 1.25 ± 0.05 3-CI’s reacted per inactivation and a kₒbsd/[I] value of 290 M⁻¹ s⁻¹, which is in reasonable agreement with that obtained by the incubation method (330 M⁻¹ s⁻¹).

Interestingly, chymotrypsin Aₐ (0.030 mM) did not enhance the decomposition of isocoumarin (0.19 mM) as measured by a decrease in absorbance at 325 nm. This indicates that unsubstituted isocoumarin is at best an extremely poor substrate for chymotrypsin and is probably not hydrolyzed at all.

The chymotrypsin Aₐ catalyzed hydrolysis of 3-chlorophthalide and 3-fluorophthalide was investigated by monitoring an absorbance increase at 295 nm. The hydrolysis product, 3-carboxybenzaldehyde, has an extinction coefficient of 1800 M⁻¹ cm⁻¹ at 295 while the 3-halophthalide derivatives have negligible absorbance. The first-order rate constants, kₒbsd, for hydrolysis of 3-chlorophthalide (0.029 mM) increased from 1.1 × 10⁻³ to 2.7 × 10⁻³ s⁻¹ in the presence of 27 μM chymotrypsin Aₐ while kₒbsd for the hydrolysis of 3-fluorophthalide (0.066 mM) increased from 1.2 × 10⁻⁴ to 1.7 × 10⁻³ s⁻¹ under similar conditions. These results indicate that the 3-halophthalide ring system is a perfectly adequate substrate for chymotrypsin Aₐ.

Proton Release Experiments. The mechanism of inactivation was also investigated by determining the number of equivalents of protons released upon inactivation. As shown in Figure 4A, the addition of 3-CI (0.25 mM) to an aqueous solution of chymotrypsin Aₐ (0.25 mM) in a pH stat at pH 7.5 resulted in a rapid release of 0.92 equiv of protons after 6 min, at which time the enzymatic activity was found to be 9.8% (Figure 4B). This rapid release of protons was followed by a gradual release of a total of 3.1 equiv of protons (theoretical 3.0), which was paralleled by a regain in enzymatic activity (Figure 4B). At pH 8.5 under similar conditions, 0.95 proton was released within 3 min, and the additional protons released slowly (results not shown). Again, the enzymatic activity paralleled proton release.

The reaction of 3,4-DCI (0.26 mM) with chymotrypsin Aₐ (0.25 mM) was also investigated at pH 7.5 by utilizing a pH
MECHANISM-BASED SERINE PROTEASE INHIBITORS

Figure 4: Proton release during inactivation of chymotrypsin A_n by 3-chloroisocoumarin and 3,4-dichloroisocoumarin. (A) A reaction mixture containing chymotrypsin A_n (0.25 mM) and 3-Cl (0.25 mM) in aqueous solution (10% Me₂SO) was titrated with 0.1 N NaOH at a constant pH of 7.5. (B) Residual enzymatic activity was measured with Suc-Val-Pro-Phe-NA (0.125 mM) at a constant pH of 7.5. (C) Titration of a reaction mixture containing chymotrypsin A_n (0.25 mM) and 3,4-DCI (0.26 mM) at pH 7.5. (D) Residual enzymatic activity measured as in (B).

Figure 5: Proton release during inactivation of chymotrypsin by 3,3-dichlorophthalide. Titration of reaction mixture containing chymotrypsin A_n (0.25 mM) and 3,3-dichlorophthalide (0.25 mM) at pH 7.5 with 6.1 N NaOH (open circles). Residual enzymatic activity (measured as in Figure 4B) (closed circles).

A rapid release (<3 min) of 1.2 equiv of protons was observed, which was followed by a gradual release of 0.15 equiv over a 40-min period (Figure 4C). Enzymatic activity was found to be less than 1% at 2, 40, and 60 min (Figure 4D).

The reaction of chymotrypsin A_n (0.25 mM) with 3,3-dichlorophthalide (0.25 mM) at pH 7.5 resulted in a rapid release of 2.7 equiv of protons after 15 min at which time the residual enzymatic activity was 8% (Figure 5).

In all cases the inactivation rates were much faster than rates of proton release. When protons are rapidly released, the pH stat lags, and therefore, we have not attempted to correlate initial proton release rates to inactivation rates. These proton release experiments do, however, allow estimates of the number of protons released during the inactivation process. Due to the large amounts of enzyme required for these experiments, we were able to carry them out only with chymotrypsin A_n. The longer lag phase observed with 3,3-dichlorophthalide is partially due to the particular instrumental conditions chosen for that experiment but may reflect other steps involved in the inhibition mechanism.

Spontaneous Hydrolysis Rates of Isocoumarin Derivatives. As mentioned earlier, the hydrolysis of isocoumarins are conveniently measured spectrophotometrically by following the decrease in absorbance at 325 nm as described under Materials and Methods. IR spectra were recorded in methylene chloride. Conditions were 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5. 5% Conditions were 0.02 M K₂HPO₄, 0.15 M NaCl, and 10% Me₂SO, pH 7.4. 6% Conditions were 0.4 mg/mL human albumin, 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5. 7% Conditions were 0.2 mM glutathione, 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5.

Table VI: Half-Lives for the Spontaneous Hydrolysis of Isocoumarin Derivatives in Buffer and in the Presence of Albumin and Glutathione^a

<table>
<thead>
<tr>
<th>compound</th>
<th>t<sub>1/2</sub> (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>isocoumarin</td>
<td>1730</td>
</tr>
<tr>
<td>3-chloroisocoumarin</td>
<td>1770</td>
</tr>
<tr>
<td>3,4-dichloroisocoumarin</td>
<td>1785</td>
</tr>
<tr>
<td>3-acetoxyisocoumarin</td>
<td>1750</td>
</tr>
<tr>
<td>HEPES<sup>b</sup></td>
<td>1200</td>
</tr>
<tr>
<td>phosphate<sup>c</sup></td>
<td>360</td>
</tr>
<tr>
<td>albumin<sup>d</sup></td>
<td>20</td>
</tr>
<tr>
<td>glutathione<sup>e</sup></td>
<td>1.5</td>
</tr>
</tbody>
</table>

5% Hydrolysis rates were measured by following the decrease in absorbance at 325 nm as described under Materials and Methods.^a IR spectra were recorded in methylene chloride. Conditions were 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5. 6% Conditions were 0.02 M K₂HPO₄, 0.15 M NaCl, and 10% Me₂SO, pH 7.4. 7% Conditions were 0.4 mg/mL human albumin, 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5. 8% Conditions were 0.2 mM glutathione, 0.1 M HEPES, 0.5 M NaCl, and 10% Me₂SO, pH 7.5.

Spontaneous hydrolysis rates significantly (Table V). The decomposition of 3-CI and 3,4-DCI were also found to increase inhibitor decomposition rates significantly (Table V). The decomposition of 3-CI in human plasma was found to be extremely rapid, and the inhibitor had a half-life of 1.8 min. The finding that 3-CI decomposes 11 times faster than in albumin (0.4 mg/mL) is consistent with previous studies (Lawson et al., 1982) where it was shown that several thrombin-acylating agents are rapidly destroyed in plasma, primarily because of the high levels of albumin present (30-45 mg/mL). The decomposition rates of 3-CI and 3,4-DCI were too rapid to measure accurately with physiological concentrations of albumin. Rapid decomposition of 3,4-DCI (t_{1/2} < 10 s) also occurred upon addition to buffer containing 5 mM cysteine (50 mM Tris and 2 mM EDTA, pH 8.2). The half-lives for spontaneous hydrolysis correlate well with the infrared carbonyl-stretching frequencies; the higher the frequency, the faster the spontaneous hydrolysis rate.
DISCUSSION

A number of heterocyclic inhibitors have been reported for serine proteases. Substituted 2-benzoxazinones and quinazolinones have been shown to be extremely potent inhibitors of HL elastase, cathepsin G, and chymotrypsin, and these structures inhibit by interacting with the enzyme active site serine residue (Teshima et al., 1982; Hedstrom et al., 1984). N-substituted benzothiazolinone 1,1-dioxides and benzisothiazolinones are potent inhibitors of several serine proteases including HL elastase, cathepsin G, and chymotrypsin (Zimmerman et al., 1980; Ashe et al., 1981). These compounds inhibit by forming stable acyl enzymes with the active site serine residue, and the inhibitor reactivity is dependent upon the electron negativity of the N-acyl or N-aryl substituent. Isotoic anhydride and substituted 3H-1,3-oxazine-2,6-diones have been shown to react with serine proteases to give a stable acyl enzyme, and this stability was attributed to the electron-donating capability of an unmasked amino group in the inhibitor structure (Moorman & Abeles, 1982; Weidmann & Abeles, 1984). More recently, substituted 6-chloro-2-pyrones have been shown to acylate chymotrypsin and release a reactive acid chloride moiety which could react with another active site nucleophile, but further acylation by this acid chloride has not yet been proven (Westkaemper & Abeles, 1983).

The finding that heterocyclic structures with fused aromatic ring systems such as substituted benzoxazinones are potent inhibitors of HL elastase and cathepsin G indicated that substituted isocoumarins might act as mechanism-based inhibitors of these enzymes. It was envisioned that enzymatic hydrolysis of the lactone of 3-chloroisocoumarin or 3,4-dichloroisocoumarin would lead to the formation of a reactive acid chloride (or ketene) functionality, which could acylate an active site nucleophile to give an inactivated enzyme. The results of our investigation indicate that inactivation of serine proteases by 3-CI and 3,4-DCI is indeed a mechanism-based process and is consistent with the proposed mechanism.

Mechanism of Inactivation. Enzyme inactivation is a time-dependent process, and the finding that the rate of inactivation of HL elastase, PP elastase, and chymotrypsin A₅ by 3-CI and 3,4-DCI is decreased significantly when competitive inhibitors or substrates are included in the incubation mixture indicates that inhibition occurs at the enzyme active site. Spectrophotometric measurements at 325 nm utilizing chymotrypsin A₅ indicate that enzymatic opening of the isocoumarin ring system occurs during the inactivation process, and the rate of loss of the inhibitor chromophore is similar to the rate of inactivation. The fact that enzymatic activity is regained slowly upon standing, after dialysis, or more rapidly in the presence of 0.5 M hydroxylamine indicates that labile acyl moieties are present in the inhibited enzyme. In the case of chymotrypsin, the inactivation is nearly stoichiometric, and approximately 1.2 equiv of 3-CI and 3,4-DCI is reacted per inactivation. With HL elastase, inactivation is not as efficient as it is with chymotrypsin, and at least 15 and 3.1 turnovers per inactivation are required for complete inhibition with 3-CI and 3,4-DCI, respectively. Inactivation of chymotrypsin A₅ results in the release of 0.92 and 0.95 equiv of protons with the 3-CI at pH 7.5 and 8.5, respectively, and 1.25 equiv with 3,4-DCI at pH 7.5.

These results are consistent with the mechanism shown in Figure 6. After formation of a reversible enzyme-inhibitor complex, the active site serine reacts with the carbonyl of the inhibitor to give the acyl enzyme (1) in which a reactive acid chloride (or ketene) has been released. It is this enzyme-catalyzed ring opening process that results in loss of the chromophore at 325 nm. The acid chloride (1) can then follow one of two reaction pathways: (1) it can react with an active site nucleophile such as histidine-57 (using chymotrypsin numbering system) to give diacylated species 2 and release 1 equiv of protons, or (2) it can be hydrolyzed by water to give 3 and release 2 equiv of protons. While methionine-192 in chymotrypsin and glutamine-192 in PP elastase are potentially available for reaction with the unmasked acid chloride (1), the most likely nucleophile in the active site of most serine proteases is histidine-57. The observation that about 1 equiv of protons is released upon inactivation of chymotrypsin by 3-CI and 3,4-DCI rules out structure 3 as a possibility and indicates that structure 2 is responsible for inactivation of serine proteases by 3-CI and 3,4-DCI.

The pH stat measurements at pH 7.5 do not rule out the possibility of 4 being responsible for inactivation since its formation would result in the net release of 1 equiv of protons. Structure 4 could be formed if the inhibitor carboxylate caused a significant increase in the pK₅₅ of the histidine side chain, such that a stable salt link between the inhibitor carboxylate and the imidazolium ion was possible. An example of such an interaction is the hydrogen bond formed between the carboxylate of (4-amidinophenyl)pyruvic acid and the NH of His-57 of trypsin which has been observed in the crystal structure of the (4-amidinophenyl)pyruvic acid–trypsin complex (Walter & Bode, 1983). The finding that 0.95 equiv of protons is released at pH 8.5 argues against 4 being responsible for inhibition since one would expect that, at this pH, the equilibrium would shift toward 3 and additional protons would be released. Structure 4 cannot be completely ruled out by pH stat studies at pH 8.5 alone, since some tetrahedral intermediates of chymotrypsin and tryptic trypsin appear to have histidine-57 pK₅₅ values as high as 9.5 (Robillard & Shulman, 1974a,b; Kossiakoff & Spencer, 1981). The finding that homophthalic anhydride inhibits HL and PP elastase but deacylates very rapidly argues against structure 4 being responsible for inhibition of serine proteases by 3-CI and 3,4-DCI. However, additional spectroscopic and/or crystallographic experiments will be required to definitely distinguish between structures 2 and 4, and such studies are currently in progress. The formation of 3 is probably responsible for the small amount of turnover observed with PP elastase and HL elastase, since this acyl enzyme could deacylate rapidly to give active enzyme. Complete hydrolysis of the diacylated product would result in the total release of 3 protons to give 5 and totally active enzyme (Figure 4A,B). The finding that the rate of proton release (after 6 min) of chymotrypsin inhibited by 3-CI is not perfectly synchronous with the rate of enzyme reactivation (see Figure 4A,B) indicates that one of the acyl bonds is hydrolyzed faster than the other, but the resulting monoacylated enzyme remains catalytically inactive. We were
formed between the enzymes and the chloroisocoumarins. It is also consistent with one additional covalent bond being

\[\text{dichlorophthalide} \] is also further evidence against structure 8. The carboxyl group released upon reaction of a serine protease with 3,4-DCI. Furthermore, the acyl enzymes formed from the 3-chloroisocoumarins are generally more resistant to hydrolysis than those formed from 3,3-dichlorophthalide which is also consistent with one additional covalent bond being formed between the enzymes and the chloroisocoumarins. It

is interesting to note that the distance from the acyl serine moiety to the acid chloride (see structures 1 and 6) is apparently critical for the formation of a diacylated product (2).

3-Chloroisocoumarin derivatives, which have one more methylene than does 3,3-dichlorophthalide, apparently react to give diacylated products while the monoacyl structure (7) is formed with the phthalide derivative.

The finding that enzymes inhibited by 3-acetoxyisocoumarin reactivate rapidly indicates that a monoaoyl enzyme is formed upon inactivation. Monoacylation could result if the unmasked mixed anhydride, formed upon enzymatic ring opening, either was sterically hindered toward reaction with an active site nucleophile or was hydrolyzed rapidly to form structure 3 in Figure 6. Alternatively, 3-acetoxyisocoumarin may simply acylate the active site serine, releasing homophthalic anhydride or the corresponding diacid.

Specificity and Reactivity. Both 3-chloroisocoumarin and 3,4-dichloroisocoumarin are fairly specific toward HL elastase and are [4(4–45) × 101]-fold more reactive with this enzyme than with PP elastase and a number of chymotrypsin-like and trypsin-like serine proteases (Tables I and II). Little or no specificity was achieved with the chymotrypsin-like enzymes investigated here, except with cathepsin G and human skin chymase which were 10–20-fold less reactive with 3,4-DCI than the other chymotrypsin-like enzymes tested. With the trypsin-like enzymes investigated, however, considerable specificity was observed and the \(k_{\text{obsd}}/k_{\text{int}} \) values ranged from 198 M\(^{-1}\) s\(^{-1}\) with bovine trypsin to 0.2 M\(^{-1}\) s\(^{-1}\) with bovine factor \(X_\alpha \) (factor \(X_\beta \) is also quite unreactive toward DFP (\(k_{\text{obsd}}/k_{\text{int}} \approx 0.05 \) M\(^{-1}\) s\(^{-1}\) and phenylmethanesulfonyl fluoride (Fujikawa et al., 1972)). Human \(\beta \)-factor \(X_{\beta} \) was 2-fold more reactive than bovine thrombin, PP kallikrein, and bovine factor \(X_{\alpha} \), all of which had \(k_{\text{obsd}}/k_{\text{int}} \) values near 27 M\(^{-1}\) s\(^{-1}\). 3,4-Dichloroisocoumarin appears to be quite specific for serine proteases since it did not inactivate the cysteine protease papain, the metalloprotease leucine aminopeptidase, or \(\beta \)-lactamase and inhibited acetylcholinesterase quite poorly.

3,4-Dichloroisocoumarin is 1.5–7 times more reactive than 3-chloroisocoumarin toward a number of serine proteases (Table I). This increased reactivity can be attributed to the substitution of chlorine in the 4-position of the isocoumarin ring, which results in a more electronegative ring system and a more reactive lactone moiety. This increase in inherent reactivity is clearly shown by the spontaneous hydrolysis rates given in Table VI. The spontaneous hydrolysis rate of 3,4-DCI is 7.6 times faster than that of the 3-derivative.

The reactivity of the inhibitors reported here toward several of the enzymes tested compares favorably with other active site directed irreversible and mechanism-based irreversible inhibitors of these serine proteases. The most reactive peptide chloromethyl ketone (MeO-Suc-Ala-Ala-Pro-ValCH\(_2\)Cl, \(k_{\text{obsd}}/k_{\text{int}} = 1560 \) M\(^{-1}\) s\(^{-1}\) (Powers et al., 1977)) and sulfonyl fluoride [2-[(pentfluoropropionyl)amino]benzenesulfonyl fluoride \(k_{\text{obsd}}/k_{\text{int}} = 1700 \) M\(^{-1}\) s\(^{-1}\) (Yoshimura et al., 1982)] inhibitors for HL elastase are 5–6-fold less reactive toward this enzyme than is 3,4-DCI. The most reactive cathepsin G inhibitor reported previously, Z-Gly-Leu-PheCH\(_2\)Cl (\(k_{\text{obsd}}/k_{\text{int}} = 51 \) M\(^{-1}\) s\(^{-1}\) (Powers et al., 1977)), is only 1.9 times more reactive than 3,4-DCI. One of the most reactive mechanism-based PP elastase inhibitors is 3-methyl-6-chloro-2-pyrene (\(k_{\text{obsd}}/k_{\text{int}} = 26 \) M\(^{-1}\) s\(^{-1}\) (Westkaemper & Abeles, 1983), which is 96-fold less reactive than 3,4-DCI. The inhibitor 3,4-dihydro-6-chloromethylcoumarin is also fairly reactive toward PP elastase (\(t_{1/2} < 1 \) min; \(k_{\text{obsd}}/k_{\text{int}} = 0.195 \) mM) (Bechet et al., 1977a,b). Dichloroisocoumarin is 516-fold less reactive.
than the most reactive mechanism-based chymotrypsin inhib-itor yet reported, (E)-3-(1-naphthyl)-6-(iodomethylene)-
tetrahydropyran-2-one (Daniels et al., 1983), but is 735-fold more reactive than 3-benzyl-6-chloro-2-pyrene (Westkaemper & Abeles, 1983), a compound with a masked reactive func-
tionality and mechanism of inactivation which may be similar to that of 3,4-DCI.

The 4-chloro group has a significant effect on deacylation rates. In most cases, enzymes inhibited by 3,4-DCI had k_{acyl} values 2–10-fold lower than with enzymes inactivated by 3-CI. This is probably a steric effect since modeling the binding of the 3-chloroisocoumarins to the active site of PP elastase indicates that a 4 substituent may hinder nucleophile attack on the acyl carbonyl groups. Thus, it is apparent that substituents such as chlorine not only affect acylation but also affect deacylation of the inhibited enzyme.

3,4-Dichloroisocoumarin as a General Serine Protease In-
hibitor. We have discovered that 3,4-DCI is an extremely potent general serine protease inhibitor and could prove to be very useful in experiments such as protein purification and generation of monoclonal antibodies when proteolytic degra-
dation can be a significant problem. 3,4-DCI has several advantages over other commonly used general serine protease inhibitors. It is much easier to handle than the highly toxic phenylmethanesulfonyl fluoride (Lively & Powers, 1978; James, 1978). For example, 3,4-DCI is 926- and 425-fold more reactive toward HL elastase and PP elastase, respectively, than is phenylmethanesulfonyl fluoride. Unlike phenylmethanesulfonyl fluoride, 3,4-DCI does not react with β-lactamase (Shvyadas et al., 1977), which is often used as a marker en-
zyme in a variety genetic engineering procedures. This com-
pound has the advantage of being reversible either upon long standing or in the presence of hydroxylamine and, therefore, could also be used as a reversible active site blocking group for serine proteases. The slow deacylation rates coupled with inhibitor stability results in long half-lives for reactivation of enzyme activity in the presence of excess inhibitor. Thus, enzyme activity can be controlled over long periods of time by choosing the appropriate inhibitor concentration.

Summary. 3-Chloroisocoumarin and 3,4-dichloroisocou-
marin have been found to be potent mechanism-based inhibitors of a variety of serine proteases and are highly re-
active toward HL elastase, the enzyme that is primarily re-
sponsible for the degradation of elastin which occurs in em-
physema (Powers, 1983). The isocoumarins 3-CI and 3,4-DCI are some of the first mechanism-based inhibitors reported for several of the enzymes studied including HL elastase and cathepsin G, the blood coagulation proteases bovine factor XIa, human thrombin, β-factor XIa, plasmin, the complement protease factor D, and several chymotrypsin-like proteases of mast cell origin. Dichloroisocoumarin (3,4-DCI) should have numerous applications as a general serine protease inhibitor and could be used in the elucidation of the physiological roles of serine proteases. While this compound is readily syn-
thesizable, it has the disadvantage of being unstable in the presence of albumin and glutathione. The results reported here should prove valuable in the further design of therapeutically useful serine protease inhibitors.

Acknowledgments

We thank Dr. Edward Meyer and Leonard Presta of Texas A&M for helpful discussions on the binding of the isocoumarin and phthalide inhibitors to PP elastase.

Registry No. HLE, 9004-06-2; Cat G, 56645-49-9; RMCP I, 82599-73-3; RMCP II, 82599-74-4; ChyT, 9004-07-3; SGPA, 55226-50-6; V-8, 66674-63-5; 3-CI, 51050-54-5; 3,4-DCI, 51050-59-0; 3-acetoxyisocoumarin, 3-913-57-2; 3,3-dichlorophthalide, 680-70-7; human skin chymase, 75496-62-7; subtilisin, 9014-01-1; porcine pancreatic kallikrein, 9001-01-8; bovine factor X, 9002-05-5; bovine factor Xll, 37203-61-5; bovine trypsin, 9003-07-7; α1-chymotrypsin, 9000-81-1; thrombin, 9002-04-4; plasmin, 9001-90-5; human factor III, 37203-62-6; human factor D, 37213-56-2; 3-fluorophthalide, 95249-86-8; 2-carboxybenzaldehyde, 119-67-5; (diethylaminosulfur trifluoride, 38078-09-0; serine proteinase, 37259-58-8.

References

Fujikawa, K., Legaz, M. E., & Davies, E. W. (1972) Bio-
chemistry 11, 4892–4899.
Inhibition of Human Leukocyte Elastase, Cathepsin G, Chymotrypsin Aα, and Porcine Pancreatic Elastase with Substituted Isobenzofuranones and Benzopyrandiones†

Keiji Hemmi, J. Wade Harper, and James C. Powers*

School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

Received May 9, 1984

ABSTRACT: Several 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones, 3-(1-haloalkylidene)-1(3H)-isobenzofuranones, and 3-bromomethyl-1H-2-benzopyran-1-ones containing masked halo ketone functional groups were synthesized and tested as inhibitors of several serine proteases including human leukocyte (HL) elastase and cathepsin G. While many of the 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones were quite potent inhibitors of the enzymes tested, the alkylideneisobenzofuranones and benzopyran-1-ones inhibited poorly or not at all. The 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones decomposed rapidly upon addition to buffer to give the corresponding 3-alkyl-1H-2-benzopyran-1,4(3H)-diones. The pure benzopyran-1,4-diones were extremely potent inhibitors of HL elastase and chymotrypsin Aα, but did not inactivate porcine pancreatic elastase or cathepsin G. Enzymes inhibited by the isobenzofuranones and benzopyran-1,4-diones regained activity slowly upon standing or after dialysis (t1/2 = 5–16 h) and more rapidly in the presence of 0.5 M hydroxylamine, which indicated the presence of labile acyl moieties in the inhibited enzyme. These results are consistent with a scheme in which the active site serine of the protease reacts with the lactone carbonyl of these inhibitors to give a stable acyl enzyme and alkylation of another active site residue by the unmasked halo ketone functional group does not occur.

In one of the first reviews of suicide enzyme inhibitors, Rando (1974) proposed the use of haloenol lactones as mechanism-based inhibitors of serine proteases. Only recently, however, have these compounds been synthesized and tested as inhibitors of serine proteases. Aryl-substituted halomethylenetetrahydrofuranones and -tetrahydrofuranones have been shown to be potent mechanism-based inhibitors of chymotrypsin (Daniels et al., 1983; Chakravarty et al., 1982). Acylation of the active site serine residue of the lactone moiety of these inhibitors results in the release of a halo ketone which may be alkylating an active site nucleophile to give an irreversibly inactivated enzyme.

†This research was supported by a grant to the Georgia Institute of Technology (HL 29307) from the National Institutes of Health and by the Council for Tobacco Research.