A SIMPLER PROOF OF TOROIDALIZATION OF MORPHISMS FROM 3-FOLDS TO SURFACES

STEVEN DALE CUTKOSKY

Abstract. We give a simpler and more conceptual proof of toroidalization of morphisms of 3-folds to surfaces, over an algebraically closed field of characteristic zero. A toroidalization is obtained by performing sequences of blow ups of nonsingular subvarieties above the domain and range, to make a morphism toroidal. The original proof of toroidalization of morphisms of 3-folds to surfaces, which appeared in Springer Lecture Notes in Math. in 2002 [15], is much more complicated.

1. Introduction

Let \(\mathfrak{k} \) be an algebraically closed field of characteristic zero. Toroidal varieties and morphisms of toroidal varieties over \(\mathfrak{k} \) are defined in [32], [4] and [5]. If \(X \) is nonsingular, then the choice of a SNC divisor on \(X \) makes \(X \) into a toroidal variety.

Suppose that \(\Phi : X \to Y \) is a dominant morphism of nonsingular \(\mathfrak{k} \)-varieties, and there is a SNC divisor \(D_Y \) on \(Y \) such that \(D_X = \Phi^{-1}(D_Y) \) is a SNC divisor on \(X \). Then \(\Phi \) is toroidal (with respect to \(D_Y \) and \(D_X \)) if and only if \(\Phi^*(\Omega^1_Y(\log D_Y)) \) is a subbundle of \(\Omega^1_X(\log D_X) \) (Lemma 1.5 [15]). A toroidal morphism can be expressed locally by monomials. All of the cases are written down for toroidal morphisms from a 3-fold to a surface in Lemma 19.3 [15].

The toroidalization problem is to determine, given a dominant morphism \(f : X \to Y \) of \(\mathfrak{k} \)-varieties, if there exists a commutative diagram

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi \downarrow & & \downarrow \Psi \\
X & \xrightarrow{f} & Y
\end{array}
\]

such that \(\Phi \) and \(\Psi \) are products of blow ups of nonsingular subvarieties, \(X_1 \) and \(Y_1 \) are nonsingular, and there exist SNC divisors \(D_{Y_1} \) on \(Y_1 \) and \(D_{X_1} = f^*(D_{Y_1}) \) on \(X_1 \) such that \(f_1 \) is toroidal (with respect to \(D_{X_1} \) and \(D_{Y_1} \)). This is stated in Problem 6.2.1 of [5]. Some papers where related problems are considered are [4] and [35].

The toroidalization problem does not have a positive answer in positive characteristic \(p \), even for maps of curves; \(t = x^p + x^{p+1} \) gives a simple example.

In characteristic zero, the toroidalization problem has an affirmative answer if \(Y \) is a curve and \(X \) has arbitrary dimension; this is really embedded resolution of hypersurface singularities, so follows from resolution of singularities ([27], and simplified proofs [7], [8], [18], [22], [23], [34] and [41]). There are several proofs for the case of maps of a surface to a surface (some references are [3], [20] and Corollary 6.2.3 [5]). The case of a morphism from a 3-fold to a surface is proven in [15], and the case of a morphism from a 3-fold to a 3-fold is proven in [16].

Partially supported by NSF.
The problem of toroidalization is a resolution of singularities type problem. When the dimension of the base is larger than one, the problem shares many of the complexities of resolution of vector fields ([38], [9], [36]) and of resolution of singularities in positive characteristic (some references are [1], [2], [28], [10], [11], [12], [17], [21], [24], [25], [26], [29], [30], [31], [33], [39], [40], [6]). In particular, natural invariants do not have a "hypersurface of maximal contact" and are sometimes not upper semicontinuous.

Toroidalization, locally along a fixed valuation, is proven in all dimensions and relative dimensions in [13] and [14].

The proof of toroidalization of a dominant morphism from a 3-fold to a surface given in [15] consists of 2 steps.

The first step is to prove "strong preparation". Suppose that X is a nonsingular variety, S is a nonsingular surface with a SNC divisor D_S, and $f : X \to S$ is a dominant morphism such that $D_X = f^{-1}(D_S)$ is a SNC divisor on X which contains the locus where f is not smooth. f is strongly prepared if $f^*(\Omega^2_S(\log D_S)) = IM$ where $I \subset \mathcal{O}_X$ is an ideal sheaf, and \mathcal{M} is a subbundle of $\Omega^2_X(\log D_X)$ (Lemma 1.7 [15]). A strongly prepared morphism has nice local forms which are close to being toroidal (page 7 of [15]).

Strong preparation is the construction of a commutative diagram

$$
\begin{array}{ccc}
X_1 & \rightarrow & S \\
\downarrow & \searrow & \\
X & \rightarrow & S
\end{array}
$$

where S is a nonsingular surface with a SNC divisor D_S such that $D_X = f^*(D_S)$ is a SNC divisor on the nonsingular variety X which contains the locus where f is not smooth, the vertical arrow is a product of blow ups of nonsingular subvarieties so that $X_1 \rightarrow S$ is strongly prepared. Strong preparation of morphisms from 3-folds to surfaces is proven in Theorem 17.3 of [15].

The second step is to prove that a strongly prepared morphism from a 3-fold to a surface can be toroidalized. This is proven in Sections 18 and 19 of [15].

This second step is generalized in [19] to prove that a strongly prepared morphism from an n-fold to a surface can be toroidalized. Thus to prove toroidalization of a morphism from an n-fold to a surface, it suffices to proof strong preparation.

The proof of strong preparation in [15] is extremely complicated, and does not readily generalize to higher dimensions. The proof of this result occupies 170 pages of [15]. We mention that that the main invariant considered in this paper, ν, can be interpreted as the adopted order of Section 1.2 of [9] of the 2-form $du \wedge dv$.

In this paper, we give a significantly simpler and more conceptual proof of strong preparation of morphisms of 3-folds to surfaces. It is our hope that this proof can be extended to prove strong preparation for morphisms of n-folds to surfaces, for $n > 3$. The proof is built around a new upper semicontinuous invariant σ_D, whose value is a natural number or ∞. if $\sigma_D(p) = 0$ for all $p \in X$, then $X \rightarrow S$ is prepared (which is slightly stronger than being strongly prepared). A first step towards obtaining a reduction in σ_D is to make X 3-prepared, which is achieved in Section 3. This is a nicer local form, which is proved by making a local reduction to lower dimension. The proof proceeds by performing a toroidal morphism above X to obtain that X is 3-prepared at all points except for a finite number of 1-points. Then general curves through these points lying on D_X are blown up to achieve 3-preparation everywhere on X. if X is 3-prepared at a point p, then there exists an étale cover U_p of an affine neighborhood of p and a local toroidal structure \overline{D}_p at p (which contains D_X) such that there exists a projective toroidal morphism $\Psi : U' \rightarrow U_p$ such that
\(\sigma_D \) has dropped everywhere above \(p \) (Section 4). The final step of the proof is to make these local constructions algebraic, and to patch them. This is accomplished in Section 5. In Section 6 we state and prove strong preparation for morphisms of 3-folds to surfaces (Theorem 6.1) and toroidalization of morphisms from 3-folds to surfaces (Theorem 6.2).

2. The invariant \(\sigma_D \), 1-preparation and 2-preparation.

For the duration of the paper, \(k \) will be an algebraically closed field of characteristic zero. We will write curve (over \(k \)) to mean a 1-dimensional \(k \)-variety, and similarly for surfaces and 3-folds. We will assume that varieties are quasi-projective. This is not really a restriction, by the fact that after a sequence of blow ups of nonsingular subvarieties, all varieties satisfy this condition. By a general point of a \(k \)-variety \(Z \), we will mean a member of a nontrivial open subset of \(Z \) on which some specified good condition holds.

A reduced divisor \(D \) on a nonsingular variety \(Z \) of dimension \(n \) is a simple normal crossings divisor (SNC divisor) if all irreducible components of \(D \) are nonsingular, and if \(p \in Z \), then there exists a regular system of parameters \(x_1, \ldots, x_n \) in \(\mathcal{O}_{Z,p} \) such that \(x_1 x_2 \cdots x_r = 0 \) is a local equation of \(D \) at \(p \), where \(r \leq n \) is the number of irreducible components of \(D \) containing \(p \). Two nonsingular subvarieties \(X \) and \(Y \) intersect transversally at \(p \in X \cap Y \) if there exists a regular system of parameters \(x_1, \ldots, x_n \) in \(\mathcal{O}_{Z,p} \) and subsets \(I, J \subset \{1, \ldots, n\} \) such that \(\mathcal{I}_X, p = (x_i \mid i \in I) \) and \(\mathcal{I}_Y, p = (x_j \mid j \in J) \).

Definition 2.1. Let \(S \) be a nonsingular surface over \(k \) with a reduced SNC divisor \(D_S \). Suppose that \(X \) is a nonsingular 3-fold, and \(f : X \to S \) is a dominant morphism. \(X \) is 1-prepared (with respect to \(f \)) if \(D_X = f^{-1}(D_S)_{\text{red}} \) is a SNC divisor on \(X \) which contains the locus where \(f \) is not smooth, and if \(C_1, C_2 \) are the two components of \(D_S \) whose intersection is nonempty, \(T_1 \) is a component of \(X \) dominating \(C_1 \) and \(T_2 \) is a component of \(D_X \) which dominates \(C_2 \), then \(T_1 \) and \(T_2 \) are disjoint.

The following lemma is an easy consequence of the main theorem on resolution of singularities.

Lemma 2.2. Suppose that \(g : Y \to T \) is a dominant morphism of a 3-fold over \(k \) to a surface over \(k \) and \(D_T \) is a 1-cycle on \(T \) such that \(g^{-1}(D_R) \) contains the locus where \(g \) is not smooth. Then there exists a commutative diagram of morphisms

\[
\begin{array}{ccc}
Y_1 & \xrightarrow{g_1} & T_1 \\
\downarrow \pi_1 & & \downarrow \pi_2 \\
Y & \xrightarrow{g} & T
\end{array}
\]

such that the vertical arrows are products of blow ups of nonsingular subvarieties contained in the preimage of \(D_T \), \(Y_1 \) and \(T_1 \) are nonsingular and \(D_{T_1} = \pi_1^{-1}(D_T) \) is a SNC divisor on \(T_1 \) such that \(Y_1 \) is 1-prepared with respect to \(g_1 \).

For the duration of this paper, \(S \) will be a fixed nonsingular surface over \(k \), with a (reduced) SNC divisor \(D_S \). To simplify notation, we will often write \(D \) to denote \(D_X \), if \(f : X \to S \) is 1-prepared.

Suppose that \(X \) is 1-prepared with respect to \(f : X \to S \). A permissible blow up of \(X \) is the blow up \(\pi_1 : X_1 \to X \) of a point of \(D_X \) or a nonsingular curve contained in \(D_X \) which makes SNCs with \(D_X \). Then \(D_{X_1} = \pi_1^{-1}(D_X)_{\text{red}} = (f \circ \pi_1)^{-1}(X_S)_{\text{red}} \) is a SNC divisor on \(X_1 \) and \(X_1 \) is 1-prepared with respect to \(f \circ \pi_1 \).

Assume that \(X \) is 1-prepared with respect to \(D \). We will say that \(p \in X \) is an \(n \)-point (for \(D \)) if \(p \) is on exactly \(n \) components of \(D \). Suppose \(q \in D_S \) and \(u, v \) are regular parameters
in $\mathcal{O}_{S,q}$ such that either $u = 0$ is a local equation of D_S at q or $uv = 0$ is a local equation of D_S at q. u,v are called permissible parameters at q.

For $p \in f^{-1}(q)$, we have regular parameters x,y,z in $\hat{\mathcal{O}}_{X,p}$ such that

1) If p is a 1-point,

\[
(u = x^a, v = P(x) + x^bF)
\]

where $x = 0$ is a local equation of D, $x \nmid F$ and x^bF has no terms which are a power of x.

2) If p is a 2-point, after possibly interchanging u and v,

\[
(u = (x^a y^b)^l, v = P(x^a y^b) + x^c y^dF)
\]

where $xy = 0$ is a local equation of D, $a,b > 0$, $\gcd(a,b) = 1$, $x,y \nmid F$ and $x^c y^dF$ has no terms which are a power of $x^a y^b$.

3) If p is a 3-point, after possibly interchanging u and v,

\[
(u = (x^a y^b z^c)^l, v = P(x^a y^b z^c) + x^d y^e z^fF)
\]

where $xyz = 0$ is a local equation of D, $a,b,c > 0$, $\gcd(a,b,c) = 1$, $x,y,z \nmid F$ and $x^d y^e z^fF$ has no terms which are a power of $x^a y^b z^c$.

regular parameters x,y,z in $\hat{\mathcal{O}}_{X,p}$ giving forms (1), (2) or (3) are called permissible parameters at p or u,v.

Suppose that X is 1-prepared. We define an ideal sheaf

\[
\mathcal{I} = \text{fitting ideal sheaf of the image of } f^*: \Omega^2_S \to \Omega^2_X(\log(D))
\]
in \mathcal{O}_X. $\mathcal{I} = \mathcal{O}_X(-G)\mathcal{I}$ where G is an effective divisor supported on D and \mathcal{I} has height ≥ 2.

Suppose that E_1, \ldots, E_n are the irreducible components of D. For $p \in X$, define

\[
\sigma_D(p) = \operatorname{order}_{\mathcal{O}_X,p/(\sum_{p \in E_i} \mathcal{I}_{E_i,p})} \mathcal{I}_p \left(\mathcal{O}_{X,p}/ \sum_{p \in E_i} \mathcal{I}_{E_i,p} \right) \in \mathbb{N} \cup \{\infty\}.
\]

Lemma 2.3. σ_D is upper semicontinuous in the Zariski topology of the scheme X.

Proof. For a fixed subset $J \subset \{1, 2, \ldots, n\}$, we have that the function

\[
\operatorname{order}_{\mathcal{O}_X,p/(\sum_{i \in J} \mathcal{I}_{E_i,p})} \mathcal{I}_p \left(\mathcal{O}_{X,p}/ \sum_{i \in J} \mathcal{I}_{E_i,p} \right)
\]

is upper semicontinuous, and if $J \subset J' \subset \{1, 2, \ldots, n\}$. we have that

\[
\operatorname{order}_{\mathcal{O}_X,p/(\sum_{i \in J} \mathcal{I}_{E_i,p})} \mathcal{I}_p \left(\mathcal{O}_{X,p}/ \sum_{i \in J} \mathcal{I}_{E_i,p} \right) \leq \operatorname{order}_{\mathcal{O}_X,p/(\sum_{i \in J'} \mathcal{I}_{E_i,p})} \mathcal{I}_p \left(\mathcal{O}_{X,p}/ \sum_{i \in J'} \mathcal{I}_{E_i,p} \right).
\]

Thus for $r \in \mathbb{N} \cup \{\infty\}$,

\[
\operatorname{Sing}_r(X) = \{p \in X \mid \sigma_D(p) \geq r\}
\]
is a closed subset of X, which is supported on D and has dimension ≤ 1 if $r > 0$.

Definition 2.4. A point $p \in X$ is prepared if $\sigma_D(p) = 0$.

We have that \(\sigma_D(p) = 0 \) if and only if \(I_p = O_{X,p} \). Further,
\[\text{Sing}_1(X) = \{ p \in X \mid I_p \neq O_{X,p} \} . \]

If \(p \in X \) is a 1-point with an expression (1) we have
\[(I_p + (x))\hat{O}_{X,p} = (x, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}) . \]

If \(p \in X \) is a 2-point with an expression (2) we have
\[(I_p + (x,y))\hat{O}_{X,p} = (x, y, (ad - bc)F, \frac{\partial F}{\partial z}) . \]

If \(p \in X \) is a 3-point with an expression (3) we have
\[(I_p + (x,y,z))\hat{O}_{X,p} = (x, y, z, (ae - bd)F, (af - cd)F, (bf - ce)F) . \]

If \(p \in X \) is a 1-point, then \(\sigma_D(p) = \text{ord} F(0, y, z) - 1 \). We have
\[0 \leq \sigma_D(p) < \infty \] if \(p \) is a 1-point. If \(p \in X \) is a 2-point, we have
\[\sigma_D(p) = \begin{cases} 0 & \text{if ord } F(0,0,z) = 0 \text{ (in this case, } ad - bc \neq 0) \\ \text{ord } F(0,0,z) - 1 & \text{if } 1 \leq \text{ord } F(0,0,z) < \infty \\ \infty & \text{if ord } F(0,0,z) = \infty . \end{cases} \]

If \(p \in X \) is a 3-point, let
\[A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} . \]
we have
\[\sigma_D(p) = \begin{cases} 0 & \text{if ord } F(0,0,0) = 0 \text{ (in this case, rank}(A) = 2) \\ \infty & \text{if ord } F(0,0,0) = \infty . \end{cases} \]

Lemma 2.5. Suppose that \(X \) is 1-prepared and \(\pi_1 : X_1 \to X \) is a toroidal morphism with respect to \(D \). Then \(X_1 \) is 1-prepared and \(\sigma_D(p_1) \leq \sigma_D(p) \) for all \(p \in X \) and \(p_1 \in \pi_1^{-1}(p) \).

Proof. Suppose that \(p \in X \) is a 2-point and \(p_1 \in \pi_1^{-1}(p) \). Then there exist permissible parameters \(x, y, z \) at \(p \) giving an expression (2). In \(\hat{O}_{X_1,p_1} \), there are regular parameters \(x_{11}, y_{11}, z \) where
\[x = x_{11}^{\alpha_1}(y_1 + \alpha)^{\alpha_{12}}, \quad y = x_{11}^{\alpha_2}(y_1 + \alpha)^{\alpha_{22}} \]
with \(\alpha \in \mathfrak{k} \) and \(a_{11} \sigma_{22} - a_{12} \sigma_{22} = \pm 1 \). If \(\alpha = 0 \), so that \(p_1 \) is a 2-point, then \(x_{11}, y_{11}, z \) are permissible parameters at \(p_1 \) and substitution of (7) into (2) gives an expression of the form (2) at \(p_1 \), showing that \(\sigma_D(p_1) \leq \sigma_D(p) \). If \(\alpha \neq 0 \in \mathfrak{k} \), so that \(p_1 \) is a 1-point, set \(\lambda = \frac{a_{12} + b_{22}}{a_{11} + b_{21}} \) and \(\bar{x}_1 = x_1(y_1 + \alpha)^{\lambda} \). Then \(\bar{x}_1, y_1, z \) are permissible parameters at \(p_1 \). Substitution into (2) leads to a form (1) with \(\sigma_D(p_1) \leq \sigma_D(p) \).

If \(p \in X \) is a 3-point and \(\sigma_D(p) \neq \infty \), then \(\sigma_D(p) = 0 \) so that \(p \) is prepared. Thus there exist permissible parameters \(x, y, z \) at \(p \) giving an expression (3) with \(F = 1 \). Suppose that \(p_1 \in \pi_1^{-1}(p) \). In \(\hat{O}_{X_1,p_1} \) there are regular parameters \(x_{11}, y_{11}, z_1 \) such that
\[x = (x_1 + \alpha)^{\alpha_1}(y_1 + \beta)^{\alpha_{12}}(z_1 + \gamma)^{\alpha_{13}} \]
\[y = (x_1 + \alpha)^{\alpha_2}(y_1 + \beta)^{\alpha_{22}}(z_1 + \gamma)^{\alpha_{23}} \]
\[z = (x_1 + \alpha)^{\alpha_3}(y_1 + \beta)^{\alpha_{32}}(z_1 + \gamma)^{\alpha_{33}} \]
where at least one of \(\alpha, \beta, \gamma \in \mathfrak{k} \) is zero. Substituting into (3), we find permissible parameters at \(p_1 \) giving a prepared form. \(\square \)
Suppose that X is 1-prepared with respect to $f : X → S$. Define

$$Γ_D(X) = \max{\{σ_D(p) | p ∈ X\}}.$$

Lemma 2.6. Suppose that X is 1-prepared and C is a 2-curve of D and there exists $p ∈ C$ such that $σ_D(p) < ∞$. Then $σ_D(q) = 0$ at the generic point q of C.

Proof. If p is a 3-point then $σ_D(p) = 0$ and the lemma follows from upper semicontinuity of $σ_D$.

Suppose that p is a 2-point. If $σ_D(p) = 0$ then the lemma follows from upper semicontinuity of $σ_D$, so suppose that $0 < σ_D(p) < ∞$. There exist permissible parameters x, y, z at p giving a form (2), such that x, y, z are uniformizing parameters on an étale cover U of an affine neighborhood of p. Thus for $α$ in a Zariski open subset of \mathfrak{f}, $x, y, z = z − α$ are permissible parameters at a 2-point \bar{p} of C. After possibly replacing U with a smaller neighborhood of p, we have

$$\frac{∂F}{∂z} = \frac{1}{x^cy^d} \frac{∂v}{∂z} ∈ Γ(U, O_X)$$

and $\frac{∂F}{∂z}(0, 0, z) ≠ 0$. Thus there exists a 2-point $\bar{p} ∈ C$ with permissible parameters $x, y, z = z − α$ such that $\frac{∂F}{∂z}(0, 0, α) ≠ 0$, and thus there is an expression (2) at \bar{p}

$$\begin{align*}
u &= (x^ay^b)^t \\
v &= P_1(x^ay^b) + x^cy^dF_1(x, y, z)
\end{align*}$$

with $F_1(0, 0, z) = 0$ or 1, so that $σ_D(\bar{p}) = 0$. By upper semicontinuity of $σ_D$, $σ_D(q) = 0$.

Proposition 2.7. Suppose that X is 1-prepared with respect to $f : X → S$. Then there exists a toroidal morphism $π_1 : X_1 → X$ with respect to D, such that $π_1$ is a sequence of blow ups of 2-curves and 3-points, and

1) $σ_D(p) < ∞$ for all $p ∈ D_{X_1}$.

2) X_1 is prepared (with respect to $f_1 = f ◦ π_1 : X_1 → S$) at all 3-points and the generic point of all 2-curves of D_{X_1}.

Proof. By upper semicontinuity of $σ_D$, Lemma 2.6 and Lemma 2.5, we must show that if $p ∈ X$ is a 3-point with $σ_D(p) = ∞$ then there exists a toroidal morphism $π_1 : X_1 → X$ such that $σ_D(p_1) = 0$ for all 3-points $p_1 ∈ π_1^{-1}(p)$ and if $p ∈ X$ is a 2-point with $σ_D(p) = ∞$ then there exists a toroidal morphism $π_1 : X_1 → X$ such that $σ_D(p_1) < ∞$ for all 2-points $p_1 ∈ π_1^{-1}(p)$.

First suppose that p is a 3-point with $σ_D(p) = ∞$. Let x, y, z be permissible parameters at p giving a form (3). There exist regular parameters $\bar{x}, \bar{y}, \bar{z}$ in $O_{X,p}$ and unit series $α, β, γ ∈ O_{X,p}$ such that $x = α\bar{x}$, $y = β\bar{y}$, $z = γ\bar{z}$. Write $F = ∑ b_{ijk}x^iy^jz^k$ with $b_{ijk} ∈ \mathfrak{f}$. Let $I = (\bar{x}i\bar{y}j\bar{z}k | b_{ijk} ≠ 0)$, an ideal in $O_{X,p}$. Since $\bar{x}\bar{y}\bar{z} = 0$ is a local equation of D at p, there exists a toroidal morphism $π_1 : X_1 → X$ with respect to D such that IO_{X_1,p_1} is principal for all $p_1 ∈ π_1^{-1}(p)$. At a 3-point $p_1 ∈ π_1^{-1}(p)$, there exist permissible parameters x_1, y_1, z_1 such that

$$\begin{align*}
x &= x_1^{α_{11}}y_1^{α_{12}}z_1^{α_{13}} \\
y &= x_1^{α_{21}}y_1^{α_{22}}z_1^{α_{23}} \\
z &= x_1^{α_{31}}y_1^{α_{32}}z_1^{α_{33}}
\end{align*}$$
with $\text{Det}(a_{ij}) = \pm 1$. Substituting into (3), we obtain an expression (3) at p_1, where

\[
\begin{align*}
 u &= (x_1^{a_1} y_1^{b_1} z_1^{c_1})^l \\
 v &= P_1(x_1^{a_1} y_1^{b_1} z_1^{c_1}) + x_1^{d_1} y_1^{e_1} z_1^{f_1} F_1
\end{align*}
\]

where $P_1(x_1^{a_1} y_1^{b_1} z_1^{c_1}) = P(x^a y^b z^c)$ and

\[
F(x, y, z) = x_1^{\pi} y_1^{\beta} z_1^{\gamma} F_1(x_1, y_1, z_1).
\]

with $x_1^{\pi} y_1^{\beta} z_1^{\gamma}$ a generator of $I\mathcal{O}_{X_1, p_1}$ and $F_1(0, 0, 0) \neq 0$. Thus $\sigma_D(p_1) = 0$.

Now suppose that p is a 2-point and $\sigma_D(p) = \infty$. There exist permissible parameters x, y, z at p giving a form (2). Write $F = \sum a_i(x, y) z^i$, with $a_i(x, y) \in \mathfrak{t}[[x, y]]$ for all i. We necessarily have that no $a_i(x, y)$ is a unit series.

Let I be the ideal $I = (a_i(x, y) \mid i \in \mathbb{N})$ in $\mathfrak{t}[[x, y]]$. There exists a sequence of blow ups of 2-curves $\pi_1 : X_1 \rightarrow X$ such that \mathcal{O}_{X_1, p_1} is principal at all 2-points $p_1 \in \pi_1^{-1}(p)$. There exist $x_1, y_1 \in \mathcal{O}_{X_1, p_1}$ so that x_1, y_1, z are permissible parameters at p_1, and

\[
x = x_1^{a_{11}} y_1^{a_{12}}, \quad y = x_1^{a_{21}} y_1^{a_{22}}
\]

with $a_{11} a_{22} - a_{12} a_{21} = \pm 1$. Let $x_1^{\pi} y_1^{\beta}$ be a generator of $I\mathcal{O}_{T_1, q_1}$. Then $F = x_1^{\pi} y_1^{\beta} F_1(x_1, y_1, z)$ where $F_1(0, 0, z) \neq 0$, and we have an expression (2) at p_1, where

\[
\begin{align*}
 u &= (x_1^{a_1} y_1^{b_1})^l \\
 v &= P_1(x_1^{a_1} y_1^{b_1}) + x_1^{d_1} y_1^{e_1} F_1
\end{align*}
\]

where $P_1(x_1^{a_1} y_1^{b_1}) = P(x^a y^b)$. Thus $\sigma_D(p_1) < \infty$ and $\sigma_D(q) < \infty$ if q is the generic point of the 2-curve of D_{X_1} containing p_1.

We will say that X is 2-prepared (with respect to $f : X \rightarrow S$) if it satisfies the conclusions of Proposition 2.7. We then have that $\Gamma_D(X) < \infty$.

If X is 2-prepared, we have that $\text{Sing}_2(X)$ is a union of (closed) curves whose generic point is a 1-point and isolated 1-points and 2-points. Further, $\text{Sing}_1(X)$ contains no 3-points.

3. 3-PREPARATION

Lemma 3.1. Suppose that X is 2-prepared. Suppose that $p \in X$ is such that $\sigma_D(p) > 0$. Let $m = \sigma_D(p) + 1$. Then there exist permissible parameters x, y, z at p such that there exist $\tilde{x}, y, z \in \mathcal{O}_{X, p}$, an étale cover U of an affine neighborhood of p, such that $x, z \in \Gamma(U, \mathcal{O}_X)$ and x, y, z are uniformizing parameters on U, and $x = \gamma \tilde{x}$ for some unit series $\gamma \in \mathcal{O}_{X, p}$. We have an expression (1) or (2), if p is respectively a 1-point or a 2-point, with

\[
F = \tau x^m + a_2(x, y) z^{m-2} + \cdots + a_{m-1}(x, y) z + a_m(x, y)
\]

where $m \geq 2$ and $\tau \in \mathcal{O}_{X_1, p} = \mathfrak{t}[[x, y, z]]$ is a unit, and $a_i(x, y) \neq 0$ for $i = m-1$ or $i = m$. Further, if p is a 1-point, then we can choose x, y, z so that $x = y = 0$ is a local equation of a generic curve through p on D.

For all but finitely many points p in the set of 1-points of X, there is an expression (9) where

\[
a_i \text{ is either zero or has an expression } a_i = \overline{a}_i x^{r_i} \text{ where } \overline{a}_i \text{ is a unit and } r_i > 0 \text{ for } 2 \leq i \leq m, \text{ and } a_m = 0 \text{ or } a_m = x^m \overline{a}_m \text{ where } r_m > 0 \text{ and } \text{ord}(\overline{a}_m(0, y)) = 1.
\]

7
Proof. There exist regular parameters \(\bar{x}, y, \bar{z} \) in \(\mathcal{O}_{X,p} \) and a unit \(\gamma \in \mathcal{O}_{X,p} \) such that \(x = \gamma \bar{x}, y, \bar{z} \) are permissible parameters at \(p \), with \(\text{ord}(F(0,0,\bar{z})) = m \). Thus there exists an affine neighborhood \(\text{Spec}(A) \) of \(p \) such that \(V = \text{Spec}(R) \), where \(R = A[\gamma^\frac{1}{m}] \) is an étale cover of \(\text{Spec}(A) \), \(x, y, \bar{z} \) are uniformizing parameters on \(V \), and \(u, v \in \Gamma(V, \mathcal{O}_{X}) \). Differentiating with respect to the uniformizing parameters \(x, y, \bar{z} \) in \(R \), set

\[
\bar{z} = \frac{\partial^{m-1} F}{\partial \bar{z}^{m-1}} = \omega(\bar{z} - \varphi(x, y))
\]

where \(\omega \in \mathcal{O}_{X,p} \) is a unit series, and \(\varphi(x, y) \in \mathfrak{f}[[x, y]] \) is a nonunit series, by the formal implicit function theorem. Set \(z = \bar{z} - \varphi(x, y) \). Since \(R \) is normal, after possibly replacing \(\text{Spec}(A) \) with a smaller affine neighborhood of \(p \),

\[
\bar{z} = \frac{1}{x^b} \frac{\partial^{m-1} v}{\partial \bar{z}^{m-1}} \in R.
\]

By Weierstrass preparation for Henselian local rings (Proposition 6.1 [37]), \(\varphi(x, y) \) is integral over the local ring \(\mathfrak{f}[[x, y]]/(x, y) \). Thus after possibly replacing \(A \) with a smaller affine neighborhood of \(p \), there exists an étale cover \(U \) of \(V \) such that \(\varphi(x, y) \in \Gamma(U, \mathcal{O}_{X}) \), and thus \(z \in \Gamma(U, \mathcal{O}_{X}) \).

Let \(G(x, y, z) = F(x, y, \bar{z}) \). We have that

\[
G = G(x, y, 0) + \frac{\partial G}{\partial z}(x, y, 0)z + \cdots + \frac{1}{(m-1)!} \frac{\partial^{m-1} G}{\partial z^{m-1}}(x, y, 0)z^{m-1} + \frac{1}{m!} \frac{\partial^m G}{\partial z^m}(x, y, 0)z^m + \cdots
\]

We have

\[
\frac{\partial^{m-1} G}{\partial z^{m-1}}(x, y, 0) = \frac{\partial^{m-1} F}{\partial \bar{z}^{m-1}}(x, y, \varphi(x, y)) = 0
\]

and

\[
\frac{\partial^m G}{\partial z^m}(x, y, 0) = \frac{\partial^m F}{\partial \bar{z}^m}(x, y, \varphi(x, y))
\]

is a unit in \(\mathcal{O}_{X,p} \). Thus we have the desired form (9), but we must still show that \(a_m \neq 0 \) or \(a_{m-1} \neq 0 \). If \(a_i(x, y) = 0 \) for \(i = m \) and \(i = m - 1 \), we have that \(z^2 \mid F \) in \(\mathcal{O}_{X,p} \), since \(m \geq 2 \). This implies that the ideal of \(2 \times 2 \) minors

\[
I_2 \left(\begin{array}{cccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial \bar{x}} & \frac{\partial u}{\partial \bar{y}} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial \bar{x}} & \frac{\partial v}{\partial \bar{y}}
\end{array} \right) \subset (z),
\]

which implies that \(z = 0 \) is a component of \(D \) which is impossible. Thus either \(a_{m-1} \neq 0 \) or \(a_m \neq 0 \).

Suppose that \(C \) is a curve in \(\text{Sing}_1(X) \) (containing a 1-point) and \(p \in C \) is a general point. Let \(r = \sigma_D(p) \). Set \(m = r + 1 \). Let \(x, y, \bar{z} \) be permissible parameters at \(p \) with \(y, \bar{z} \in \mathcal{O}_{X,p} \), which are uniformizing parameters on an étale cover \(U \) of an affine neighborhood of \(p \) such that \(x = \bar{z} = 0 \) are local equations of \(C \) and we have a form (1) at \(p \) with

\[
F = \tau \bar{z}^m + a_1(x, y)\bar{z}^{m-1} + \cdots + a_m(x, y).
\]

For \(\alpha \) in a Zariski open subset of \(\mathfrak{f} \), \(x, \bar{y} = y - \alpha, \bar{z} \) are permissible parameters at a point \(q \in C \cap U \). For most points \(q \) on the curve \(C \cap U \), we have that \(a_i(x, y) = x^n \bar{a}_i(x, y) \) where \(\bar{a}_i(x, y) \) is a unit or zero for \(1 \leq i \leq m - 1 \) in \(\mathcal{O}_{X,q} \). Since \(\sigma_D(p) = r \) at this point,
we have that $1 \leq r_i$ for all i. We further have that if $a_m \neq 0$, then $a_m = x^{r_m} a'$ where
\[a' = f(y) + x \Omega \] where $f(y)$ is non constant. Thus
\[0 \neq \frac{\partial a_m}{\partial y}(0, y) = \frac{\partial F}{\partial y}(0, y, 0). \]
After possibly replacing U with a smaller neighborhood of p, we have
\[\frac{\partial F}{\partial y} = \frac{1}{x^b} \frac{\partial \nu}{\partial y} \in \Gamma(U, \mathcal{O}_X). \]
Thus $\frac{\partial a_m}{\partial y}(0, \alpha) \neq 0$ for most $\alpha \in \mathfrak{t}$. Since $r > 0$, we have that $r_m > 0$, and thus $r_i > 0$ for all i in (12). We have
\[\frac{\partial^{m-1} F}{\partial \Omega^{m-1}} = \xi \Omega + a_1(x, y), \]
where ξ is a unit series. Comparing the above equation with (11), we observe that $\varphi(x, y)$ is a unit series in x and y times $a_1(x, y)$. Thus x divides $\varphi(x, y)$. Setting $z = \Omega - \varphi(x, y)$, we obtain an expression (9) such that x divides a_i for all i. Now argue as in the analysis of (12), after substituting $z = \Omega - \varphi(x, y)$, to conclude that there is an expression (9), where (10) holds at most points $q \in C \cap U$. Thus a form (9) and (10) holds at all but finitely many 1-points of X.

\[\square \]

Lemma 3.2. Suppose that X is 2-prepared, C is a curve in $\text{Sing}_1(X)$ containing a 1-point and p is a general point of C. Let $m = \sigma_D(p) + 1$. Suppose that $\tilde{x}, y \in \mathcal{O}_{X, p}$ are such that $\tilde{x} = 0$ is a local equation of D at p and the germ $\tilde{x} = y = 0$ intersects C transversally at p. Then there exists an étale cover U of an affine neighborhood of p and $z \in \Gamma(U, \mathcal{O}_X)$ such that \tilde{x}, y, z give a form (9) at p.

Proof. There exists $\Omega \in \mathcal{O}_{X, p}$ such that \tilde{x}, y, Ω are regular parameters in $\mathcal{O}_{X, p}$ and $x = \Omega = 0$ is a local equation of C at p. There exists a unit $\gamma \in \mathcal{O}_{X, p}$ such that $x = \gamma \tilde{x}, y, \Omega$ are permissible parameters at p. We have an expression of the form (1),
\[u = x^a, v = P(x) + x^b F \]
at p. Write $F = f(y, \Omega) + x \Omega$ in $\mathcal{O}_{X, p}$. Let I be the ideal in $\mathcal{O}_{X, p}$ generated by x and
\[\{ \frac{\partial^{i+j} f}{\partial y^i\partial \Omega^j} \mid 1 \leq i + j \leq m - 1 \}. \]
The radical of I is the ideal (x, Ω), as $x = \Omega = 0$ is a local equation of $\text{Sing}_{m-1}(X)$ at p. Thus Ω divides $\frac{\partial^{i+j} f}{\partial y^i\partial \Omega^j}$ for $1 \leq i + j \leq m - 1$ (with $m \geq 2$). Expanding
\[f = \sum_{i=0}^{\infty} b_i(y) \Omega^i \]
(where $b_0(0) = 0$) we see that $\frac{\partial b_0}{\partial y} = 0$ (so that $b_0(y) = 0$) and $b_1(y) = 0$ for $1 \leq i \leq m - 1$. Thus Ω^m divides $f(y, \Omega)$. Since $\sigma_D(p) = m - 1$, we have that $f = \tau \Omega^m$ where τ is a unit series. Thus x, y, Ω gives a form (1) with $\text{ord}(F(0, 0, \Omega)) = m$. Now the proof of Lemma 3.1 gives the desired conclusion. \[\square \]

Let $\omega(m, r_2, \ldots, r_{m-1})$ be a function which associates a positive integer to a positive integer m, natural numbers r_2, \ldots, r_{m-2} and a positive integer r_{m-1}. We will give a precise form of ω after Theorem 4.1.
Definition 3.3. X is 3-prepared (with respect to $f : X \to S$) at a point $p \in D$ if $\sigma_D(p) = 0$ or if $\sigma_D(p) > 0$, f is 2-prepared with respect to D at p and there are permissible parameters x,y,z at p such that x,y,z are uniformizing parameters on an étale cover of an affine neighborhood of p and we have one of the following forms, with $m = \sigma_D(p) + 1$:

1) p is a 2-point, and we have an expression (2) with

$$F = \tau_0 z^m + \tau_2 x^{r_2} y^{s_2} z^{m-2} + \cdots + \tau_{m-1} x^{r_{m-1}} y^{s_{m-1}} z + \tau_m x^r y^s$$

where $\tau_0 \in \hat{O}_{X,p}$ is a unit, $\tau_i \in \hat{O}_{X,p}$ are units (or zero), $r_i + s_i > 0$ whenever $\tau_i \neq 0$ and $(r_m + c)b - (s_m + d)a \neq 0$. Further, $\tau_{m-1} \neq 0$ or $\tau_m \neq 0$.

2) p is a 1-point, and we have an expression (1) with

$$F = \tau_0 z^m + \tau_2 x^{r_2} y^{s_2} z^{m-2} + \cdots + \tau_{m-1} x^{r_{m-1}} y^{s_{m-1}} z + \tau_m x^r y^s$$

where $\tau_0 \in \hat{O}_{X,p}$ is a unit, $\tau_i \in \hat{O}_{X,p}$ are units (or zero), and $\ord(\tau_m(0,0)) = 1$ (or $\tau_m = 0$). Further, $r_i > 0$ if $\tau_i \neq 0$, and $\tau_{m-1} \neq 0$ or $\tau_m \neq 0$.

3) p is a 1-point, and we have an expression (1) with

$$F = \tau_0 z^m + \tau_2 x^{r_2} y^{s_2} z^{m-2} + \cdots + \tau_{m-1} x^{r_{m-1}} y^{s_{m-1}} z + x^t \Omega$$

where $\tau_0 \in \hat{O}_{X,p}$ is a unit, $\tau_i \in \hat{O}_{X,p}$ are units (or zero) for $2 \leq i \leq m - 1$, $\Omega \in \hat{O}_{X,p}$, $\tau_{m-1} \neq 0$ and $t > \omega(m, r_2, \ldots, r_{m-1})$ (where we set $r_i = 0$ if $\tau_i = 0$). Further, $r_i > 0$ if $\tau_i \neq 0$.

X is 3-prepared if X is 3-prepared for all $p \in X$.

Lemma 3.4. Suppose that X is 2-prepared with respect to $f : X \to S$. Then there exists a sequence of blow ups of 2-curves $\pi_1 : X \to X_1$ such that X_1 is 3-prepared with respect to $f \circ \pi_1$, except possibly at a finite number of 1-points.

Proof. The conclusions follow from Lemmas 3.1, 2.6 and 2.5, and the method of analysis above 2-points of the proof of 2.7. \qed

Lemma 3.5. Suppose that $u, v \in k[[x,y]]$. Let $T_0 = \Spec(k[[x,y]])$. Suppose that $u = x^a$ for some $a \in \mathbb{Z}_+$, or $u = (x^a y^b)\ell$ where $\gcd(a, b, \ell) = 1$ for some $a, b, \ell \in \mathbb{Z}_+$. Let $p \in T_0$ be the maximal ideal (x,y). Suppose that $v \in (x,y)k[[x,y]]$. Then either $v \in k[[x]]$ or there exists a sequence of blow ups of points $\lambda : T_1 \to T_0$ such that for all $p_1 \in \lambda^{-1}(p)$, we have regular parameters x_1, y_1 in \hat{O}_{T_1,p_1}, regular parameters \tilde{x}_1, \tilde{y}_1 in \hat{O}_{T_1,p_1} and a unit $\gamma_1 \in \hat{O}_{T_1,p_1}$ such that $x_1 = \gamma_1 \tilde{x}_1$, and one of the following holds:

1) $u = x_1^{a_1}, v = P(x_1) + x_1^{b_1}y_1^c$

with $c > 0$ or

2) There exists a unit $\gamma_2 \in \hat{O}_{T_1,p_1}$ such that $y_1 = \gamma_2 \tilde{y}_1$ and

$$u = (x_1^{a_1} y_1^{b_1})\ell_1, v = P(x_1^{a_1} y_1^{b_1}) + x_1^{c_1} y_1^{d_1}$$

with $\gcd(a_1, b_1) = 1$ and $a_1d_1 - b_1c_1 \neq 0$.

Proof. Let

$$J = \det \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}.$$
First suppose that \(J = 0 \). Expand \(v = \sum \gamma_{ij}x^iy^j \) with \(\gamma_{ij} \in \mathfrak{t} \). If \(u = x^a \), then
\[
\sum j\gamma_{ij}x^iy^j = 1 \implies \gamma_{ij} = 0 \text{ if } j > 0.
\]

Thus \(v = P(x) \in \mathfrak{t}[[x]] \). If \(u = (x^ay^b)^l \), then
\[
0 = J = lx^{la-1}y^{lb-1}(\sum \gamma_{ij}x^iy^j)
\]

implies \(\gamma_{ij} = 0 \) if \(ja - ib \neq 0 \), which implies that \(v \in \mathfrak{t}[x^ay^b] \).

Now suppose that \(J \neq 0 \). Let \(E \) be the divisor \(uJ = 0 \) on \(T_0 \). There exists a sequence of blow ups of points \(\lambda : T_1 \to T_0 \) such that \(\lambda^{-1}(E) \) is a SNC divisor on \(T_1 \). Suppose that \(p_1 \in \lambda^{-1}(p) \). There exist regular parameters \(\tilde{x}_1, \tilde{y}_1 \) in \(\mathcal{O}_{T_1, p_1} \) such that

\[
J_1 = \det \left(\frac{\partial u}{\partial x_1} \frac{\partial u}{\partial y_1} \right) ,
\]

then

\[
u = \tilde{x}_1^{a_1}, \quad J_1 = \delta \tilde{x}_1 \tilde{y}_1^{c_1}
\]

where \(a_1 > 0 \) and \(\delta \) is a unit in \(\mathcal{O}_{T_1, p_1} \), or

\[
u = (\tilde{x}_1^{a_1} \tilde{y}_1^{b_1})^{l_1}, \quad J_1 = \delta \tilde{x}_1 \tilde{y}_1^{d_1}
\]

where \(a_1, b_1 > 0 \), \(\gcd(a_1, b_1) = 1 \) and \(\delta \) is a unit in \(\mathcal{O}_{T_1, p_1} \). Expand \(v = \sum \gamma_{ij} \tilde{x}_1^i \tilde{y}_1^j \) with \(\gamma_{ij} \in \mathfrak{t} \).

First suppose (16) holds. Then

\[
a_1x_1^{a_1-1} \left(\sum \gamma_{ij}x_1^i \tilde{y}_1^{j-1} \right) = \delta \tilde{x}_1 \tilde{y}_1^{c_1}.
\]

Thus \(v = P(\tilde{x}_1) + \varepsilon \tilde{x}_1^i \tilde{y}_1^j \) where \(P(\tilde{x}_1) \in \mathfrak{t}[[\tilde{x}_1]] \), \(e = b_1 - a_1 + a \), \(f = c_1 + 1 \) and \(\varepsilon \) is a unit series. Since \(f > 0 \), we can make a formal change of variables, multiplying \(\tilde{x}_1 \) by an appropriate unit series to get the form 1) of the conclusions of the lemma.

Now suppose that (17) holds. Then

\[
x_1^{a_1l_1-1} \tilde{y}_1^{b_1l_1-1} \left(\sum \gamma_{ij}x_1^i \tilde{y}_1^{j-1} \right) = \delta \tilde{x}_1 \tilde{y}_1^{d_1}.
\]

Thus \(v = P(\tilde{x}_1^{a_1} \tilde{y}_1^{b_1}) + \varepsilon \tilde{x}_1^i \tilde{y}_1^j \), where \(P \) is a series in \(\tilde{x}_1^{a_1} \tilde{y}_1^{b_1} \), \(\varepsilon \) is a unit series, \(e = c_1 + 1 - a_1l_1 \), \(f = d_1 + 1 - b_1l_1 \). Since \(a_1l_1f - b_1l_1e \neq 0 \), we can make a formal change of variables to reach 2) of the conclusions of the lemma. \(\square \)

Lemma 3.6. Suppose that \(X \) is 2-prepared with respect to \(f : X \to S \). Suppose that \(p \in D \) is a 1-point with \(m = \sigma_D(p) + 1 > 1 \). Let \(u, v \) be permissible parameters for \(f(p) \) and \(x, y, z \) be permissible parameters for \(D \) at \(p \) such that a form (9) holds at \(p \). Let \(U \) be an étale cover of an affine neighborhood of \(p \) such that \(x, y, z \) are uniformizing parameters on \(U \). Let \(C \) be the curve in \(U \) which has local equations \(x = y = 0 \) at \(p \).

Let \(T_0 = \text{Spec}(\mathfrak{t}[x, y]) \), \(\Lambda_0 : U \to T_0 \). Then there exists a sequence of quadratic transforms \(T_1 \to T_0 \) such that if \(U_1 = U \times_{T_0} T_1 \) and \(\psi_1 : U_1 \to U \) is the induced sequence of blow ups of sections over \(C \), \(\Lambda_1 : U_1 \to T_1 \) is the projection, then \(U_1 \) is 2-prepared with respect to \(f \circ \psi_1 \) at all \(p_1 \in \psi_1^{-1}(p) \). Further, for every point \(p_1 \in \psi_1^{-1}(p) \), there exist regular parameters \(x_1, y_1 \) in \(\mathcal{O}_{T_1, \Lambda_1(p_1)} \) such that \(x_1, y_1, z \) are permissible parameters at \(p_1 \), and there exist regular parameters \(\tilde{x}_1, \tilde{y}_1 \) in \(\mathcal{O}_{T_1, \Lambda_1(p_1)} \) such that if \(p_1 \) is a 1-point,
\[x_1 = \alpha(\tilde{x}_1, \tilde{y}_1) \tilde{x}_1 \] where \(\alpha(\tilde{x}_1, \tilde{y}_1) \in \tilde{O}_{T_1, \Lambda_1(p_1)} \) is a unit series and \(y_1 = \beta(\tilde{x}_1, \tilde{y}_1) \) with \(\beta(\tilde{x}_1, \tilde{y}_1) \in \tilde{O}_{T_1, \Lambda_1(p_1)} \), and if \(p_1 \) is a 2-point, then \(x_1 = \alpha(\tilde{x}_1, \tilde{y}_1) \tilde{x}_1 \) and \(y_1 = \beta(\tilde{x}_1, \tilde{y}_1) \tilde{y}_1 \), where \(\alpha(\tilde{x}_1, \tilde{y}_1), \beta(\tilde{x}_1, \tilde{y}_1) \in \tilde{O}_{T_1, \Lambda_1(p_1)} \) are unit series. We have one of the following forms:

1) \(p_1 \) is a 2-point, and we have an expression (2) with

\[F = \tau z^m + \tilde{a}(x_1, y_1)x_1^r_1 y_1^s z^{m-2} + \cdots + \tilde{a}_{m-1}(x_1, y_1)x_1^r_{m-1} y_1^s z + \tilde{a}_m x_1^r y_1^s \]

where \(\tau \in \tilde{O}_{U_1, p_1} \) is a unit, \(\tilde{a}_i(x_1, y_1) \in \mathfrak{t}[[x_1, y_1]] \) are units (or zero) for \(2 \leq i \leq m-1 \), \(\tilde{a}_m = 0 \) or 1 and if \(\tilde{a}_m = 0 \), then \(\tilde{a}_{m-1} \neq 0 \). Further, \(r_i + s_i > 0 \) whenever \(\tilde{a}_i \neq 0 \) and \(a(r_m + c)b - (s_m + d)a \neq 0 \).

2) \(p_1 \) is a 1-point, and we have an expression (1) with

\[F = \tau z^m + \tilde{a}_2(x_1, y_1)x_1^r_2 z^{m-2} + \cdots + \tilde{a}_{m-1}(x_1, y_1)x_1^r_{m-1} z + \tilde{a}_m x_1^r y_1^s \]

where \(\tau \in \tilde{O}_{U_1, p_1} \) is a unit, \(\tilde{a}_i(x_1, y_1) \in \mathfrak{t}[[x_1, y_1]] \) are units (or zero) for \(2 \leq i \leq m-1 \). Further, \(r_i > 0 \) (whenever \(\tilde{a}_i \neq 0 \)).

3) \(p_1 \) is a 1-point, and we have an expression (1) with

\[F = \tau z^m + \tilde{a}_2(x_1, y_1)x_1^r_2 z^{m-2} + \cdots + \tilde{a}_{m-1}(x_1, y_1)x_1^r_{m-1} z + \tilde{a}_m x_1^r y_1 \]

where \(\tau \in \tilde{O}_{U_1, p_1} \) is a unit, \(\tilde{a}_i(x_1, y_1) \in \mathfrak{t}[[x_1, y_1]] \) are units (or zero) for \(2 \leq i \leq m-1 \) and \(r_i > 0 \) whenever \(\tilde{a}_i \neq 0 \). We also have \(t > \omega(m, r_2, \ldots, r_{m-1}) \). Further, \(\tilde{a}_{m-1} \neq 0 \) and \(\Omega \in \tilde{O}_{U_1, p_1} \).

Proof. Let \(\bar{p} = \Lambda_0(p) \). Let \(T = \{ i \mid a_i(x, y) \neq 0 \text{ and } 2 \leq i \leq m \} \). There exists a sequence of blow ups \(\varphi_1 : T_1 \to T_0 \) of points over \(\bar{p} \) such that at all points \(q \in \psi_1^{-1}(p) \), we have permissible parameters \(x_1, y_1, z \) such that \(x_1, y_1 \) are regular parameters in \(\tilde{O}_{T_1, \Lambda_1(q)} \) and \(u \) has a monomial in \(x_1 \) and \(y_1 \) times a unit in \(\tilde{O}_{T_1, \Lambda_1(q)} \), where \(q = \prod_{i \in T} a_i(x, y) \).

Suppose that \(a_m(x, y) \neq 0 \). Let \(\bar{v} = x^b a_m(x, y) \) if (1) holds and \(\bar{v} = x^c y^d a_m(x, y) \) if (2) holds. We have \(\bar{v} \notin \mathfrak{t}[[x]] \) (respectively \(\bar{v} \notin \mathfrak{t}[[x^a y^b]] \)). Then by Theorem 3.5 applied to \(u, \bar{v} \), we have that there exists a further sequence of blow ups \(\varphi_2 : T_2 \to T_1 \) of points over \(\bar{p} \) such that at all points \(q \in (\psi_1 \circ \psi_2)^{-1}(p) \), we have permissible parameters \(x_2, y_2, z \) such that \(x_2, y_2 \) are regular parameters in \(\tilde{O}_{T_2, \Lambda_2(q)} \) such that \(u = 0 \) is a SNC divisor and either

\[u = x_2^{\bar{v}} \bar{v} = \bar{P}(x_2) + x_2^{\xi_2} \bar{y}_2 \]

with \(\bar{v} > 0 \) or

\[u = (x_2^{\xi_2} \bar{y}_2)^t \bar{v} = \bar{P}(x_2^{\xi_2} \bar{y}_2) + x_2^{\xi_2} \bar{y}_2 \]

where \(\bar{a}a - \bar{b} \bar{c} \neq 0 \).

If \(q \) is a 2-point, we have thus achieved the conclusions of the lemma. Further, there are only finitely many 1-points \(q \) above \(p \) on \(U_2 \) where the conclusions of the lemma do not hold. At such a 1-point \(q \), \(F \) has an expression

\[F = \tau z^m + \tilde{a}_2(x_2, y_2)x_2^r_2 y_2^s z^{m-2} + \cdots + \tilde{a}_{m-1}(x_2, y_2)x_2^r_{m-1} y_2^s z + \tilde{a}_m x_2^r y_2^s \]

where \(\tilde{a}_m = 0 \) or 1, \(\tilde{a}_i \) are units (or zero) for \(2 \leq i \leq m \).

Let

\[J = I_2 \begin{pmatrix} \frac{\partial u}{\partial x_2} & \frac{\partial u}{\partial y_2} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x_2} & \frac{\partial v}{\partial y_2} & \frac{\partial v}{\partial z} \\ \end{pmatrix} = x^n \begin{pmatrix} \frac{\partial F}{\partial y_2} \\ \frac{\partial F}{\partial z} \\ \end{pmatrix} \]

for some positive integer \(n \). Since \(D \) contains the locus where \(f \) is not smooth, we have that the localization \(J_p = (\tilde{O}_{U_2, q})_p \), where \(p \) is the prime ideal \((y_2, z_2) \) in \(\tilde{O}_{U_2, q} \).
We compute
\[\frac{\partial F}{\partial z} = \bar{u} x_m z^{r_m-1} y_2^{s_m-1} + \Lambda_1 z \]
and
\[\frac{\partial F}{\partial y_2} = s_m \bar{u} y_2^{s_m-1} z^{r_m} + \Lambda_2 z \]
for some $\Lambda_1, \Lambda_2 \in \hat{O}_{U_2,q}$, to see that either $\bar{u}x_m \neq 0$ and $s_m = 1$, or $\bar{u}x_m \neq 0$ and $s_m = 1$.

Let q be one of these points, and let $\varphi_3 : T_3 \to T_2$ be the blow up of $\Lambda_2(q)$. We then have that the conclusions of the lemma hold in the form (18) at the 2-point which has permissible parameters x_3, y_3, z defined by $x_2 = x_3 y_3$ and $y_2 = y_3$. At a 1-point which has permissible parameters x_3, y_3, z defined by $x_2 = x_3 y_3$, we have that a form (19) holds. Thus the only case where we may possibly have not achieved the conclusions of the lemma is at the 1-point which has permissible parameters x_3, y_3, z defined by $x_2 = x_3$ and $y_2 = x_3 y_3$. We continue to blow up, so that there is at most one point where the conclusions of the lemma do not hold. This point is a 1-point, which has permissible parameters x_3, y_3, z where $x_2 = x_3$ and $y_2 = x_3 y_3$ where we can take n as large as we like. We thus have a form
\begin{equation}
(22) \quad u = x_3^a, v = P(x_3) + x_3^b F_3
\end{equation}
with $F_3 = \tau z^m + \bar{b}_m x_3^r z^{m-2} + \cdots + \bar{b}_{m-1} x_3^{r_m-2} z + x_3^{r_m} \Omega$, where either $\bar{b}_i(x_3, y_3)$ is a unit or is zero, $\bar{b}_{m-1} \neq 0$, and $t > \omega(m, r_2, \ldots, r_m-1)$ if $\bar{u}x_m \neq 0$ and $s_m = 1$ which is of the form of (20), or we have a form (19) (after replacing y_3 with y_3 times a unit series in x_3 and y_3) if $\bar{u}x_m \neq 0$ and $s_m = 1$.

\[\Box \]

Lemma 3.7. Suppose that X is 2-prepared with respect to $f : X \to S$. Suppose that $p \in D$ is a 1-point with $\sigma_D(p) > 0$. Let $m = \sigma_D(p) + 1$. Let x, y, z be permissible parameters for D at p such that a form (9) holds at p.

Let notation be as in Lemma 3.6. For $p_1 \in \psi_i^{-1}(p)$ let $\bar{\sigma}(p_1) = m + 1 + r_m$, if a form (19) holds at p_1, and
\[\bar{\sigma}(p_1) = \begin{cases} \max\{m + 1 + r_m, m + 1 + s_m\} & \text{if } \bar{u}x_m = 1 \\ \max\{m + 1 + r_m - 1, m + 1 + s_m + 1\} & \text{if } \bar{u}x_m = 0 \end{cases} \]
if a form (18) holds at p_1. Let $\bar{\sigma}(p_1) = m + 1 + r_m - 1$ if a form (20) holds at p_1.

Let $r' = \max\{\bar{\sigma}(p_1) | p_1 \in \psi_i^{-1}(p)\}$. Let
\[r = r(p) = m + 1 + r' \]
if $\sigma(p) \equiv 1 \mod m_i^\ast \hat{O}_{X,p}$ is such that $x = \gamma x^*$ for some unit $\gamma \in \hat{O}_{X,p}$ with $\gamma \equiv 1 \mod m_i^\ast \hat{O}_{X,p}$.

Let V be an affine neighborhood of p such that $x^*,y \in \Gamma(V, \mathcal{O}_X)$, and let C^* be the curve in V which has local equations $x^* = y = 0$ at p.

Let $T_0^* = \text{Spec}(k[x^*, y])$. Then there exists a sequence of blow ups of points $T_1^* \to T_0^*$ above (x^*, y) such that if $V_1 = V \times_{T_0^*} T_1^*$ and $\psi_1^* : V_1 \to V$ is the induced sequence of blow ups of sections over C^*, $\Lambda_1^* : V_1 \to T_1^*$ is the projection, then V_1 is 2-prepared at all $p_i^* \in (\psi_1^*)^{-1}(p)$. Further, for every point $p_i^* \in (\psi_1^*)^{-1}(p)$, there exist $\bar{x}_1, \bar{y}_1 \in \mathcal{O}_{V_1, p_i^*}$ such that \bar{x}_1, \bar{y}_1, z are permissible parameters at p_i^* and we have one of the following forms:

1. p_i^* is a 2-point, and we have an expression (2) with
\begin{equation}
(24) \quad F = \bar{\tau}_0 z^m + \bar{\tau}_2 \bar{x}_1 \bar{y}_1 z^{m-2} + \cdots + \bar{\tau}_{m-1} \bar{x}_1^{m-1} \bar{y}_1^{s_m-1} z + \bar{\tau}_m \bar{x}_1^{m} \bar{y}_1^{s_m}
\end{equation}
where \(\tau_0 \in \mathcal{O}_{V_1, p_1^*} \) is a unit, \(\tau_i \in \mathcal{O}_{V_1, p_1^*} \) are units (or zero) for \(0 \leq i \leq m - 1 \), \(\tau_m \) is zero or 1, \(\tau_{m-1} \neq 0 \) if \(\tau_m = 0 \), \(r_i + s_i > 0 \) if \(\tau_i \neq 0 \), and
\[
(r_m + c)b - (s_m + d)a \neq 0.
\]

2) \(p_1^* \) is a 1-point, and we have an expression (1) with
\[
F = \tau_0 z^m + \tau_2 z^{m-2} z + \cdots + \tau_m z^{m-1} + x \tau_1
\]
where \(\tau_0 \in \mathcal{O}_{V_1, p_1^*} \) is a unit, \(\tau_i \in \mathcal{O}_{V_1, p_1^*} \) are units (or zero), and \(\text{ord}(\tau_m, y_1, 0) = 1 \). Further, \(r_i > 0 \) if \(\tau_i \neq 0 \).

3) \(p_1^* \) is a 1-point, and we have an expression (1) with
\[
F = \tau_0 z^m + \tau_2 z^{m-2} z + \cdots + \tau_m z^{m-1} + x \tau_1
\]
where \(\tau_0 \in \mathcal{O}_{V_1, p_1^*} \) is a unit, \(\tau_i \in \mathcal{O}_{V_1, p_1^*} \) are units (or zero), \(\tau \in \mathcal{O}_{V_1, p_1^*} \), \(\tau_{m-1} \neq 0 \) and \(t > \omega(m, r_2, \ldots, r_{m-1}) \). Further, \(r_i > 0 \) if \(\tau_i \neq 0 \).

Proof. The isomorphism \(T_0^* \rightarrow T_0 \) obtained by substitution of \(x^* \) for \(x \) and subsequent base change by the morphism \(T_1 \rightarrow T_0 \) of Lemma 3.6, induces a sequence of blow ups of points \(T_1 \rightarrow T_0 \). The base change \(\psi_1 : V_1 = V \times_{T_0^*} T_1 \rightarrow V \cong V \times_{T_0^*} T_0 \) factors as a sequence of blow ups of sections over \(C^* \). Let \(\Lambda_1 : V_1 \rightarrow T_1 \) be the natural projection.

Let \(p_1^* \in (\psi_1^*)^{-1}(p) \), and let \(p_1 \in \psi_1^{-1}(p) \subset U_1 \) be the corresponding point.

First suppose that \(p_1 \) has a form (19). With the notation of Lemma 3.6, we have polynomials \(\varphi, \psi \) such that
\[
x = \varphi(\bar{x}, \bar{y}), y = \psi(\bar{x}, \bar{y})
\]
determines the birational extension \(\mathcal{O}_{T_0, p_0} \rightarrow \mathcal{O}_{T_1, \Lambda_1(p_1)} \), and we have a formal change of variables
\[
x_1 = \alpha(\bar{x}, \bar{y}) \bar{x}, y_1 = \beta(\bar{x}, \bar{y})
\]
for some unit series \(\alpha \) and series \(\beta \). We further have expansions
\[
a_i(x, y) = x_i \bar{a}_i(x, y_1)
\]
for \(2 \leq i \leq m - 1 \) where \(\bar{a}_i(x, y_1) \) are unit series or zero, and
\[
am(x, y) = x_1 y_1.
\]

We have \(x = \bar{\gamma} x^* \) with \(\bar{\gamma} \equiv 1 \mod m^*_p \mathcal{O}_{X, p} \). Set \(y^* = y \). At \(p_1 \), we have regular parameters \(x_1^*, y_1^* \) in \(\mathcal{O}_{T_1, \Lambda_1(p_1)} \) such that
\[
x^* = \varphi(x_1^*, y_1^*), y^* = \psi(x_1^*, y_1^*)
\]
and \(x_1^*, y_1^*, \bar{x} \) are regular parameters in \(\mathcal{O}_{V_1, p_1^*} \) (recall that \(z = \sigma \bar{x} \) in Lemma 3.1). We have regular parameters \(\bar{x}_1, \bar{y}_1, \in \mathcal{O}_{T_1, \Lambda_1(p_1)} \) defined by
\[
\bar{x}_1 = \alpha(x_1^*, y_1^*) x_1^*, \bar{y}_1 = \beta(x_1^*, y_1^*)
\]
We use \(u = x^d = x_1^{a_1} \) where \(a_1 = ad \) for some \(d \in \mathbb{Z}_+ \). Since \(\alpha(\bar{x}_1, \bar{y}_1) \bar{x}_1 \) we have that \(\alpha(x_1^*, y_1^*) x_1^* \) is a unit in \(\mathcal{O}_{V_1, p_1^*} \), and \(\bar{x}_1 = \bar{x}_1^d \). Thus \(x = \bar{x}_1 \) (with an appropriate choice of root \(\bar{\gamma} \)). We have \(u = x_1^{a_1} \), so that \(\bar{x}_1, \bar{y}_1, \bar{z} \) are permissible parameters at \(p_1^* \).

For \(2 \leq i \leq m - 1 \), we have
\[
a_i(x, y) = a_i(\bar{\gamma} x^*, y^*) \equiv a_i(x^*, y^*) \mod m^*_p \mathcal{O}_{V, p}.
\]
and
\[a_i(x^*, y^*) = a_i(\varphi(x_1^*, y_1^*), \psi(x_1^*, y_1^*)) \]
\[= x_1^r \tau \psi(x_1, y_1) \equiv x_1^r \psi(x_1, y_1) \mod m_p^r \mathcal{O}_{V_1, p_1^*}. \]

We further have
\[a_m(x^*, y^*) \equiv x_1^{r_m} y_1 \mod m_p^r \mathcal{O}_{V_1, p_1^*}. \]

Thus we have expressions
\begin{equation}
\begin{aligned}
 u & = x_1^{da} \\
v & = P(x_1^d) + x_1^{bd} P_1(x_1) + x_1^{bd}(\tau z^m + x_1^{s_2(1, y_1)} z^{m-2} + \cdots + x_1^{r_m} y_1 + h)
\end{aligned}
\end{equation}

where \(\tau \in \mathcal{O}_{V_1, p_1^*} \) is a unit series and
\[h \in m_p^r \mathcal{O}_{V_1, p_1^*} \subset (x_1, z)^r. \]

Set \(s = r - m \), and write
\[h = z^m \lambda_0(x_1, y_1, z) + z^{m-1} x_1^{1+s} \lambda_1(x_1, y_1) + z^{m-2} x_1^{2+s} \lambda_2(x_1, y_1) + \cdots + z x_1^{(m-1)+s} \lambda_{m-1}(x_1, y_1) + x_1^{m+s} \lambda_m(x_1, y_1) \]
with \(\lambda_0 \in m_{p_1^*} \mathcal{O}_{V_1, p_1^*} \) and \(\Lambda_i \in \mathfrak{t}[x_1, y_1] \) for \(1 \leq i \leq m \).

Substituting into (27), we obtain an expression
\begin{equation}
\begin{aligned}
 u & = x_1^{da} \\
v & = P(x_1^d) + x_1^{bd} P_1(x_1) + x_1^{bd}(\tau_0 z^m + x_1^{s_2(1, y_1)} z^{m-2} + \cdots + x_1^{r_m} \tau_{m-1} z + x_1^{r_m} \tau_m)
\end{aligned}
\end{equation}

where \(\tau_0 \in \mathcal{O}_{V_1, p_1^*} \) is a unit, \(\tau_i \in \mathcal{O}_{V_1, p_1^*} \) are units (or zero), for \(1 \leq i \leq m-1 \) and \(\tau_m \in \mathfrak{t}[x_1, y_1] \) with \(\text{ord}(\tau_m(0, y_1)) = 1 \).

We have \(\tau_0 = \tau + \Lambda_0, \tau_i = \Omega_i(x_1, y_1) \) for \(2 \leq i \leq m-1 \), and
\[\tau_m = y_1 + z^{m-1} x_1^{1+s-r_m} \Lambda_1(x_1, y_1) + \cdots + x_1^{m+s-r_m} \Lambda_m(x_1, y_1). \]

We thus have the desired form (25).

In the case when \(p_1 \) has a form (20), a similar argument to the analysis of (19) shows that \(p_1^* \) has a form (26).

Now suppose that \(p_1 \) has a form (18). We then have
\begin{equation}
m_p \mathcal{O}_{U_1, p_1} \subset (x_1, y_1, z) \mathcal{O}_{U_1, p_1},
\end{equation}
unless there exist regular parameters \(x_1^*, y_1^* \in \mathcal{O}_{T_1, \Lambda_1(p_1)} \) such that \(x_1^*, y_1^* \) are regular parameters in \(\mathcal{O}_{U_1, p_1} \) and
\begin{equation}
x = x_1^*, y = (x_1^*)^n y_1^*
\end{equation}
or
\begin{equation}
x = x_1^*(y_1^*)^n, y = y_1^*
\end{equation}
for some \(n \in \mathbb{N} \). If (29) or (30) holds, then \(\mathcal{O}_{V_1, p_1^*} = \mathcal{O}_{U_1, p_1} \), and (taking \(\hat{x}_1 = x_1, \hat{y}_1 = y_1 \)) we have that a form (24) holds at \(p_1^* \). We may thus assume that (28) holds.

With the notation of Lemma 3.6, we have polynomials \(\varphi, \psi \) such that
\[x = \varphi(\hat{x}_1, \hat{y}_1), y = \psi(\hat{x}_1, \hat{y}_1) \]
determines the birational extension \(\mathcal{O}_{T_0, p_0} \to \mathcal{O}_{T_1, \Lambda_1(p_1)} \), and we have a formal change of variables
\[x_1 = \alpha(\hat{x}_1, \hat{y}_1) \hat{x}_1, y_1 = \beta(\hat{x}_1, \hat{y}_1) \hat{y}_1 \]
for some unit series α and β. We further have expansions
\[a_i(x, y) = x_1^i y_1^i \alpha_i(x_1, y_1) \]
for $2 \leq i \leq m - 1$ where $\alpha_i(x_1, y_1)$ are unit series or zero, and
\[a_m(x, y) = x_1^m y_1^m \alpha_m, \]
where $\alpha_m = 0$ or 1. We have $x = \overline{\tau} x^* \mod \overline{\tau} \equiv 1 \mod m_p^r \tilde{O}_{X, p}$. Set $y^* = y$. At p_1^r, we have regular parameters x_1^*, y_1^* in $O_{T_1^*, A_1^*}$ such that
\[x^* = \varphi(x_1^*, y_1^*), \quad y^* = \psi(x_1^*, y_1^*), \]
and x_1^*, y_1^* are regular parameters in O_{V, p_1^r} (recall that $z = \sigma \tilde{z}$ in Lemma 3.1). We have regular parameters $\overline{x_1}, \overline{y_1} \in \tilde{O}_{T_1^*, A_1^*}$ defined by
\[\overline{x_1} = \alpha(x_1^*, y_1^*) x_1^*, \quad \overline{y_1} = \beta(x_1^*, y_1^*) y_1^*. \]
We calculate
\[u = x^a = (x_1^a y_1^b)^t_1 = [\alpha(\hat{x}_1, \hat{y}_1)]^{a_1 t_1} [\beta(\hat{x}_1, \hat{y}_1)]^{b_1 t_1} \]
which implies
\[(x^*)^a = [\alpha(x_1^*, y_1^*) x_1^a y_1^b]^{a_1 t_1} [\beta(x_1^*, y_1^*) y_1^b]^{b_1 t_1} = \overline{x}_1^{a_1 t_1} \overline{y}_1^{b_1 t_1}. \]
Set $\hat{x}_1 = \overline{\overline{x}_1} \overline{x}_1$ to get $u = (\hat{x}_1^a \overline{y}_1^b)^t_1$, so that $\hat{x}_1, \overline{y}_1, \tilde{z}$ are permissible parameters at p_1^r.

For $2 \leq i \leq m$, we have
\[a_i(x, y) = a_i(\overline{\tau} x^*, y^*) \equiv a_i(x^*, y^*) \mod m_p^r \tilde{O}_{V, p} \]
and
\[a_i(x^*, y^*) = a_i(\varphi(x_1^*, y_1^*), \psi(x_1^*, y_1^*)) = \overline{x}_1^i \overline{y}_1^i \alpha_i(\overline{x}_1, \overline{y}_1) \equiv \hat{x}_1^i \overline{y}_1^i \alpha_i(\overline{x}_1, \overline{y}_1) \mod m_p^r \tilde{O}_{V, p_1^r}. \]

Thus we have expressions
\[
\begin{align*}
\overline{u} &= (\hat{x}_1^a \overline{y}_1^b)^t_1, \\
\overline{v} &= P((\hat{x}_1^a \overline{y}_1^b)^t_1) + (\hat{x}_1^a \overline{y}_1^b)^t_1 P_1(\hat{x}_1^a \overline{y}_1^b) + (\hat{x}_1^a \overline{y}_1^b)^t_1 \overline{P}_1(\overline{\tau} z^m) \\
&\quad + \hat{x}_1^a \overline{y}_1^b \overline{\alpha}(\hat{x}_1, \hat{y}_1) z^{m-2} + \cdots + \hat{x}_1^{x_m^r} \overline{y}_1^{y_m^r} \overline{\alpha}(\hat{x}_1, \hat{y}_1) + h)
\end{align*}
\]
where $\overline{P} \in \tilde{O}_{V_1, p_1^r}$ is a unit series and
\[h \in m_p^r \tilde{O}_{V_1, p_1^r} \subset (\hat{x}_1^a \overline{y}_1^b)^r. \]

Set $s = r - m$, and write
\[
\begin{align*}
h &= z^m \Lambda_0(x_1, y_1, z) + z^{m-1}(\hat{x}_1 \overline{y}_1) \Lambda_1(\hat{x}_1, \overline{y}_1) + z^{m-2}(\hat{x}_1 \overline{y}_1)^2 \Lambda_2(\hat{x}_1, \overline{y}_1) + \cdots \\
&\quad + z(\hat{x}_1 \overline{y}_1)^{(m-1)+s} \Lambda_{m-1}(\hat{x}_1, \overline{y}_1) + (\hat{x}_1 \overline{y}_1)^{m+s} \Lambda_m(\hat{x}_1, \overline{y}_1)
\end{align*}
\]
with $\Lambda_0 \in m_p^r \tilde{O}_{V_1, p_1^r}$ and $\Lambda_i \in \mathfrak{t}[[\hat{x}_1, \overline{y}_1]]$ for $1 \leq i \leq m$.

First suppose that $\overline{\alpha}_m = 1$. Substituting into (31), we obtain an expression
\[
\begin{align*}
\overline{u} &= (\hat{x}_1^a \overline{y}_1^b)^t_1, \\
\overline{v} &= P((\hat{x}_1^a \overline{y}_1^b)^t_1) + (\hat{x}_1^a \overline{y}_1^b)^t_1 P_1(\hat{x}_1^a \overline{y}_1^b) \\
&\quad + (\hat{x}_1^a \overline{y}_1^b)^t_1 \overline{P}_1(\overline{\tau} z^m) \\
&\quad + \hat{x}_1^a \overline{y}_1^b \overline{\alpha}(\hat{x}_1, \hat{y}_1) \overline{y}_1^{m-2} + \cdots + \hat{x}_1^{x_m^r} \overline{y}_1^{y_m^r} \overline{\alpha}(\hat{x}_1, \hat{y}_1)
\end{align*}
\]
where $\overline{\tau}_0, \overline{\tau}_m \in \tilde{O}_{V_1, p_1^r}$ are units, $\overline{\tau}_i \in \tilde{O}_{V_1, p_1^r}$ are units (or zero) for $2 \leq i \leq m - 1$.
We have $\overline{\tau}_0 = \overline{\tau} + \Lambda_0, \overline{\tau}_i = \overline{\alpha}_i(\hat{x}_1, \overline{y}_1)$ for $2 \leq i \leq m - 1$, and
\[\overline{\tau}_m = \overline{\alpha}_m + \hat{x}_1^{m-1} \overline{y}_1^{m-s} \Lambda_1(\hat{x}_1, \overline{y}_1) + \cdots + \hat{x}_1^{m+s} \overline{y}_1^{m-s} \Lambda_m(\hat{x}_1, \overline{y}_1). \]
We thus have the desired form (24).

Now suppose that \(\overline{a}_m = 0 \). Then \(\overline{a}_{m-1} \neq 0 \), and \(z \) divides \(h \) in (31), so that \(\Lambda_m = 0 \) in (32). Substituting into (31), we obtain an expression

\[
\begin{align*}
 u &= (x_1^{a_1} \bar{y}_1^{b_1})^{t_1} \\
 v &= P((x_1^{a_1} \bar{y}_1^{b_1} + x_1^{a_1} \bar{y}_1^{b_1}) 1^{(a_1 + b_1) + x_1^{a_1} \bar{y}_1^{b_1}} + x_1^{a_1} y_1^{b_1}) 1^{(1 + b_1) + x_1^{a_1} \bar{y}_1^{b_1} + y_1^{b_1}} \\
 &\quad + x_1^{a_1} y_1^{b_1}) 1^{(\tau_0 z^m + x_1^{a_1} \bar{y}_1^{b_1} \tau_2 z^{m-2} + \cdots + x_1^{a_1} \bar{y}_1^{b_1} \tau_{m-1} z^{m-1})}
\end{align*}
\]

where \(\tau_0, \tau_{m-1} \in \bar{O}_{V_1, p_1^0} \) are units, \(\tau_i \in \bar{O}_{V_1, p_1^i} \) are units (or zero) for \(2 \leq i \leq m - 2 \).

We have \(\tau_0 = \tau = \Lambda_0, \tau_i = \tau_i(\hat{x}_1, \hat{y}_1) \) for \(2 \leq i \leq m - 2 \), and

\[
\tau_{m-1} = \overline{a}_{m-1} + z^{m-1} \hat{x}_1^{1 + s - r_m - 1} \hat{y}_1^{1 + s - s_m - 1} \Lambda_1(\hat{x}_1, \hat{y}_1) + \cdots + \hat{x}_1^{m-1 + s - r_m - 1} \hat{y}_1^{m-1 + s - s_m - 1} \Lambda_{m-1}(\hat{x}_1, \hat{y}_1).
\]

We thus have the form (24).

\[\square\]

Lemma 3.8. Suppose that \(X \) is \(2 \)-prepared. Suppose that \(p \in X \) is a 1-point with \(\sigma_p(p) > 0 \) and \(E \) is the component of \(D \) containing \(p \). Suppose that \(Y \) is a finite set of points in \(X \) (not containing \(p \)). Then there exists an affine neighborhood \(U \) of \(p \) in \(X \) such that

1. \(Y \cap U = \emptyset \).
2. \([E - U \cap E] \cap \text{Sing}_1(X) \) is a finite set of points.
3. \(U \cap D = U \cap E \) and there exists \(\bar{\pi} \in \Gamma(U, \mathcal{O}_X) \) such that \(\bar{\pi} = 0 \) is a local equation of \(E \) in \(U \).
4. There exists an étale map \(\pi : U \to \mathbb{A}_k^3 = \text{Spec}(\mathcal{O}[\bar{\pi}, \bar{y}, \bar{z}]) \).
5. The Zariski closure \(C \) in \(X \) of the curve in \(U \) with local equations \(\bar{\pi} = \bar{y} = 0 \) satisfies the following:
 i) \(C \) is a nonsingular curve through \(p \).
 ii) \(C \) contains no 3-points of \(D \).
 iii) \(C \) intersects 2-curves of \(D \) transversally at prepared points.
 iv) \(C \cap \text{Sing}_1(X) \cap (X - U) = \emptyset \).
 v) \(C \cap Y = \emptyset \).
 vi) \(C \) intersects \(\text{Sing}_1(X) - \{p\} \) transversally at general points of curves in \(\text{Sing}_1(X) \).
 vii) There exist permissible parameters \(x, y, z \) at \(p \), with \(\hat{x} = \bar{\pi}, \hat{y} = \bar{y} = 0 \), which satisfy the hypotheses of lemma 3.1.

Proof. Let \(H \) be an effective, very ample divisor on \(X \) such that \(H \) contains \(Y \) and \(D - E \), but \(H \) does not contain \(p \) and does not contain any one dimensional components of \(\text{Sing}_1(X, D) \cap E \). There exists \(n > 0 \) such that \(E + nH \) is ample, \(\mathcal{O}_X(E + nH) \) is generated by global sections and a general member \(H' \) of the linear system \(|E + nH| \) does not contain any one dimensional components of \(\text{Sing}_1(X, D) \cap E \), and does not contain \(p \). \(H + H' \) is ample, so \(V = X - (H + H') \) is affine. Further, there exists \(f \in \mathcal{O}(X) \), the function field of \(X \), such that \(f = H' - (E + nH) \). Thus \(\bar{\pi} = \frac{1}{f} \in \Gamma(V, \mathcal{O}_X) \) as \(X \) is normal and \(\bar{\pi} \) has no poles on \(V \). \(\bar{\pi} = 0 \) is a local equation of \(E \) on \(V \). We have that \(V \) satisfies the conclusions 1), 2) and 3) of the lemma.

Let \(R = \Gamma(V, \mathcal{O}_X) \). \(R = \bigcup_{s \in \mathbb{Z}_{\geq 1}} \Gamma(X, \mathcal{O}_X(s(H + H'))) \) is a finitely generated \(\mathcal{K} \)-algebra. Thus for \(s \gg 0 \), \(R \) is generated by \(\Gamma(X, \mathcal{O}_X(s(H + H'))) \) as a \(\mathcal{K} \)-algebra.

From the exact sequences

\[
0 \to \Gamma(X, \mathcal{O}_X(s(H + H')) \otimes \mathcal{I}_p) \to \Gamma(X, \mathcal{O}_X(s(H + H'))) \to \mathcal{O}_{X,p}/m_p \cong k
\]

and the fact that \(1 \in \Gamma(X, \mathcal{O}_X(s(H + H'))) \), we have that \(R \) is generated by \(\Gamma(X, \mathcal{O}_X(s(H + H')) \otimes \mathcal{I}_p) \) as a \(\mathcal{K} \)-algebra for all \(s \gg 0 \).
For $s \gg 0$, and a general member σ of $\Gamma(X, \mathcal{O}_X(s(H + H'))) \otimes \mathcal{I}_p$ we have that the curve $C = B \cdot E$, where B is the divisor $B = (\sigma) + s(H + H')$, satisfies the conclusions of 5 of the lemma; since each of the conditions 5i) through 5vii) is an open condition on $\Gamma(X, \mathcal{O}_X(s(H + H') \otimes \mathcal{I}_p))$, we need only establish that each condition holds on a nonempty subset. This follows from the fact that $H + H'$ is ample, Bertini’s theorem applied to the base point free linear system $|\varphi^* (s(H + H')) - A|$, where $\varphi : W \to X$ is the blow up of p with exceptional divisor A, and the fact that

$$\varphi^* (\mathcal{O}_W (\varphi^* (s(H + H') - A)) = \mathcal{O}_X (s(H + H')) \otimes \mathcal{I}_p.$$

For $s \gg 0$, let $\mathfrak{x}, \mathfrak{y}_1, \ldots, \mathfrak{y}_n$ be a \mathfrak{t}-basis of $\Gamma(X, \mathcal{O}_X(s(H + H')) \otimes \mathcal{I}_p)$, so that $R = \mathfrak{t}[\mathfrak{x}, \mathfrak{y}_1, \ldots, \mathfrak{y}_n]$. We have shown that there exists a Zariski open set Z of k^n such that for $(b_1, \ldots, b_n) \in Z$, the curve C in X which is the Zariski closure of the curve with local equation $\mathfrak{x} = b_1 \mathfrak{y}_1 + \cdots + b_n \mathfrak{y}_n = 0$ in V satisfies 5 of the conclusions of the lemma.

Let C_1, \ldots, C_t be the curves in $\text{Sing}(X) \cap V$, and let $p_i \in C_i$ be closed points such that p, p_1, \ldots, p_t are distinct. Let Q_0 be the maximal ideal of p in R, and Q_i be the maximal ideal in R of p_i for $1 \leq i \leq t$. We have that \mathfrak{x} is nonzero in Q_i/Q_i^2 for all i. For a matrix $A = (a_{ij}) \in \mathfrak{t}^{2n}$, and $1 \leq i \leq 2$, let

$$L^A_i (\mathfrak{y}_1, \ldots, \mathfrak{y}_n) = \sum_{j=1}^n a_{ij} \mathfrak{y}_j.$$

There exist $\alpha_{jk} \in \mathfrak{t}$ such that $Q_k = (\mathfrak{y}_1 - \alpha_{1,k}, \ldots, \mathfrak{y}_n - \alpha_{n,k})$ for $0 \leq k \leq t$. By our construction, we have $\alpha_{1,0} = \cdots = \alpha_{n,0} = 0$. For each $0 \leq k \leq t$, there exists a non empty Zariski open subset Z_k of k^{2n} such that

$$\mathfrak{x}, L^A_1 (\mathfrak{y}_1, \ldots, \mathfrak{y}_n) - L^A_1 (\alpha_{1,1}, \ldots, \alpha_{n,1}), L^A_2 (\mathfrak{y}_1, \ldots, \mathfrak{y}_n) - L^A_2 (\alpha_{1,2}, \ldots, \alpha_{n,2})$$

is a \mathfrak{t}-basis of Q_k/Q_{k+1}^2. Suppose $(a_{1,1}, \ldots, a_{1,n}) \in Z$ and $A \in Z_0 \cap \cdots \cap Z_t$.

We will show that $\mathfrak{x}, L^A_1, L^A_2$ are algebraically independent over \mathfrak{t}. Suppose not. Then there exists a nonzero polynomial $h \in \mathfrak{t}[t_1, t_2, t_3]$ such that $h(\mathfrak{x}, L^A_1, L^A_2) = 0$. Write $h = H + h'$ where H is the leading form polynomial of h, and $h' = h - H$ is a polynomial of larger order than the degree of H. Now $H(\mathfrak{x}, L^A_1, L^A_2) = -h'(\mathfrak{x}, L^A_1, L^A_2)$, so that $H(\mathfrak{x}, L^A_1, L^A_2) = 0$ in Q_0^{2}/Q_0^{r+1}. Thus $H = 0$, since R_{Q_0} is a regular local ring, which is a contradiction. Thus $\mathfrak{x}, L^A_1, L^A_2$ are algebraically independent. Without loss of generality, we may assume that $L^A_i = \mathfrak{y}_i$ for $1 \leq i \leq 2$.

Let $S = \mathfrak{t}[\mathfrak{x}, \mathfrak{y}_1, \mathfrak{y}_2]$; a polynomial ring in 3 variables over \mathfrak{t}. $S \to R$ is unramified at Q_i for $0 \leq i \leq t$ since

$$(\mathfrak{x}, \mathfrak{y}_1 - \alpha_{1,i}, \mathfrak{y}_2 - \alpha_{2,i}) R_{Q_i} = Q_i R_{Q_i}$$

for $0 \leq i \leq t$.

Let W be the closed locus in V where $V \to \text{Spec}(S)$ is not étale. We have that $p, p_1, \ldots, p_t \not\in W$, so there exists an ample effective divisor H' on X such that $W \subset H'$ and $p, p_1, \ldots, p_t \not\subset H'$. Let $U = V - H'$. U is affine, and $U \to \text{Spec}(S) \cong A^3$ is étale, so satisfies 4 of the conclusions of the lemma.

□

Lemma 3.9. Suppose X is 2-prepared with respect to $f : X \to S$, $p \in D$ is a prepared point, and $\pi_1 : X_1 \to X$ is the blow up of p. Then all points of $\pi^{-1}_1(p)$ are prepared.

Proof. The conclusions follow from substitution of local equations of the blow up of a point into a prepared form (1), (2) or (3). □
Lemma 3.10. Suppose that X is 2-prepared with respect to $f : X \to S$, and that C is a permissible curve for D, which is not a 2-curve. Suppose that $p \in C$ satisfies $\sigma_D(p) = 0$. Then there exist permissible parameters x,y,z at p such that one of the following forms hold:

1) p is a 1-point of D of the form of (1), $F = z$ and $x = y = 0$ are formal local equations of C at p.
2) p is a 1-point of D of the form of (1), $F = z$ and $x = z = 0$ are formal local equations of C at p.
3) p is a 1-point of D of the form of (1), $F = z$, $x = z + y^r \sigma(y) = 0$ are formal local equations of C at p, where $r > 1$ and σ is a unit series.
4) p is a 2-point of D of the form of (2), $F = z$, $x = z = 0$ are formal local equations of C at p.
5) p is a 2-point of D of the form of (2), $F = z$, $x = f(y,z) = 0$ are formal local equations of C at p, where $f(y,z)$ is not divisible by z.
6) p is a 2-point of D of the form of (2), $F = 1$ (so that $ad - bc \neq 0$) and $x = z = 0$ are formal local equations of C at p.

Further, there are at most a finite number of 1-points on C satisfying condition 3) (and not satisfying condition 1) or 2)).

Proof. Suppose that p is a 1-point. We have permissible parameters x,y,z at p such that a form (1) holds at p with $F = z$. There exists a series $f(y,z)$ such that $x = f = 0$ are formal local equations of C at p. By the formal implicit function theorem, we get one of the forms 1), 2) or 3). A similar argument shows that one of the forms 4), 5) or 6) must hold if p is a 2-point.

Now suppose that $p \in C$ is a 1-point, $\sigma_D(p) = 0$ and a form 3) holds at p. There exist permissible parameters x,y,z at p, with an expression (1), such that $x = z = 0$ are formal local equations of C at p and x,y,z are uniformizing parameters on an étale cover U of an neighborhood of p, where we can choose U so that

$$\frac{\partial F}{\partial y} = \frac{1}{y^r} \frac{\partial v}{\partial y} \in \Gamma(U, \mathcal{O}_X).$$

Since there is not a form 2) at p, we have that z does not divide $F(0,y,z)$, so that $F(0,y,0) \neq 0$. Since F has no constant term, we have that $\frac{\partial F}{\partial y}(0,y,0) \neq 0$. There exists a Zariski open subset of \mathfrak{t} such that $\alpha \in \mathfrak{t}$ implies $x,y - \alpha,z$ are regular parameters at a point $q \in U$. There exists a Zariski open subset of \mathfrak{t} of such α so that $\frac{\partial F}{\partial y}(0,\alpha,0) \neq 0$. Thus $x,y - \alpha,z$ are permissible parameters at q giving a form 1) at $q \in C$.

Lemma 3.11. Suppose that X is 2-prepared. Suppose that C is a permissible curve on X which is not a 2-curve and $p \in C$ satisfies $\sigma_D(p) = 0$. Further suppose that either a form 3) or 5) of the conclusions of Lemma 3.10 hold at p. Then there exists a sequence of blow ups of points $\pi_1 : X_1 \to X$ above p such that X_1 is 2-prepared and $\sigma_D(p_1) = 0$ for all $p_1 \in \pi_1^{-1}(p)$, and the strict transform of C on X_1 is permissible, and has the form 4) or 6) of Lemma 3.10 at the point above p.

Proof. If p is a 1-point, let $\pi' : X' \to X$ be the blow ups of p, and let C' be the strict transform of C on X'. Let p' be the point on C' above p. Then p' is a 2-point and $\sigma_D(p') = 0$. We may thus assume that p is a 2-point and a form 5) holds at p. For $r \in \mathbb{Z}_+$, let

$$X_r \to X_{r-1} \to \cdots \to X_1 \to X.$$
be the sequence of blow ups of the point p_i which is the intersection of the strict transform C_i of C on X_i with the preimage of p.

There exist permissible parameters x, y, z at p such that $x = z = 0$ are formal local equations of C at p, and a form (2) holds at p with $F = x \Omega + f(y, z)$. We have that ord $f(y, z) = 1$, ord $\Omega(0, y, z) \geq 1$, y does not divide $f(y, z)$ and z does not divide $f(y, z)$.

At p_r, we have permissible parameters x_r, y_r, z_r such that

$x = x_r y_r^r, \quad y = y_r, \quad z = z_r y_r^r. \quad x_r = z_r = 0$ are local equations of C_r at p_r. We have a form (2) at p_r with

$u = (x_r y_r^{ar+b})^l, \quad v = P(x_r y_r^{ar+b}) + x_r x_r^{cr+d+r} F'$

where

$F' = x_r \Omega + \frac{f(y_r, z_r y_r^r)}{y_r^l},$

if $f(y_r - 1, x_r^{a-1} y_r^{r-1})$ is not a unit series. Thus for r sufficiently large, we have that F' is a unit, so that a form 6) holds at p_r.

Lemma 3.12. Suppose that X is 2-prepared and that C_1 is a permissible curve on X. Suppose that $q \in C$ is a point with $\sigma_D(q) = 0$ which has a form 1), 4) or 6) of Lemma 3.10. Let $\pi_1 : X_1 \to X$ be the blow up of C. Then X_1 is 3-prepared in a neighborhood of $\pi_1^{-1}(q)$. Further, $\sigma_{D_1}(q_1) = 0$ for all $q_1 \in \pi_1^{-1}(q)$.

Proof. The conclusions follow from substitution of local equations of the blow up of C into the forms 1), 4) and 6) of Lemma 3.10.

Proposition 3.13. Suppose that X is 2-prepared. Then there exists a sequence of permissible blow ups $\pi_1 : X_1 \to X$, such that X_1 is 3-prepared. We further have that $\sigma_D(p_1) \leq \sigma_D(p)$ for all $p \in X$ and $p_1 \in \pi_1^{-1}(p)$.

Proof. Let T be the points $p \in X$ such that X is not 3-prepared at p. By Lemmas 3.4 and 2.5, after we perform a sequence of blow ups of 2-curves, we may assume that T is a finite set consisting of 1-points of D.

Suppose that $p \in T$. Let $T' = T \setminus \{p\}$. Let $U = \text{Spec}(R)$ be the affine neighborhood of p in X and let C be the curve in X such that C is 3-prepared in a neighborhood of $\pi_1^{-1}(q)$. Then X_1 is 3-prepared in a neighborhood of $\pi_1^{-1}(q)$.

Let $\Sigma_1 = C \cap \text{Sing}_1(X)$. $\Sigma_1 = \{p = p_0, \ldots, p_r\}$ is the union of curves in $\text{Sing}_1(X)$, which must be 1-points. We have that $\Sigma_1 \subset U$. Let

$\Sigma_2 = \{q \in C \cap U \mid \sigma_D(q) = 0 \text{ and a form 2) of Lemma 3.10 holds at } q\}.$

Σ_2 is a finite set by Lemma 3.10. Let $\Sigma_3 = C \setminus U$, a finite set of 1-points and 2-points which are prepared.

Set $U' = U \setminus \Sigma_2$. There exists a unit $\tau \in R$ and $a \in \mathbb{Z}_+$ such that $u = \tau x^a$.

By 5 vi), 5 vii) of Lemma 3.8 and Lemma 3.2, there exist $z_i \in \hat{O}_{X, p_i}$ such that for all $p_i \in \Sigma_1$, $x = \tau^{\frac{1}{2}} \pi, \gamma, z_i$ are permissible parameters at p_i giving a form (9).

Let $t = \max\{r(p_i) \mid 0 \leq i \leq r\}$, where $r(p_i)$ are calculated from (23)) of Lemma 3.7. There exists $\lambda \in R$ such that $\lambda \equiv \tau^{\frac{1}{2}} \pi \mod m_{p_i} \hat{O}_{X, p_i}$ for $0 \leq i \leq r$. Let $x^* = \lambda^{-1} \pi, \gamma = \tau^{\frac{1}{2}} \lambda$. Then $x = \tau^{\frac{1}{2}} \pi = \gamma x^*$ with $\gamma = 1 \mod m_{p_i} \hat{O}_{X, p_i}$ for $0 \leq i \leq r$. Let $U' = U \setminus \Sigma_2$.
Let $T^*_0 = \text{Spec}(k[x^*, \overline{y}])$, and let $T^*_1 \to T^*_0$ be a sequence of blow ups of points above (x^*, \overline{y}) such that the conclusions of Lemma 3.7 hold on $U_1' = U' \times_{T^*_0} T^*_1$ above all p_i with $0 \leq i \leq r$. The projection $\lambda_1 : U'_1 \to U'$ is a sequence of blow ups of sections over C. λ_1 is permissible and $\lambda_1^{-1}(C \cap (U' \setminus \Sigma_1))$ is prepared by Lemma 3.12.

All points of $\Sigma_2 \cup \Sigma_3$ are prepared. Thus by Lemma 3.9, Lemmas 3.11 and Lemma 3.12, by interchanging some blowups of points above $\Sigma_2 \cup \Sigma_4$ between blow ups of sections over C, we may extend λ_1 to a sequence of permissible blow ups over X to obtain the desired sequence of permissible blow ups $\pi_1 : X_1 \to X$ such that X_1 is 2-prepared. π_1 is an isomorphism over T', X_1 is 3-prepared over $\pi_1^{-1}(X_1 \setminus T')$, and $\sigma_D(p_1) \leq \sigma_D(p)$ for all $p \in X_1 \setminus T'$.

By induction on $|T|$, we may iterate this procedure a finite number of times to obtain the conclusions of Proposition 3.13.

\[\square \]

The following proposition is proven in a similar way.

Proposition 3.14. Suppose that X is 1-prepared and D' is a union of irreducible components of D. Suppose that there exists a neighborhood V of D' such that V is 2-prepared and V is 3-prepared at all 2-points and 3-points of V.

Let A be a finite set of 1-points of D', such that A is contained in $\text{Sing}_1(X)$ and A contains the points where V is not 3-prepared, and let B be a finite set of 2-points of D'. Then there exists a sequence of permissible blow ups $\pi_1 : X_1 \to X$ such that

1) X_1 is 3-prepared in a neighborhood of $\pi_1^{-1}(D')$.
2) π_1 is an isomorphism over $X_1 \setminus D'$.
3) π_1 is an isomorphism in a neighborhood of B.
4) π_1 is an isomorphism over generic points of 2-curves on D' and over 3-points of D'.
5) Points on the intersection of the strict transform of D' on X_1 with $\pi_1^{-1}(A)$ are 2-points of D_{X_1}.
6) $\sigma_D(p_1) \leq \sigma_D(p)$ for all $p \in X$ and $p_1 \in \pi_1^{-1}(p)$.

4. Reduction of σ_D above a 3-prepared point.

Theorem 4.1. Suppose that $p \in X$ is a 1-point such that X is 3-prepared at p, and $\sigma_D(p) > 0$. Let x, y, z be permissible parameters at p giving a form (14) at p. Let U be an étale cover of an affine neighborhood of p in which x, y, z are uniformizing parameters. Then $xz = 0$ gives a toroidal structure \overline{D} on U. Let I be the ideal in $\Gamma(U, \mathcal{O}_X)$ generated by z^m, x^r if $\tau_m \neq 0$, and by $\{x^i z^{m-i} \mid 2 \leq i \leq m - 1 \text{ and } \tau_i \neq 0\}$.

Suppose that $\psi : U' \to U$ is a toroidal morphism with respect to \overline{D} such that U' is nonsingular and $I\mathcal{O}_{U'}$ is locally principal. Then (after possibly replacing U with a smaller neighborhood of p) U' is 2-prepared and $\sigma_D(q) < \sigma_D(p)$ for all $q \in U'$.

There is (after possibly replacing U with a smaller neighborhood of p) a unique, minimal toroidal morphism $\psi : U' \to U$ with respect to \overline{D} with the property that U' is nonsingular, 2-prepared and $\Gamma_D(U') < \sigma_D(p)$. This map ψ factors as a sequence of permissible blowups $\pi_i : U_i \to U_{i-1}$ of sections C_i over the two curve C of \overline{D}. U_i is 1-prepared for $U_i \to S$. We have that the curve C_i blown up in $U_{i+1} \to U_i$ is in $\text{Sing}_{\sigma_D(p)}(U_i)$ if C_i is not a 2-curve of D_{U_i}, and that C_i is in $\text{Sing}_1(U_i)$ if C_i is a 2-curve of D_{U_i}.
Proof. Suppose that $\psi : U' \to U$ is toroidal for \overline{D} and U' is nonsingular. Let $\overline{D}' = \psi^{-1}(\overline{D})$.

The set of 2-curves of \overline{D}' is the disjoint union of the 2-curves of $D_{U'}$ and the 2-curve which is the intersection of the strict transform of the surface $z = 0$ on U' with $D_{U'}$. ψ factors as a sequence of blow ups of 2-curves of (the preimage of) \overline{D}. We will verify the following three statements, from which the conclusions of the theorem follow.

If $q \in \psi^{-1}(p)$ and $IO_{U',q}$ is principal, then $\sigma_D(q) < \sigma_D(p)$.
In particular, $\sigma_D(q) < \sigma_D(p)$ if q is a 1-point of \overline{D}'.

If C' is a 2-curve of $D_{U'}$, then U' is prepared at $q = C' \cap \psi^{-1}(p)$
if and only if $\sigma_D(q) < \infty$
if and only if $IO_{U',q}$ is principal
if and only if U' is prepared at all $q' \in C'$ in a neighborhood of q.

If C' is the 2-curve of \overline{D}' which is the intersection of $D_{U'}$ with the strict transform of $\tilde{z} = 0$ in U',
then $\sigma_D(q) \leq \sigma_D(p)$ if $q = C' \cap \psi^{-1}(p)$, and $\sigma_D(q') = \sigma_D(q)$
for $q' \in C'$ in a neighborhood of q.

Suppose that $q \in \psi^{-1}(p)$ is a 1-point for \overline{D}'. Then $IO_{U',q}$ is principal. At q, we have permissible parameters x_1, y, z_1 defined by

$$x = x_1^{a_1}, z = x_1^{b_1}(z_1 + \alpha)$$

for some $a_1, b_1 \in \mathbb{Z}_+$ and $0 \neq \alpha \in \mathfrak{f}$. Substituting into (14), we have

$$u = x_1^{aa_1}, v = P(x_1^{a_1}) + x_1^{ba_1}G$$

where

$$G = r_0x_1^{b_1m}(z_1 + \alpha)^m + r_2x_1^{a_1r_2+b_1(m-2)}(z_1)^{m-2} + \cdots + r_mx_1^{a_1r_m+b_1}(z_1+\alpha) + r_mx_1^{a_1r_m}.$$

Let x_1^{a} be a local generator of $IO_{U',q}$. Let $G' = \frac{G}{x_1^a}$.

If z^m is a local generator of $IO_{U',q}$, then G' has an expansion

$$G' = \tau'(z_1 + \alpha)^m + g_2(z_1 + \alpha)^{m-2} + \cdots + g_m(z_1 + \alpha) + g_m + x_1\Omega_1 + y\Omega_2$$

where $0 \neq \tau' = \tau(0, 0, 0) \in \mathfrak{f}$, $g_2, \ldots, g_m \in \mathfrak{f}$ and $\Omega_1, \Omega_2 \in \hat{O}_{U',q}$. We have ord($G'(0, 0, z_1)$) $\leq m - 1$. Setting $F' = G' - G'(x_1, 0, 0)$ and $P'(x_1) = P(x_1^{a_1}) + x_1^{ba_1+b_1m}G'(x_1, 0, 0)$, we have an expression

$$u = x_1^{aa_1}, v = P'(x_1) + x_1^{ba_1+b_1m}F'$$

of the form of (1). Thus U' is 2-prepared at q with $\sigma_{D'}(q) < m - 1 = \sigma_D(p)$.

Suppose that z^m is not a local generator of $IO_{U',q}$, but there exists some i with $2 \leq i \leq m - 1$ such that $x_i^{a_1}z^{m-i}$ is a local generator of $IO_{U',q}$. Let h be the smallest i with this property. Then G' has an expression

$$G' = g_h(z_1 + \alpha)^{m-h} + \cdots + g_m + x_1\Omega_1 + y_1\Omega_2$$

for some $g_i \in \mathfrak{f}$ with $g_h \neq 0$ and $\Omega_1, \Omega_2 \in \hat{O}_{U',q}$. As in the previous case, we have that U'
is 2-prepared at q with $\sigma_D(q) < m - h - 1 < m - 1 = \sigma_D(p)$.
Suppose that \(z^m \) is not a local generator of \(\hat{\mathcal{O}}_{U',q} \) and \(x^{r_i} z^{m-i} \) is not a local generator of \(\hat{\mathcal{O}}_{U',q} \) for \(2 \leq i \leq m - 1 \). Then \(x_1^{r_m} \) is a local generator of \(\hat{\mathcal{O}}_{U',q} \), and we have an expression

\[
G' = \Lambda + x_1 \Omega_1,
\]

where \(\Lambda(x_1, y, z_1) = \tau_m(x_1^{a_1}, y, x_1^{b_1}(z_1 + \alpha)) \) and \(\Omega_1 \in \hat{\mathcal{O}}_{U',q} \). Then

\[
\text{ord} \Lambda(0, y, 0) = \text{ord} \tau_m(0, y, 0) = 1,
\]

and we have that \(U' \) is prepared at \(q \).

Now suppose that \(q \in \psi^{-1}(p) \) is a 2-point for \(D_{U'} \). We have permissible parameters \(x_1, y, z_1 \) in \(\hat{\mathcal{O}}_{U',q} \) such that

\[
x = x_1^{a_1} z_1^{b_1}, \quad z = x_1^{c_1} z_1^{d_1}
\]

with \(a_1, b_1 > 0 \) and \(a_1 d_1 - b_1 c_1 = \pm 1 \). Substituting into (14), we have

\[
u = x_1^{a_1} z_1^{b_1}, \quad v = P(x_1^{a_1} z_1^{b_1}) + x_1^{a_1 b} z_1^{b_1 b} G'
\]

where

\[
G = \tau_0 x_1^{c_1 m} z_1^{d_1 m} + \tau_2 x_1^{r_2 a_1 + c_1 (m - 2)} z_1^{r_2 b_1 + d_1 (m - 2)} + \cdots + \tau_m x_1^{a_1 r_m - 1 + c_1} z_1^{b_1 r_m - 1 + d_1} + \tau_m x_1^{a_1 r_m - 1} z_1^{b_1 r_m - 1}.
\]

Let \(C' \) be the 2-curve of \(D_{U'} \) containing \(q \). Since \(\text{ord} \tau_m(0, y, 0) = 1 \) (if \(\tau_m \neq 0 \)) we see that the three statements \(\sigma_D(q) < \infty \), \(\text{ord} \sigma_D(q) = 0 \) and \(\hat{\mathcal{O}}_{U',q} \) is principal are equivalent. Further, we have that \(\sigma_D(q') = \sigma_D(q) \) for \(q' \in C' \) in a neighborhood of \(q \).

Suppose that \(\hat{\mathcal{O}}_{U',q} \) is principal and let \(x_1^a z_1^b \) be a local generator of \(\hat{\mathcal{O}}_{U',q} \). Let \(G' = G/x_1^a z_1^b \). We have that

\[
u = (x_1^{a_1} z_1^{b_1})^a, \quad v = P(x_1^{a_1} z_1^{b_1}) + x_1^{a_1 b + s} z_1^{b_1 + t} G'
\]

has the form (2), since we have made a monomial substitution in \(x \) and \(z \). If \(z^m \) or \(x^{r_i} z^{m-i} \) for some \(i < m \) is a local generator of \(\hat{\mathcal{O}}_{U',q} \), then \(G' \) is a unit in \(\hat{\mathcal{O}}_{U',q} \). If none of \(z^m \), \(x^{r_i} z^{m-i} \) for \(i < m \) are local generators of \(\hat{\mathcal{O}}_{U',q} \), then

\[
G' = \Lambda + x_1 \Omega_1 + z_1 \Omega_2,
\]

where

\[
\Lambda(x_1, y, z_1) = \tau_m(x_1^{a_1} z_1^{b_1}, y, x_1^{c_1} z_1^{d_1})
\]

and \(\Omega_1, \Omega_2 \in \hat{\mathcal{O}}_{U',q} \). Thus

\[
\text{ord} \Lambda(0, y, 0) = \text{ord} \tau_m(0, y, 0) = 1.
\]

We thus have that \(U' \) is prepared at \(q \).

The final case is when \(q \in \psi^{-1}(p) \) is on the 2-curve \(C' \) of \(\overline{D} \) which is the intersection of \(D_{U'} \) with the strict transform of \(z = 0 \) in \(U' \). Then there exist permissible parameters \(x_1, y, z_1 \) at \(q \) such that

\[
x = x_1, \quad z = x_1^{b_1} z_1
\]

for some \(b_1 \in \mathbb{Z}_+ \). The equations \(x_1 = z_1 = 0 \) are local equations of \(C' \) at \(q \). Let

\[
s = \min\{b_1 m, r_i + b_1 (m - i) \text{ with } \tau_i \neq 0 \text{ for } 2 \leq i \leq m - 1, r_m \text{ if } \tau_m \neq 0 \}.
\]

We have an expression of the form (1) at \(q \),

\[
\begin{align*}
u &= x_1^2 \\
v &= P(x_1^q) + x_1^{ab + s} G'
\end{align*}
\]
with
\[G' = \tau_0 x_1^{b_1 m-s} z_1^m + \tau_2 x_1^{r_2 + b_1 (m-2)-s} z_1^{m-2} + \cdots + \tau_{m-1} x_1^{r_{m-1} + b_1 - s} z_1 + \tau_m x_1^{r_m - s}. \]

We see that \(\sigma_D(q) \leq \sigma_D(p) \) (with \(\sigma_D(q) < \sigma_D(p) \) if \(s = r_i + b_1 (m-i) \) for some \(i \) with \(2 \leq i \leq m-1 \) or \(s = r_m \)) and \(\sigma_D(q') = \sigma_D(q) \) for \(q' \) in a neighborhood of \(q \) on \(C' \).

Suppose that \(IO_{U',q} \) is principal. Then \(x'^m \) generates \(\hat{I} O_{U',q} \). We have that \(G' = x_1^{r_m} \Omega \) where \(\Omega \in \hat{O}_{U',q} \) satisfies \(\Omega(0,y,0) = 1 \). Thus \(U' \) is prepared at \(q \).

\[
\]

We will now construct the function \(\omega(m,r_2,\ldots,r_{m-1}) \) where \(m > 1, r_i \in \mathbb{N} \) for \(2 \leq i \leq m-1 \) and \(r_{m-1} > 0 \).

Let \(I \) be the ideal in the polynomial ring \(\mathfrak{f}[x,z] \) generated by \(z^m \) and \(x^i z^{m-i} \) for all \(i \) such that \(2 \leq i \leq m-1 \) and \(r_i > 0 \). Let \(m = (x,z) \) be the maximal ideal of \(k[x,z] \). Let \(\Phi : V_1 \to V = \text{Spec}(\mathfrak{f}[x,z]) \) be the toroidal morphism with respect to the divisor \(xz = 0 \) on \(V \) such that \(V_1 \) is the minimal nonsingular surface such that

1) \(IO_{V_1,q} \) is principal if \(q \in \Phi^{-1}(m) \) is not on the strict transform of \(z = 0 \).

2) If \(q \) is the intersection point of the strict transform of \(z = 0 \) and \(\Phi^{-1}(m) \), so that \(q \) has regular parameters \(x_1, z_1 \), with \(x = x_1, z = x_1^{b_1} z_1 \) for some \(b \in \mathbb{Z} \), then \(r_i + b_1 (m-i) < b_1 m \) for some \(2 \leq i \leq m-1 \) with \(r_i > 0 \).

Every \(q \in \Phi^{-1}(m) \) which is not on the strict transform of \(z = 0 \) has regular parameters \(x_1, z_1 \) at \(q \) which are related to \(x, z \) by one of the following expressions:

\begin{equation}
(39) \quad x = x_1^{a_1}, \quad z = x_1^{b_1} (z_1 + \alpha)
\end{equation}

for some \(0 \neq \alpha \in \mathfrak{f} \) and \(a_1, b_1 > 0 \), or

\begin{equation}
(40) \quad x = x_1^{a_1} z_1^{b_1}, \quad z = x_1^{c_1} z_1^{d_1}
\end{equation}

with \(a_1, b_1 > 0 \) and \(a_1 d_1 - b_1 c_1 = \pm 1 \). There are only finitely many values of \(a_1, b_1 \) occurring in expressions (39), and \(a_1, b_1, c_1, d_1 \) occurring in expressions (40).

The point \(q \) on the intersection of the strict transform of \(z = 0 \) and \(\Phi^{-1}(m) \) has regular parameters \(x_1, z_1 \) defined by

\begin{equation}
(41) \quad x = x_1, \quad z = x_1^{b_1} z_1
\end{equation}

for some \(b_1 > 0 \).

Now we define \(\omega = \omega(m,r_2,\ldots,r_{m-1}) \) to be a number such that

\[\omega > \max \{ \frac{b_1}{a_1} m, r_i + \frac{b_1}{a_1} (m-i) \text{ for } 2 \leq i \leq m-1 \text{ such that } r_i > 0 \}. \]

For all expressions (39),

\[\omega > \max \{ \frac{c_1}{a_1} m, r_i + \frac{c_1}{a_1} (m-i), r_i + \frac{d_1}{b_1} (m-i) \text{ for } 2 \leq i \leq m-1 \text{ such that } r_i > 0 \} \]

for all expressions (40), and

\[\omega > \max \{ b_1 m, r_i + b_1 (m-i) \text{ for } 2 \leq i \leq m-1 \text{ such that } r_i > 0 \} \]

in (41).

Theorem 4.2. Suppose that \(p \in \text{Sing}_f(X) \) is a 1-point and \(X \) is 3-prepared at \(p \). Let \(x, y, z \) be permissible parameters at \(p \) giving a form (15) at \(p \). Let \(U \) be an étale cover of an affine neighborhood of \(p \) in which \(x, y, z \) are uniformizing parameters. Then \(xz = 0 \) gives a toroidal structure \(\hat{D} \) on \(U \).
There is (after possibly replacing U with a smaller neighborhood of p) a unique, minimal toroidal morphism $\psi : U' \to U$ with respect to \overline{D} with has the property that U' is nonsingular, 2-prepared and $\Gamma_D(U') < \sigma_D(p)$. This map ψ factors as a sequence of permissible blowups $\pi_i : U_i \to U_{i-1}$ of sections C_i over the two curve C of \overline{D}. U_i is 1-prepared for $U_i \to S$. We have that the curve C_i blown up in $U_{i+1} \to U_i$ is in $\Sing_{\sigma_D(p)}(U_i)$ if C_i is not a 2-curve of D_{U_i}, and that C_i is in $\Sing(U_i)$ if C_i is a 2-curve of D_{U_i}.

Proof. The proof is similar to that of Theorem 4.1, using the fact that $t > \omega(m, r_2, \ldots, r_{m-1})$ as defined above. \hfill \square

Theorem 4.3. Suppose that $p \in X$ is a 2-point and X is 3-prepared at p with $\sigma_D(p) > 0$. Let x, y, z be permissible parameters at p giving a form (13) at p. Let U be an étale cover of an affine neighborhood of p in which x, y, z are uniformizing parameters on U. Then $xyz = 0$ gives a toroidal structure \overline{D} on U. Let I be the ideal in $\Gamma(U, \mathcal{O}_X)$ generated by z^m, x^my^n if $\tau_m \neq 0$ and

$$\{x^ny^mz^{-i} \mid 2 \leq i \leq m - 1 \text{ and } \tau_i \neq 0\}.$$

Suppose that $\psi : U_1 \to U$ is a toroidal morphism with respect to \overline{D} such that U_1 is nonsingular and $I\mathcal{O}_{U_1}$ is locally principal. Then (after possibly replacing U with a smaller neighborhood of p) U_1 is 2-prepared for $U_1 \to S$, with $\sigma_D(q) < \sigma_D(p)$ for all $q \in U_1$.

Proof. Suppose that $q \in \psi^{-1}(p)$ is a 1-point for $\psi^{-1}(\overline{D})$. Then q is also a 1-point for D_{U_1}. Since ψ is toroidal with respect to \overline{D}, there exist regular parameters $\hat{x}_1, \hat{y}_1, \hat{z}_1$ in $\mathcal{O}_{X_1, q}$ and a matrix $A = (a_{ij})$ with nonnegative integers as coefficients such that $\Det A = \pm 1$, and we have an expression

$$x = \hat{x}_1^{a_{11}}(\hat{y}_1 + \alpha)^{a_{12}}(\hat{z}_1 + \beta)^{a_{13}},$$
$$y = \hat{x}_1^{a_{21}}(\hat{y}_1 + \alpha)^{a_{22}}(\hat{z}_1 + \beta)^{a_{23}},$$
$$z = \hat{x}_1^{a_{31}}(\hat{y}_1 + \alpha)^{a_{32}}(\hat{z}_1 + \beta)^{a_{33}}$$

with $a_{11}, a_{21}, a_{31} \neq 0$ and $0 \neq \alpha, \beta \in \mathfrak{k}$. Set

$$\overline{\alpha} = \hat{x}_1^{a_{11}}(\hat{y}_1 + \alpha)^{a_{12}}(\hat{z}_1 + \beta)^{a_{13}} \in \mathcal{O}_{X_1, q}.$$

Substituting into (42), we have

$$x = \overline{\alpha}^{a_{11}},$$
$$y = \overline{\alpha}^{a_{21}},$$
$$z = \overline{\alpha}^{a_{31}}.$$

Let $B = (b_{ij})$ be the adjoint matrix of A. Let $\overline{\alpha} = \alpha^{a_{11}} \beta^{a_{12}} \alpha^{a_{13}}, \overline{\beta} = \alpha^{-1} \beta^{a_{11}} \alpha^{a_{12}} \beta^{a_{13}}$. Set

$$\overline{y}_1 = \frac{y}{\hat{x}_1^{a_{21}}}, \overline{z}_1 = \frac{z}{\hat{x}_1^{a_{31}}}, \overline{x}_1 = \frac{x}{\hat{x}_1}. $$

We will show that $\overline{y}_1, \overline{x}_1, \overline{z}_1$ are regular parameters in $\mathcal{O}_{X_1, q}$. We have that

$$ (\hat{y}_1 + \alpha)^{a_{22}} \frac{a_{21}a_{12}}{a_{11}} (\hat{z}_1 + \beta)^{a_{23}} \frac{a_{21}a_{13}}{a_{11}} = \overline{\alpha}^\frac{a_{21}a_{12}}{a_{11}} \beta^\frac{a_{21}a_{13}}{a_{11}},$$
$$ (\hat{y}_1 + \alpha)^{a_{32}} \frac{a_{31}a_{12}}{a_{11}} (\hat{z}_1 + \beta)^{a_{33}} \frac{a_{31}a_{13}}{a_{11}} = \overline{\beta}^\frac{a_{31}a_{12}}{a_{11}} \alpha^\frac{a_{31}a_{13}}{a_{11}}.$$

Let

$$C = \begin{pmatrix}
\frac{b_{12}a_{11} - b_{12}}{a_{11}} & \frac{b_{13}a_{11} - b_{13}}{a_{11}} & \frac{b_{14}a_{11} - b_{14}}{a_{11}} \\
\frac{b_{22}a_{11} - b_{22}}{a_{11}} & \frac{b_{23}a_{11} - b_{23}}{a_{11}} & \frac{b_{24}a_{11} - b_{24}}{a_{11}} \\
\frac{b_{32}a_{11} - b_{32}}{a_{11}} & \frac{b_{33}a_{11} - b_{33}}{a_{11}} & \frac{b_{34}a_{11} - b_{34}}{a_{11}}
\end{pmatrix}.$$
We must show that C has rank 2. C has the same rank as
\[
\begin{pmatrix}
b_{33}\beta & -b_{33}\alpha \\
b_{32}\beta & -b_{32}\alpha
\end{pmatrix}
= \begin{pmatrix}
b_{33} & b_{32} \\
b_{32} & b_{31}
\end{pmatrix}
\begin{pmatrix}
\beta & 0 \\
0 & -\alpha
\end{pmatrix}.
\]
Since $\alpha, \beta \neq 0$, C has the same rank as
\[
B' = \begin{pmatrix}
b_{33} & b_{32} \\
b_{32} & b_{31}
\end{pmatrix}.
\]
Since B has rank 3,
\[
\begin{pmatrix}
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]
has rank 2. Since
\[
\begin{pmatrix}
b_{21} \\
b_{31}
\end{pmatrix}
= -\frac{a_{21}}{a_{11}} \begin{pmatrix}
b_{22} \\
b_{32}
\end{pmatrix}
+ \frac{a_{31}}{a_{11}} \begin{pmatrix}
b_{23} \\
b_{33}
\end{pmatrix},
\]
we have that B' has rank 2, and hence C has rank 2. Thus $\overline{x}_1, \overline{y}_1, \overline{z}_1$ are regular parameters in $\mathcal{O}_{X_1, q}$. We have
\[
x = \overline{x}_1^{a_1}, y = \overline{x}_1^{a_2}(\overline{y}_1 + \overline{\alpha}), z = \overline{x}_1^{a_3}(\overline{z}_1 + \overline{\beta}).
\]
We have that $u = (x^a y^b)^t$. Let
\[
t = -\frac{b}{a_{11}a + a_{21}b},
\]
and set $x_1 = x_1(y_1 + \alpha)^t$. Define $y_1 = y_1, \alpha = \overline{\alpha}, \beta = \overline{\alpha}t_{a_1}t_{a_2}$ and $z_1 = (y_1 + \alpha)^t_{a_3}(z_1 + \beta) - \beta$. Then x_1, y_1, z_1 are permissible parameters at q, with $u = x_1^{(a_{11}a + a_{21}b)}t$,
\[
x = x_1^{a_1}(y_1 + \alpha)^{a_2}, y = x_1^{a_2}(y_1 + \alpha)^{a_3}, z = x_1^{a_3}(z_1 + \beta).
\]
Thus we have shown that there exist (formal) permissible parameters x_1, y_1, z_1 at q such that
\[
x = x_1^{e_1}(y_1 + \alpha)^{\lambda_1}, y = x_1^{e_2}(y_1 + \alpha)^{\lambda_2}, z = x_1^{e_3}(z_1 + \beta)
\]
where $e_1, e_2, e_3 \in \mathbb{Z}^+$, $\alpha, \beta \in \mathfrak{p}$ are nonzero, $\lambda_1, \lambda_2 \in \mathbb{Q}$ are both nonzero, and $u = x_1^{b_1t}$, where $b_1 = ae_1 + be_2, a\lambda_1 + b\lambda_2 = 0$. We then have an expression
\[
v = P(x_1^{a_1e_1+be_2}) + x_1^{c_1e_1+de_2}G,
\]
where
\[
G = (y_1 + \alpha)^{c_1+1+2} [\tau_0x_1^{c_1}m(z_1 + \beta)^m]
+ \tau_2 x_1^{r_1e_1+s_2e_2+(m-2)e_3} (y_1 + \alpha)^{r_1} + s_2^{r_2}(z_1 + \beta)^{m-2} + \cdots
+ \tau_m x_1^{r_1m-1e_1+s_m+e_2(e_3)} (y_1 + \alpha)^{r_m-1} + s_m^{r_m-1}(z_1 + \beta)
+ \tau_m x_1^{r_1m+1+s_m+e_2(y_1)^{r_m}+s_m^{r_m}(z_1 + \beta)}.
\]
Let $\tau' = \tau_0(0, 0, 0)$. Let $x_1 \in \mathfrak{O}$ be a generator of $I\mathcal{O}_{U_1, q}$. Let $G' = \frac{F}{x_1^t}$. If x^m is a local generator of $I\mathcal{O}_{U_1, q}$, then G' has an expression
\[
G' = \tau' \alpha^m (z_1 + \beta)^m + g_2(z_1 + \beta)^{m-2} + \cdots + g_{m-1}(z + \beta) + g_m + x_1\Omega_1 + y_1\Omega_2
\]
for some $g_i \in \mathfrak{p}$ and $\Omega_1, \Omega_2 \in \mathcal{O}_{U_1, q}$, where $\varphi = c\lambda_1 + d\lambda_2$. Setting $F' = G' - G'(x_1, 0, 0)$, and $P'(x_1) = P(x_1^{c_1+be_2}) + x_1^{c_1e_1+de_2+e}G'(x_1, 0, 0)$, we have that
\[
u = x_1^{b_1}, v = P'(x_1) + x_1^{c_1+de_2+e}F'
\]
has the form (1) and $\sigma_D(q) \leq \text{ord } F'(0, 0, z_1) - 1 \leq m - 2 < m - 1 = \sigma_D(p)$ since $0 \neq \beta$. 26
Suppose that z^m is not a local generator of $I\hat{O}_{U_1,q}$, but there exists some i with $2 \leq i \leq m - 1$ such that $\tau_i x^{r_i} y^{s_i} z^{m-i}$ is a local generator of $I\hat{O}_{U_1,q}$. Let h be the smallest i with this property. Then G' has an expression
\[G' = g_h(z_1 + \hat{\beta})^{m-h} + \cdots + g_{m-1}(z_1 + \hat{\beta}) + g_m + x_1\Omega_1 + y_2\Omega_2 \]
for some $g_i \in \k$ with $g_h \neq 0$. As in the previous case, we have
\[\sigma_D(q) \leq m - h - 1 < m - 1 = \sigma_D(p). \]

Suppose that z^m is not a local generator of $I\hat{O}_{U_1,q}$, and $\tau_i x^{r_i} y^{s_i} z^{m-i}$ is not a local generator of $I\hat{O}_{U_1,q}$ for $2 \leq i \leq m$. Then $x^{r_s} y^{s_s}$ is a local generator of $I\hat{O}_{U_1,q}$, and G' has an expression
\[G' = \tau'_m(y_1 + \hat{\alpha})^{p+r_m\lambda_1+s_m\lambda_2} + x_1\Omega \]
where $\tau'_m = \tau_m(0,0,0)$ for some $\Omega \in \hat{O}_{U_1,q}$. Suppose, if possible, that $\varphi + r_m\lambda_1 + s_m\lambda_2 = 0$. Since $\varphi + r_m\lambda_1 + s_m\lambda_2 = (c + r_m)\lambda_1 + (d + s_m)\lambda_2$, we then have that the nonzero vector (λ_1, λ_2) satisfies $a\lambda_1 + b\lambda_2 = (c + r_m)\lambda_1 + (d + s_m)\lambda_2 = 0$. Thus the determinant $a(d + s_m) - b(c + r_m) = 0$, a contradiction to our assumption that F satisfies (2).

Now since $\varphi + r_m\lambda_1 + s_m\lambda_2 \neq 0$ and $\hat{\alpha} \neq 0$, we have $1 = \text{ord} G'(0, y_1, 0) < m$, so that $\sigma_D(q) = 0 < m - 1 = \sigma_D(p)$.

Suppose that $q \in \psi^{-1}(p)$ is a 2-point of $\psi^{-1}(D)$. Then there exist (normal) permissible parameters $\hat{x}_1, \hat{y}_1, \hat{z}_1$ at q such that
\[x = \hat{x}_1^{e_{11}} y_1^{e_{12}} (\hat{z}_1 + \hat{\alpha})^{e_{13}}, \]
\[y = \hat{x}_1^{e_{21}} y_1^{e_{22}} (\hat{z}_1 + \hat{\alpha})^{e_{23}}, \]
\[z = \hat{x}_1^{e_{31}} y_1^{e_{32}} (\hat{z}_1 + \hat{\alpha})^{e_{33}}. \]
where $e_{ij} \in \mathbb{N}$, with $\text{Det}(e_{ij}) = \pm 1$, and $\hat{\alpha} \in \k$ is nonzero. We further have
\[e_{11} + e_{12} > 0, e_{21} + e_{22} > 0 \text{ and } e_{31} + e_{32} > 0. \]

First suppose that $e_{11} e_{22} - e_{12} e_{21} \neq 0$. Then q is a 2-point of D_{U_1}.

There exist $\lambda_1, \lambda_2 \in \mathbb{Q}$ such that upon setting
\[\hat{x}_1 = x_1(z_1 + \hat{\alpha})^{\lambda_1} \text{ and } \hat{y}_1 = y_1(z_1 + \hat{\alpha})^{\lambda_2}, \]
we have
\[x = x_1^{e_{11}} y_1^{e_{12}}; \]
\[y = x_1^{e_{21}} y_1^{e_{22}}, \]
\[z = x_1^{e_{31}} y_1^{e_{32}} (z_1 + \hat{\alpha})^r, \]
where
\[\begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix}. \]

By Cramer’s rule,
\[r = \pm \frac{1}{e_{11} e_{22} - e_{12} e_{21}} \neq 0. \]
Now set $z_1 = (z_1 + \hat{\alpha})^r - \hat{\alpha}^r$ and $\alpha = \hat{\alpha}^r$ to obtain permissible parameters x_1, y_1, z_1 at q with
\[x = x_1^{e_{11}} y_1^{e_{12}}; \]
\[y = x_1^{e_{21}} y_1^{e_{22}}, \]
\[z = x_1^{e_{31}} y_1^{e_{32}} (z_1 + \alpha). \]

We have an expression
\[u = ((x_1^{e_{11}} y_1^{e_{12}})^a (x_1^{e_{21}} y_1^{e_{22}})^b) \ell_i = \ell_1 \ell_2 \ell_3, \]
where $t_1, t_2, \ell_1 \in \mathbb{Z}_+$ and $\text{gcd}(t_1, t_2) = 1$.

We then have an expression
\[v = P((x_1^{t_1} y_1^{t_2} \ell_1^{\ell_1})^{\ell_1} + x_1^{ce_{11} + de_{21}} y_1^{ce_{12} + de_{22}} G, \]
where $\ell_1 \in \mathbb{Z}_+$ and $\text{gcd}(t_1, t_2) = 1$.
Let $\tau' = 0(0, 0, 0)$. Let $x_1^iy_1^j$ be a generator of $I\hat{O}_{U_1,q}$. Let $G' = \frac{G}{x_1^iy_1^j}$.

If z^m is a local generator of $I\hat{O}_{U_1,q}$, then G' has an expression

$$G' = \tau'(z_1 + \alpha)^m + g_2(z_1 + \alpha)^{m-2} + \cdots + g_{m-1}(z - \alpha) + g_m + x_1\Omega_1 + y_1\Omega_2$$

for some $g_i \in \mathfrak{t}$ and $\Omega_1, \Omega_2 \in \hat{O}_{U_1,q}$. Let

$$P(x_1^{i_1}y_1^{j_1}) = \sum_{i_2, j_2} \frac{1}{i_2!j_2!} \partial^2 \frac{\partial G(x_1^{i_1}y_1^{j_1}, x_2^{i_2}y_2^{j_2}, x_3^{i_3}y_3^{j_3}, \ldots)}{\partial x_1^{i_1} \partial y_1^{j_1}} (0, 0, 0)$$

and $F' = G' - \frac{P(x_1^{i_1}y_1^{j_1})}{x_1^{i_1}y_1^{j_1}}$. Set $P'(x_1^{i_1}y_1^{j_1}) = P((x_1^{i_1}y_1^{j_1})^{\tau} + \hat{P}(x_1^{i_1}y_1^{j_1}))$. We have that

$$u = (x_1^{i_1}y_1^{j_1})^{\tau}, v = P'(x_1^{i_1}y_1^{j_1}) + x_1^{i_1}y_1^{j_1} + \partial x_1^{i_1}y_1^{j_1} + x_1^{i_1}y_1^{j_1}$$

has the form (2), and $\sigma_D(q) = \text{ord} F'(0, 0, z_1) - 1 \leq m - 2 < m - 1 = \sigma_D(p)$ since $0 \neq \alpha$.

Suppose that z^m is not a local generator of $I\hat{O}_{U_1,q}$, but there exists some i with $2 \leq i \leq m - 1$ such that $\tau_i x^iy^iz^{m-i}$ is a local generator of $I\hat{O}_{U_1,q}$. Let h be the smallest i with this property. Then G' has an expression

$$G' = g_i(z_1 + \beta)^{m-h} + \cdots + g_m + x_1\Omega_1 + y_1\Omega_2$$

for some $g_i \in \mathfrak{t}$ with $g_i \neq 0$. As in the previous case, we have $\sigma_D(q) \leq m - h - 1 < m - 1 = \sigma_D(p)$.

Suppose that z^m is not a local generator of $I\hat{O}_{U_1,q}$, and $\tau_i x^iy^iz^{m-i}$ is not a local generator of $I\hat{O}_{U_1,q}$ for $2 \leq i \leq m - 1$. Then $x^iy^iz^{m-i}$ is a local generator of $I\hat{O}_{U_1,q}$, and then G' has an expression

$$G' = 1 + x_1\Omega_1 + y_1\Omega_2$$

for some $\Omega_1, \Omega_2 \in \hat{O}_{U_1,q}$.

We now claim that after replacing G' with $F' = \frac{P(x_1^{i_1}y_1^{j_1})}{x_1^{i_1}y_1^{j_1}}$, where \hat{P} is defined by (45), we have that $F'(0, 0, 0) \neq 0$. If this were not the case, we would have

$$0 = \left(\begin{array}{c} c + r_m e_{11} + (d + s_m)e_{21} \\ a e_{11} + b e_{21} \end{array} \right) \left(\begin{array}{c} c + r_m e_{12} + (d + s_m)e_{22} \\ a e_{12} + b e_{22} \end{array} \right)$$

Since $e_{11}e_{22} - e_{21}e_{12} \neq 0$ (by our assumption), we get

$$0 = \det \begin{pmatrix} c + r_m & d + s_m \\ a & b \end{pmatrix}$$

which is a contradiction to our assumption that F satisfies (2). Since $F'(0, 0, 0) \neq 0$, we have that $\sigma_D(q) = 0 < m - 1 = \sigma_D(p)$.

Now suppose that q is a 2-point of $\psi^{-1}(\bar{D})$ with $e_{11}e_{22} - e_{21}e_{12} = 0$ in (44). We make a substitution

$$\tilde{x}_1 = x_1(z_1 + \alpha)^{\psi_1}, \tilde{y}_1 = y_1(z_1 + \alpha)^{\psi_2}, \tilde{z}_1 = z_1$$
where \(\alpha = \hat{\alpha} \) and \(\varphi_1, \varphi_2 \in \mathbb{Q} \) satisfy

\[
0 = a(\varphi_1 e_{11} + \varphi_2 e_{12} + e_{13}) + b(\varphi_1 e_{21} + \varphi_2 e_{22} + e_{23}) = \varphi_1(ae_{11} + be_{21}) + \varphi_2(ae_{12} + be_{22}) + ae_{13} + be_{23}.
\]

We have \(ae_{11} + be_{21} > 0 \) and \(ae_{12} + be_{22} > 0 \) since \(a, b > 0 \) and by the condition satisfied by the \(e_{ij} \) stated after (44).

Let

\[
\lambda_1 = \varphi_1 e_{11} + \varphi_2 e_{12} + e_{13}, \quad \lambda_2 = \varphi_1 e_{21} + \varphi_2 e_{22} + e_{23}, \quad \lambda_3 = \varphi_1 e_{31} + \varphi_2 e_{32} + e_{33}.
\]

Then \(x_1, y_1, z_1 \) are permissible parameters at \(q \) such that

\[
(46) \quad x = x_1^{e_{11}} y_1^{e_{12}} (z_1 + \alpha)^{\lambda_1}, \quad y = x_1^{e_{21}} y_1^{e_{22}} (z_1 + \alpha)^{\lambda_2}, \quad z = x_1^{e_{31}} y_1^{e_{32}} (z_1 + \alpha)^{\lambda_3}
\]

with \(\lambda_1, \lambda_2, \lambda_3 \in \mathbb{Q} \), and \(a \lambda_1 + b \lambda_2 = 0 \).

Now suppose that \(e_{11} > 0 \) and \(e_{12} > 0 \), which is the case where \(q \) is a 2-point of \(D_{U_1} \).

Write

\[
u = \left((x_1^{e_{11}} y_1^{e_{12}})^a (x_1^{e_{21}} y_1^{e_{22}})^b \right)^\ell = \left(x_1^{t_1} y_1^{t_2} \right)^{\ell_1}
\]

where \(t_1, t_2, \ell_1 \in \mathbb{Z}_+ \) and gcd\((t_1, t_2) = 1\).

We then have an expression

\[
v = P\left((x_1^{t_1} y_1^{t_2})^{\ell_1} \right) + x_1^{c_{e_{11}+de_{21}} e_{12}+de_{22}} G,
\]

where

\[
G = (z_1 + \alpha)^{c_{\lambda_1} + d\lambda_2} \left[\tau_0 x_1^{m_{c_{21}}} y_1^{m_{c_{22}}} (z_1 + \alpha)^{m_{\lambda_3}} + \tau_2 x_1^{r_{e_{11}} e_{21} + e_{22} + (m-2) e_{31}} y_1^{r_{e_{12}} e_{22} + e_{32} + (m-2) e_{32}} (z_1 + \alpha)^{r_{2} \lambda_1 + 2 \lambda_2 + (m-2) \lambda_3} + \ldots + \tau_m x_1^{r_{m-1} e_{11} + s_{m-1} e_{21} + e_{31} + r_{m-1} e_{12} + s_{m-1} e_{22} + e_{32}} (z_1 + \alpha)^{r_{m-1} \lambda_1 + s_{m-1} \lambda_2 + (m-1) \lambda_3} + \tau_m x_1^{r_{m} e_{11} + s_{m} e_{21} + e_{31} + r_{m} e_{12} + s_{m} e_{22} + e_{32}} (z_1 + \alpha)^{r_{m} \lambda_1 + s_{m} \lambda_2} \right].
\]

Let \(x_1^a y_1^b \) be a generator of \(I \hat{O}_{U_1,q} \). Let \(G' = \frac{F}{x_1^a y_1^b} \).

We will now establish that, with our assumptions, there is a unique element of the set \(S \) consisting of \(z^m \), and

\[
\{ x^n y^i z^{m-i} \mid 2 \leq i \leq m \text{ and } \tau_i \neq 0 \}
\]

which is a generator of \(I \hat{O}_{U_1,q} \); that is, is equal to \(x_1^a y_1^b \) times a unit in \(\hat{O}_{U_1,q} \). Let \(r_0 = 0 \) and \(s_0 = 0 \). Suppose that \(x^n y^i z^{m-i} \) (with \(0 \leq i \leq m \) is a generator of \(I \hat{O}_{U_1,q} \). We have

\[
x^n y^i z^{m-i} = x_1^a y_1^b (z_1 + \alpha)^{\gamma_i}
\]

where

\[
\begin{align*}
r_i e_{11} + s_i e_{21} + (m - i) e_{31} &= s \\
r_i e_{12} + s_i e_{22} + (m - i) e_{32} &= t \\
r_i \lambda_1 + s_i \lambda_2 + (m - i) \lambda_3 &= \gamma_i.
\end{align*}
\]

Let

\[
(47) \quad A = \begin{pmatrix} e_{11} & e_{21} & e_{31} \\ e_{12} & e_{22} & e_{32} \\ \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}.
\]

We have

\[
(48) \quad A \begin{pmatrix} r_i \\ s_i \\ m - i \end{pmatrix} = \begin{pmatrix} s \\ t \\ \gamma_i \end{pmatrix}.
\]
Let $\omega = \text{Det}(A)$.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \varphi_1 & \varphi_2 & 1 \end{pmatrix} \begin{pmatrix} e_{11} & e_{21} & e_{31} \\ e_{12} & e_{22} & e_{32} \\ e_{13} & e_{23} & e_{33} \end{pmatrix}$$

implies $\omega = \text{Det}(A) = \pm 1$.

By Cramer’s rule, we have

$$\omega(m - i) = \text{Det} \left(\begin{array}{ccc} e_{11} & e_{21} & s \\ e_{12} & e_{22} & t \\ \lambda_1 & \lambda_2 & \gamma_i \end{array} \right) = s \text{Det} \left(\begin{array}{cc} e_{12} & e_{22} \\ \lambda_1 & \lambda_2 \end{array} \right) - t \text{Det} \left(\begin{array}{cc} e_{11} & e_{21} \\ \lambda_1 & \lambda_2 \end{array} \right) + \gamma_i \text{Det} \left(\begin{array}{cc} e_{11} & e_{21} \\ \lambda_1 & \lambda_2 \end{array} \right).$$

Since $e_{11}e_{21} - e_{12}e_{22} = 0$ by assumption, we have that

$$i = m - \frac{1}{\omega} \left(s \text{Det} \left(\begin{array}{cc} e_{12} & e_{22} \\ \lambda_1 & \lambda_2 \end{array} \right) - t \text{Det} \left(\begin{array}{cc} e_{11} & e_{21} \\ \lambda_1 & \lambda_2 \end{array} \right) \right).$$

In particular, there is a unique element $x^iy^jz^{m-i} \in S$ which is a generator of $I\hat{O}_{U,q}$. We have $x^iy^jz^{m-i} = x_1^{t_1}(z_1 + \alpha)^{\gamma_i}$.

We thus have that $G = x_1^{t_1}y_1^i [g(z_1 + \alpha)^{\gamma_1} + c\lambda_1 + d\lambda_2 + x_1\lambda_1 + y_1\lambda_2]$ for some $\Omega_1, \Omega_2 \in \hat{O}_{U,q}$ and $0 \neq g \in \mathfrak{t}$.

We now establish that we cannot have that $\gamma_i + c\lambda_1 + d\lambda_2 = 0$ and $x_1^{e_{11} + d\gamma_1} y_1^{e_{12} + e\gamma_1} x_1^{t_1}$ is a power of $x_1^{t_1}y_1^2$. We will suppose that both of these conditions do hold, and derive a contradiction. Now we know that $x_1^{a_i}y_1^{b_i} = x_1^{a_{e_{11} + d\gamma_1}} y_1^{e_{12} + e\gamma_1}$ a power of $x_1^{t_1}y_1^2$. By (47), (48) and our assumptions, we have that

$$A \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$

and

$$A \begin{pmatrix} c + r_i \\ d + s_i \\ m - i \end{pmatrix}$$

are rational multiples of

$$\begin{pmatrix} t_1 \\ t_2 \\ 0 \end{pmatrix}.$$
has the form (2) and \(\sigma_D(q) = 0 \leq m - 2 = \sigma_D(p) \).

Now suppose that \(q \in \psi^{-1}(p) \) is a 2-point of \(\psi^{-1}(D) \), \(e_{11} e_{22} - e_{12} e_{21} = 0 \) in (44), and \(e_{11} = 0 \) or \(e_{12} = 0 \). Without loss of generality, we may assume that \(e_{12} = 0 \). \(q \) is a 1-point of \(D_{U_1} \), and we have permissible parameters (46) at \(q \). Since \(\text{Det}(e_{ij}) = \pm 1 \), we have that \(e_{32} = 1 \), and \(e_{11} e_{23} - e_{21} e_{13} = \pm 1 \). Replacing \(y_1 \) with \(y_1(z_1 + \alpha)^{\lambda_3} \) in (46), we find permissible parameters \(x_1, y_1, z_1 \) at \(q \) such that

\[
(49) \quad x = x_{e_{11}}^{e_{11}}(z_1 + \alpha)^{\lambda_1}, \quad y = x_{e_{21}}^{e_{21}}(z_1 + \alpha)^{\lambda_2}, \quad z = x_{e_{31}}^{e_{31}} y_1,
\]

with \(e_{11}, e_{21} > 0 \) and \(a \lambda_1 + b \lambda_2 = 0 \). We have

\[
\begin{align*}
 u &= x_1^{(a e_{11} + b e_{21})l} = x_1^{l_1} \\
v &= P(x_1^{a e_{11} + b e_{21}}) + x_1^{e_{11} + e_{21}} G
\end{align*}
\]

where

\[
G = \left(z_1 + \alpha \right)^{c \lambda_1 + d \lambda_2} \left[\tau_0 x_1^{m e_{31}} y_1^m + \tau_2 x_1^{r e_{11} + s e_{21} + (m - 2) e_{31}} y_1^{m-2} (z_1 + \alpha)^{r \lambda_1 + s \lambda_2} + \ldots \\
+ \tau_m x_1^{r \lambda_1 + s \lambda_2} (z_1 + \alpha)^{r \lambda_1 + s \lambda_2} \right] + \tau_m x_1^{r \lambda_1 + s \lambda_2} (z_1 + \alpha)^{r \lambda_1 + s \lambda_2}.
\]

Since \(IO_{U_1,q} \) is principal and \(\tau_m \) or \(\tau_{m-1} \neq 0 \), we have that \(x_1^{r \lambda_1 + s \lambda_2} \) is a generator of \(IO_{U_1,q} \) if \(\tau_m \neq 0 \), and \(x_1^{r \lambda_1 + s \lambda_2} \) is a generator of \(IO_{U_1,q} \) if \(\tau_m = 0 \) and \(\tau_{m-1} \neq 0 \).

First suppose that \(\tau_m \neq 0 \) so that

\[
G = x_1^{r \lambda_1 + s \lambda_2} \left[\left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \ldots \\
+ x_1^{l_1} \Omega + y_1 \Omega_2 \right]
\]

with \(0 \neq g_m \in \mathfrak{t} \), \(\Omega_1, \Omega_2 \in \hat{\mathcal{O}}_{U_1,q} \). Since \(\lambda_1, \lambda_2 \) are not both zero, \(a \lambda_1 + b \lambda_2 = 0 \) and \(a(d + s_m) - b(c + r_m) \neq 0 \), we have that \((c + r_m) \lambda_1 + (d + s_m) \lambda_2 \neq 0 \). Let \(\overline{P}(x_1) = G(x_1, 0, 0) \), and \(P'(x_1) = P(x_1^{a e_{11} + b e_{21}}) + \overline{P}(x_1) \).

Let

\[
F' = \frac{1}{x_1^{e_{11} + e_{21}} (G - \overline{P}(x_1))}.
\]

Then

\[
\begin{align*}
 u &= x_1^{l_1} \\
v &= P'(x_1)^{a e_{11} + b e_{21}} F'
\end{align*}
\]

is of the form (1) with \(\text{ord} F'(0, y_1, z_1) = 1 \). Thus \(\sigma_D(q) = 0 < \sigma_D(p) \).

Now suppose that \(\tau_m = 0 \), so that

\[
G = x_1^{r \lambda_1 + s \lambda_2} \left[\left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \left(z_1 + \alpha \right)^{c + r \lambda_m} y_1^l + \ldots \\
+ x_1^{l_1} \Omega + y_1 \Omega_1 \right]
\]

with \(0 \neq g_m \in \mathfrak{t} \) and \(\Omega_1 \in \hat{\mathcal{O}}_{U_1,q} \). Thus \(\sigma_D(q) = 0 < \sigma_D(p) \).

The final case is when \(q \) is a 3-point for \(\psi^{-1}(D) \), so that \(q \) is a 3-point or a 2-point of \(D_{U_1} \). Then we have permissible parameters \(x_1, y_1, z_1 \) at \(q \) such that

\[
x = x_1^{e_{11}} y_1^{e_{12}} z_1^{e_{13}}, \quad y = x_1^{e_{21}} y_1^{e_{22}} z_1^{e_{23}}, \quad z = x_1^{e_{31}} y_1^{e_{32}} z_1^{e_{33}}
\]

with \(\omega = \text{Det}(e_{ij}) = \pm 1 \). Thus there is a unique element of the set \(S \) consisting of \(z^m \) and

\[
\{x^{i_1} y^{i_2} z^{i_3} \mid 2 \leq i \leq m \text{ and } \tau_i \neq 0\}
\]

which is a generator \(x_1^{e_{11}} y_1^{e_{21}} z_1^{e_{31}} \) of \(IO_{U_1,q} \). Thus \(\sigma_D(q) = 0 \) if \(q \) is a 3-point of \(D_{U_1} \). If \(q \) is a 2-point of \(D_{U_1} \), we may assume that \(e_{13} = e_{23} = 0 \). Then \(e_{33} = 1 \). Since \(\tau_m \neq 0 \) or \(\tau_{m-1} \neq 0 \), we calculate that \(\sigma_D(q) = 0 \).

\[\square\]
Suppose that \(p \in X \) is a 2-point such that \(X \) is 3-prepared at \(p \) and \(\sigma_D(p) = r > 0 \). We can then define a local resolver \((U_p, \overline{D}_p, I_p, \nu^1_p, \nu^2_p)\) as in Theorem 4.3, where \(\nu^1_p \) are valuations on \(U_p \) which dominate the two curves \(C_1, C_2 \) which are the intersection of \(E \) with \(DU_p \) on \(U_p \) (where \(\overline{D}_p = DU_p + E \)), and which have the property that if \(\pi : V \to U_p \) is a birational morphism, then the center \(C(V, \nu^1_p) \) on \(V \) is the unique curve on the strict transform of \(E \) on \(V \) which dominates \(C \). We will think of \(U_p \) as a germ, so we will feel free to replace \(U_p \) with a smaller neighborhood of \(p \) whenever it is convenient.

If \(\pi : Y \to X \) is a birational morphism, then the center \(C(Y, \nu^1_p) \) on \(Y \) is the closed curve which is the center of \(\nu^1_p \) on \(Y \). We define \(\Lambda(Y, \nu^1_p) \) to be the image in \(Y \) of \(C(Y \times X U_p, \nu^1_p) \cap \pi^{-1}(p) \). This defines a valuation which is composite with \(C(Y, \nu^1_p) \).

We define \(W(Y,p) \) to be the clopen locus on \(Y \) of the image of points in \(\pi^{-1}(U_p) = Y \times_X U_p \) such that \(I_p \mathcal{O}_Y | \pi^{-1}(U_p) \) is not invertible. Define \(\text{Preimage}(Y,Z) = \pi^{-1}(Z) \) for \(Z \) a subset of \(X \).

5. Global reduction of \(\sigma_D \)

Lemma 5.1. Suppose that \(X \) is 2-prepared and \(p \in X \) is 3-prepared. Suppose that \(r = \sigma_D(p) > 0 \).

a) Suppose that \(p \) is a 1-point. Then there exists a unique curve \(C \) in \(\text{Sing}_1(X) \) containing \(p \). The curve \(C \) is contained in \(\text{Sing}_q(X) \). If \(x,y,z \) are permissible parameters at \(p \) giving an expression (14) or (15) at \(p \), then \(z = z = 0 \) are formal local equations of \(C \) at \(p \).

b) Suppose that \(p \) is a 2-point and \(C \) is a curve in \(\text{Sing}_r(X) \) containing \(p \). If \(x,y,z \) are permissible parameters at \(p \) giving an expression (13) at \(p \), then \(x = z = 0 \) or \(y = z = 0 \) are formal local equations of \(C \) at \(p \).

Proof. We first prove a). Let \(I \subseteq \mathcal{O}_X \) be the ideal sheaf defining the reduced scheme \(\text{Sing}_1(X) \). Then \(I_p \mathcal{O}_{X,p} = \sqrt{(x, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z})} = (x, z) \) is an ideal on \(U \) defining \(\text{Sing}_1(U) \). Thus the unique curve \(C \) in \(\text{Sing}_1(X) \) through \(p \) has (formal) local equations \(x = z = 0 \) at \(p \). At points near \(p \) on \(C \), a form (14) or (15) continues to hold with \(m = r + 1 \). Thus the curve is in \(\text{Sing}_r(X) \).

We now prove b). Suppose that \(C \subseteq \text{Sing}_r(X) \) is a curve containing \(p \). By Theorem 4.3, there exists a toroidal morphism \(\Psi : U_1 \to U \) where \(U \) is an étale cover of an affine neighborhood of \(p \), and \(\overline{D} \) is the local toroidal structure on \(U \) defined (formally at \(p \)) by \(xyz = 0 \), such that all points \(q \) of \(U_1 \) satisfy \(\sigma_D(q) < r \). Hence the strict transform on \(U_1 \) of the preimage of \(C \) on \(U \) must be empty. Since \(\Psi \) is toroidal for \(\overline{D} \) and \(X \) is 3-prepared at \(p \), \(C \) must have local equations \(x = z = 0 \) or \(y = z = 0 \) at \(p \). \(\square \)

Definition 5.2. Suppose that \(X \) is 3-prepared. We define a canonical sequence of blow ups over a curve in \(X \).

1) Suppose that \(C \) is a curve in \(X \) such that \(t = \sigma_D(q) > 0 \) at the generic point \(q \) of \(C \), and all points of \(C \) are 1-points of \(D \). Then we have that \(C \) is nonsingular and \(\sigma_D(p) = t \) for all \(p \in C \) by Lemma 5.1. By Lemma 5.1 and Theorem 4.1 or 4.2, there exists a unique minimal sequence of permissible blow ups of sections over \(C \), \(\pi_1 : X_1 \to X \), such that \(X_1 \) is 2-prepared and \(\sigma_D(p) < t \) for all \(p \in \pi_1^{-1}(C) \). We will call the morphism \(\pi_1 \) the canonical sequence of blow ups over \(C \).

2) Suppose that \(C \) is a permissible curve in \(X \) which contains a 1-point such that \(\sigma_D(p) = 0 \) for all \(p \in C \), and a condition 1, 3 or 5 of Lemma 5.10 holds at all
\(p \in C \). Let \(\pi_1 : X_1 \to X \) be the blow up of \(C \). Then by Lemma 3.12, \(X_1 \) is 3-prepared and \(\sigma_D(p) = 0 \) for \(p \in \pi_1^{-1}(C) \). We will call the morphism \(\pi_1 \) the canonical blow up of \(C \).

Theorem 5.3. Suppose that \(X \) is 2-prepared. Then there exists a sequence of permissible blowups \(\psi : X_1 \to X \) such that \(X_1 \) is prepared.

Proof. By Proposition 3.13, there exists a sequence of permissible blow ups \(X^0 \to X \) such that \(X^0 \) is 3-prepared. Let \(r = \Gamma_D(X^0) \). Since \(X^0 \) is prepared if \(r = 0 \), we may assume that \(r > 0 \). Let \(T_0 = \{ p \in X^0 \mid X^0 \text{ is a 2-point for } D \text{ with } \sigma_D(p) = r \} \).

For \(p \in T_0 \), choose \((U_p, \overline{D}_p, I_p, \nu^1_p, \nu^2_p) \). Let \(\Gamma_0 \) be the union of the set of curves

\[\{ (X^0, \nu^2_p) \mid p \in T_0 \text{ and } \sigma_D(p) = r \text{ for } p \in C(X^0, \nu^2_p) \text{ the generic point} \} \]

and any remaining curves \(C \) in \(\text{Sing}_r(X^0) \) (which necessarily contain no 2-points).

By Lemma 5.1, all curves in \(\text{Sing}_r(X^0) \) are nonsingular, and if a curve \(C \in \text{Sing}_r(X^0) \) contains a 2-point \(p \in T_0 \), then \(C = C(X^0, \nu^2_p) \) for some \(j \).

Let \(Y_0 \to X^0 \) be the product of canonical sequences of blowups over the curves in \(\Gamma_0 \) (which are necessarily the curves in \(\text{Sing}_r(X^0) \)), so that \(Y_0 \setminus \cup_{p \in \Gamma_0} W(Y_0, p) \) is 2-prepared, and \(\sigma_D(q) < r \) for \(q \in Y_0 \setminus \cup_{p \in \Gamma_0} W(Y_0, p) \).

Let \(Y_{0, 1} \to Y_0 \) be a toroidal morphism for \(D_{Y_0} \) so that the components of \(D_{Y_{0, 1}} \) containing some curve \(C(Y_{0, 1}, \nu^j_q) \) for \(p \in T_0 \) are pairwise disjoint, and if \(p \in T_0 \), then \(W(Y_{0, 1}, p) \) is contained in \(C(Y_{0, 1}, \nu^1_p) \cup C(Y_{0, 1}, \nu^2_p) \cup \text{Preimage}(Y_{0, 1}, p) \).

Let \(E \) be a component of \(D_{Y_{0, 1}} \) which contains \(C(Y_{0, 1}, \nu^j_q) \) for some \(p \in T_0 \) and some \(j \). Then there exists \(Y_{0, 2} \to Y_{0, 1} \) which is an isomorphism over \(Y_{0, 1} \setminus E \cap (\cup_{p \in T_0} W(Y_{0, 1}, p)) \), is toroidal for \(D_q \) over \(W(Y_{0, 1}, q) \cap E \) for \(q \in T_0 \), is an isomorphism over \(C(Y_{0, 1}, \nu^j_q) \setminus \text{Preimage}(q) \) for all \(q \in T_0 \), and so that if \(E \) is the strict transform of \(E \) on \(Y_{0, 1} \), then for \(p \in T_0 \), one of the following holds:

\[W(Y_{0, 2}, p) \cap E = \emptyset \]

or

There exists a unique \(j \) such that

\[W(Y_{0, 2}, p) \cap E \subset C(Y_{0, 2}, \nu^j_q) \subset E, \]

and if \(\overline{p}_j = \Lambda(Y_{0, 2}, \nu^j_q) \), then \(C(Y_{0, 2}, \nu^j_q) \) is smooth at \(\overline{p}_j \),

\[(51) \]

and either \(\overline{p}_j \) is an isolated point in \(\text{Sing}_1(Y_{0, 2}) \) or \(C(Y_{0, 2}, \nu^j_q) \) is the only curve in \(\text{Sing}_1(Y_{0, 2}) \) which is contained in \(E \) and contains \(\overline{p}_j \),

and \(p_j \in C(Y_{0, 2}, \nu^k_{p'}) \) for some \(p' \in T_0 \) implies \(C(Y_{0, 2}, \nu^k_{p'}) = C(Y_{0, 2}, \nu^j_q) \).

We further have that \(Y_{0, 2} \setminus \cup_{p \in T_0} W(Y_{0, 2}, p) \) is 2-prepared, and \(\sigma_D(q) < r \) for \(q \in Y_{0, 2} \setminus \cup_{p \in T_0} W(Y_{0, 2}, p) \).

Now repeat this procedure for other components of \(D_{Y_{0, 2}} \) which contain a curve \(C(Y_{0, 2}, \nu^j_q) \) for some \(j \) to construct \(Y_{0, 3} \to Y_{0, 2} \) so that condition (50) or (51) hold for all components \(E \) of \(D_{Y_{0, 3}} \) containing a curve \(C(Y_{0, 3}, \nu^j_q) \). We have that \(Y_{0, 3} \setminus \cup_{p \in T_0} W(Y_{0, 3}, p) \) is 2-prepared, and \(\sigma_D(q) < r \) for \(q \in Y_{0, 3} \setminus \cup_{p \in T_0} W(Y_{0, 3}, p) \).
Now, by Lemma 3.4, let \(Y_{0,4} \to Y_{0,3} \) be a sequence of blow ups of 3-points for \(D \) and 2-curves of \(D \) on the strict transform of components \(E \) of \(D \) which contain \(C(Y_{0,3}, \nu_p^j) \) for some \(p \in T_0 \), so that if \(E \) is a component of \(D_{Y_{0,4}} \) which contains a curve \(C(Y_{0,4}, \nu_p^j) \), then \(Y_{0,4} \) is 3-prepared at all 2-points and 3-points of \(E \). We have that \(Y_{0,4} \setminus \cup_{p \in T_0} W(Y_{0,4}, p) \) is 2-prepared, and \(\sigma_D(q) < r \) for \(q \in Y_{0,4} \setminus \cup_{p \in T_0} W(Y_{0,4}, p) \). We further have that for all \(p \in T_0 \), (50) or (51) holds on \(E \).

Now let \(E \) be a component of \(D_{Y_{0,4}} \) which contains a curve \(C(Y_{0,4}, \nu_p^j) \). Since one of the conditions (50) or (51) hold for all \(p \in T_0 \) on \(E \), we may apply Proposition 3.14 to \(E \) and the finitely many points

\[
A = \{ q \in E \mid Y_{0,4} \text{ is not 3-prepared at } q \},
\]

which are necessarily 1-points for \(D \), being sure that none of the finitely many 2-points for \(D \)

\[
B = \{ \Lambda(Y_{0,4}, \nu_p^j) \mid p \in T_0 \}
\]

are in the image of the general curves blown up, to construct a sequence of permissible blow ups \(Y_{0,5} \to Y_{0,4} \) so that \(Y_{0,5} \to Y_{0,4} \) is an isomorphism in a neighborhood of \(\cup_{p \in T_0} W(Y_{0,4}, p) \) and over \(Y_{0,4} \setminus E \), and \(Y_{0,5} \) is 3-prepared over \(E \setminus \cup_{p \in T_0} \Lambda(Y_{0,4}, \nu_p^j) \). We have that \(Y_{0,5} \setminus \cup_{p \in T_0} W(Y_{0,5}, p) \) is 2-prepared, and \(\sigma_D(q) < r \) for \(q \in Y_{0,5} \setminus \cup_{p \in T_0} W(Y_{0,5}, p) \). We further have that for all \(p \in T_0 \), (50) or (51) hold on the strict transform \(E \) on \(Y_{0,5} \).

Now repeat this procedure for other components of \(D_{Y_{0,5}} \) which contain a curve \(C(Y_{0,5}, \nu_p^j) \) for some \(j \) to construct \(X_1 \to Y_{0,5} \) so that \(X_1 \) is 3-prepared over \(E \setminus \cup_{p \in T_0} \Lambda(Y_{0,4}, \nu_p^j) \) for all components \(E \) of \(D_{Y_{0,5}} \) which contain a curve \(C(Y_{0,5}, \nu_p^j) \) for some \(p \in T_0 \). We then have that the following holds.

1.1) \(X_1 \to X^0 \) is the canonical sequence of blow ups above a general point \(\eta \) of a curve in \(\Gamma_0 \) (so that \(\sigma_D(\eta) = r \)).

1.2) \(X_1 \to X^0 \) is toroidal for \(\overline{D}_p \) in a neighborhood of \(W(X_1, p) \), for \(p \in T_0 \).

1.3) \(X_1 \setminus \cup_{p \in T_0} W(X_1, p) \) is 2-prepared and \(\sigma_D(q) < r \) for \(q \in X_1 \setminus \cup_{p \in T_0} W(X_1, p) \).

1.4) If \(p \in T_0 \) then \(\sigma_D(q) \leq r - 1 \) and \(X_1 \) is 3-prepared at \(q \) for

\[
qu \in C(X_1, \nu_p^j) \setminus \cup_{p' \in T_0 \cap (C(X_1, \nu_p^j)) = C(X_1, \nu_p^k)} \text{ for some } k \text{ Preimage}(X_1, p').
\]

1.5) Let

\[
T_1 = \begin{cases}
2\text{-points } q \text{ for } D \text{ of} \\
C(X_1, \nu_p^j) \setminus \cup_{p' \in T_0 \cap (C(X_1, \nu_p^j)) = C(X_1, \nu_p^k)} \text{ for some } k \text{ Preimage}(X_1, p')
\end{cases}
\]

such that \(\sigma_D(q) > 0 \) and such that \(p \in T_0 \) with \(\sigma_D(\eta) = r - 1 \) for \(\eta \in C(X_1, \nu_p^j) \) the generic point.

\(X_1 \) is 3-prepared at \(p \in T_1 \). For \(q \in T_1 \), choose \((U_q, \overline{D}_q, I_q, \nu_q^1, \nu_q^2) \). We have \(0 < \sigma_D(q) \leq r - 1 \) for \(q \in T_1 \).

1.6) Suppose that \(p \in T_0 \) and \(C(X_1, \nu_p^j) \) is such that \(\sigma_D(\eta) = r - 1 \) for \(\eta \in C(X_1, \nu_p^j) \) the generic point. Then \(\sigma_D(q) = r - 1 \) for \(q \in C(X_1, \nu_p^j) \setminus \cup_{p' \in T_0 \cup T_1} W(X_1, p') \). If \(q \in T_0 \cup T_1 \) and \(W(X_1, q) \cap C(X_1, \nu_p^j) \neq \emptyset \), then \(C(X_1, \nu_p^j) = C(X_1, \nu_q^i) \) for some \(i \). (This follows from Lemma 5.1 since \(\sigma_D(q) \leq r - 1 \) for \(q \in T_1 \).)
Now for \(m \geq r \), we inductively construct

\[
X_{m,r-1} \rightarrow \cdots \rightarrow X_{m,0} \rightarrow \cdots \rightarrow X_{r+1,r-1} \rightarrow \cdots \rightarrow X_{r+1,0} \rightarrow \\
X_{r,r-1} \rightarrow X_{r,r-2} \rightarrow \cdots \rightarrow X_{r,0} \rightarrow X_{r-1,r-2} \rightarrow \cdots \rightarrow X_{3,0} \rightarrow X_{2,1} \rightarrow X_{2,0} \rightarrow X_{1,0} = X_1 \rightarrow X^0
\]
so that

2.1) \(X_{1,0} = X_1 \rightarrow X^0 \) is the canonical sequence of blow ups above a general point \(\eta \) of a curve in \(\Gamma_0 \) (so that \(\sigma_D(\eta) = r \)), and for \(i > 0 \),

\[
X_{i+1,0} \rightarrow X_{i,\min\{i-1,r-1\}}
\]

is the canonical sequence of blowups above a general point \(\eta \) of a curve \(C(X_{i,\min\{i-1,r-1\}}, \nu^j_p) \) with \(p \in T_0 \) and such that \(\sigma_D(\eta) = \max\{0, r-i\} \),

and the following properties hold on \(X_{i,l} \).

2.2) \(X_{i,l} \rightarrow X_{j,k} \) is toroidal for \(D_p \) in a neighborhood of \(W(X_{i,l}, p) \), for \(p \in T_{j,k} \) with \(T_{j,k} = T_0 \), or \(1 \leq j \leq i-1 \) and \(0 \leq k \leq \min\{j-1, r-1\} \), or \(j = i \) and \(0 \leq k \leq l-1 \).

2.3) \(X_{i,l} \cap \bigcup_{p \in T_0} \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, p) \) is 2-prepared and \(\sigma_D(q) < r \) for \(q \in X_{i,l} \cap \bigcup_{p \in T_0} \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, p) \).

2.4) If \(p \in T_0 \) then \(\sigma_D(\eta) \leq \max\{0, r-i\} \) for \(\eta \in C(X_{i,l}, \nu^j_p) \) the generic point, and \(X_{i,l} \) is 3-prepared at \(q \) for

\[
q \in C(X_{i,l}, \nu^j_p) \cap \bigcup_{p \in \Omega} \text{Preimage}(X_{i,l}, p')
\]

where

\[
\Omega = \{ p' \in T_0 \cap \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, p') \} \quad \text{for some } k.
\]

2.5) We have the set

\[
T_{i,l} = \left\{ p' \in T_0 \cup \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, p') \mid C(X_{i,l}, \nu^j_p) = C(X_{i,l}, \nu^k_p) \text{ for some } k \right\}
\]

such that \(\sigma_D(\eta) > 0 \) and such that \(p \in T_0 \) with

\[
\sigma_D(\eta) = \max\{0, r-i\} \quad \text{for } \eta \in C(X_{i,l}, \nu^j_p) \quad \text{the generic point.}
\]

\(X_{i,l} \) is 3-prepared at \(p \in T_{i,l} \). We have local resolvers \((U_p, D_p, I_p, \nu^1_p, \nu^1_p) \) at \(p \in T_{i,l} \).

We have \(\max\{1, r-i\} \leq \sigma_D(\eta) \leq r-l-1 \) for \(q \in T_{i,l} \).

2.6) Suppose that \(p \in T_0 \) and \(C(X_{i,l}, \nu^j_p) \) is such that \(\sigma_D(\eta) = \max\{0, r-i\} \) for \(\eta \in C(X_{i,l}, \nu^j_p) \) the generic point. Then \(\sigma_D(\eta) = \max\{0, r-i\} \) for

\[
q \in C(X_{i,l}, \nu^j_p) \cap \bigcup_{p' \in T_0} \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, p')
\]

Further,

a) If \(q \in T_0 \cap \bigcup_{\{j=1, \ldots, l\}} \bigcup_{\{k=0, \ldots, j-1\}} W(X_{i,l}, q) \cap C(X_{i,l}, \nu^j_p) \neq \emptyset \), then \(C(X_{i,l}, \nu^j_p) = C(X_{i,l}, \nu^k_p) \) for some \(k \).

b) If \(q \in T_{i,l} \) and \(q \in C(X_{i,l}, \nu^j_p) \), then either \(C(X_{i,l}, \nu^j_p) = C(X_{i,l}, \nu^k_p) \) for some \(k \) or \(\max\{0, r-i\} < \sigma_D(q) \leq r-l-1 \).
Note that the condition “$\sigma_D(q) > 0$” in the definition of $T_{i,l}$ is automatically satisfied if $i < r$. If $l = \min\{i - 1, r - 1\}$, condition 2.6) becomes “Suppose that $p \in T_0$ and $C(X_{i,l}, \nu^p_i)$ is such that $\sigma_D(\eta) = \max\{0, r - i\}$ for $\eta \in C(X_{i,l}, \nu^p_i)$ the generic point. Then if $q \in T_0 \cup \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) \cup \left(\cup_{n=0}^{r-i} T_{i,n}\right)$ and $W(X_{i,l}, q) \cap C(X_{i,l}, \nu^p_i) \neq \emptyset$, then $C(X_{i,l}, \nu^p_i) = C(X_{i,l}, \nu^q_i)$ for some k”.

We now prove the above inductive construction of (52). Suppose that we have made the construction out to $X_{i,t}$.

Case 1. Suppose that $l = \min\{i - 1, r - 1\}$. We will construct $X_{i+1,0} \to X_{i,\min\{i-1,r-1\}}$.

First suppose that $r > i$. Let $Y_i \to X_{i,i-1}$ be the product of the canonical sequences of blow ups above all curves $C(X_{i,j}, \nu^p_j)$ for $p \in T_0$ such that $\sigma_D(\eta) = r - i$ at a generic point $\eta \in C(X_{i,j}, \nu^p_j)$. This is a permissible sequence of blow ups by the comment following 2.6) above. We have that $Y_i \setminus \cup_{p \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_i, p)$ is 2-prepared, and $\sigma_D(q) < r$ for $q \in Y_i \setminus \cup_{p \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_i, p)$. Further, $Y_i \to X_{i,i-1}$ is toroidal for D_p in a neighborhood of $W(Y_i, p)$ for $p \in T_0 \cup \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right)$.

Now suppose that $r \leq i$. On $X_{i,r-1}$, we have that $\sigma_D(q) = 0$ for $p \in T_0$ and $q \in C(X_{i,r-1}, \nu^p_r) \setminus \cup_{p' \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(X_{i,r-1}, p')$. By Lemmas 3.9, 3.10, 3.11 and 3.12, there exists a sequence $Y_i \to X_{i,r-1}$ of blow ups of prepared points on the strict transform of curves $C(X_{i,r-1}, \nu^p_r)$ with $p \in T_0$, followed by the blow ups of the strict transforms of these $C(X_{i,r-1}, \nu^p_r)$, so that for $q \in T_0 \cup \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_i, p)$ is 2-prepared and $\sigma_D(q) < r$ for

$$q \in Y_i \setminus \cup_{p \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_i, p).$$

Further, $Y_i \to X_{i,r-1}$ is toroidal for D_p in a neighborhood of $W(Y_i, p)$ for $p \in T_0 \cup \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right)$.

From now on, we consider both cases $r > i$ and $r \leq i$ simultaneously. Let $Y_{i,1} \to Y_i$ be a torodial morphism for D so that the components of D containing some curve $C(Y_{i,1}, \nu^p_i)$ for $p \in T_0 \cup \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right)$ are pairwise disjoint, and if

$$p \in \cup_{p' \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_{i,1}, p')$$

then $W(Y_{i,1}, p)$ is contained in $C(Y_{i,1}, \nu^1_i) \cup C(Y_{i,1}, \nu^2_i) \cup \text{Preimage}(Y_{i,1}, p)$.

Let E be a component of D on $Y_{i,1}$ which contains $C(Y_{i,1}, \nu^\alpha_i)$ for some $\alpha \in T_0$ and some j. Then there exists $Y_{i,2} \to Y_{i,1}$ which is an isomorphism over

$$Y_{i,1} \setminus E \cap \left(\cup_{p' \in T_0} \left(\cup_{j=1}^{r-i-1} \cup_{k=0}^{\min(j-1,r-1)} T_{j,k}\right) W(Y_{i,1}, p')\right),$$

36
is toroidal for D_q over $W(Y_{i,1}, q) \cap E$ for $q \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)$, is an isomorphism over $C(Y_{i,1}, \nu^q_j) \setminus \text{Preimage}(Y_{i,1}, q)$ for all $q \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)$, and so that if E is the strict transform of E on $Y_{i,2}$, then for $p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)$, one of the following holds:

\begin{equation}
W(Y_{i,2}, p) \cap \overline{E} = \emptyset
\end{equation}

or

\begin{equation}
\text{There exists a unique } j \text{ such that}
\end{equation}

\[W(Y_{i,2}, p) \cap \overline{E} \subset C(Y_{i,2}, \nu^p_j) \subset \overline{E}, \]

and

if $\overline{p}_j = \Lambda(Y_{i,2}, \nu^j_2)$, then $C(Y_{i,2}, \nu^p_j)$ is smooth at \overline{p}_j, and either \overline{p}_j is an isolated point in $\text{Sing}_1(Y_{i,2})$ or $C(Y_{i,2}, \nu^j_2)$ is the only curve in $\text{Sing}_1(Y_{i,2})$ which is contained in \overline{E} and contains \overline{p}_j, and

\[\overline{p}_j \in C(Y_{i,2}, \nu^k_p) \text{ for some } p' \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right) \] implies $C(Y_{i,2}, \nu^k_p) = C(Y_{i,2}, \nu^j_2)$. We have that $Y_{i,2} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,2}, p)$ is 2-prepared, and $\sigma_D(q) < r$ for $q \in Y_{i,2} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,2}, p)$.

Now repeat this procedure for other components of D for $Y_{i,2}$ which contain a curve $C(Y_{i,2}, \nu^\alpha_2)$ with $\alpha \in T_0$ for some j to construct $Y_{i,3} \to Y_{i,2}$ so that condition (53) or (54) hold for all $p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)$ and components E of D for $Y_{i,3}$ containing a curve $C(Y_{i,3}, \nu^\alpha_2)$ with $\alpha \in T_0$. We have that $Y_{i,3} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,3}, p)$ is 2-prepared, and $\sigma_D(q) < r$ for $q \in Y_{i,3} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,3}, p)$.

Now, by Lemma 3.4, let $Y_{i,4} \to Y_{i,3}$ be a sequence of blow ups of 2-curves of D on the strict transform of components E of D which contain $C(Y_{i,3}, \nu^\alpha_2)$ for some $\alpha \in T_0$, so that if E is a component of $D_{Y_{i,4}}$ which contains a curve $C(Y_{i,4}, \nu^\alpha_2)$ with $\alpha \in T_0$, and if $p \in E \setminus \bigcup_{q \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} \Lambda(Y_{i,4}, \nu^j_2)$ is a 2-point, then p is 3-prepared.

We have that $Y_{i,4} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,4}, p)$ is 2-prepared, and $\sigma_D(q) < r$ for $q \in Y_{i,4} \setminus \bigcup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,4}, p)$. We further have that for all $p \in T_0 \cup \left(\bigcup_{j=1}^{\min(j-1,r-1)} T_{j,k} \right)$, (53) or (54) holds on E.

Now let E be a component of D for $Y_{i,4}$ which contains a curve $C(Y_{i,4}, \nu^\alpha_2)$ with $\alpha \in T_0$. Let

\[T = \{ q \in E \mid Y_{i,4} \text{ is not 3-prepared at } q \}. \]

If $r \leq i$, let

\[T' = \left\{ 1\text{-points } q \text{ of } D \text{ contained in } E \text{ such that} \right. \]

\[q \in C(Y_{i,4}, \nu^j_2) \text{ for some } p \in T_0 \text{ and } \sigma_D(q) > 0 \left. \right\}. \]
Since one of the conditions (53) or (54) hold for all \(p \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right) \) on \(E \), we may apply Proposition 3.14 to \(E \) and the finite set of points \(A = T \), if \(r > i \) or \(A = T \cup T' \) if \(r \leq i \), which are necessarily 1-points for \(D \) lying on \(E \), being sure that none of the finitely many points 2-points of \(D \)

\[
B = \{ \Lambda(Y_{i,4}, \nu_{p}^{j}) \mid p \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right) \}
\]

are in the image of the general curves blown up, to construct a sequence of permissible transforms \(Y_{i,5} \rightarrow Y_{i,4} \) so that \(Y_{i,5} \rightarrow Y_{i,4} \) is an isomorphism in a neighborhood of \(\cup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right)} W(Y_{i,4}, p) \) and over \(Y_{i,4} \setminus E \), and \(Y_{i,5} \) is 3-prepared over \(E \).

Now we may construct, using the method of Case 1, a morphism \(X_{i+1,0} \rightarrow Y_{i,5} \) with \(\alpha \in T_0 \) for some \(j \) to construct \(X_{i+1,0} \rightarrow Y_{i,5} \) so that \(X_{i+1,0} \) is 3-prepared over \(E \setminus \cup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right)} \Lambda(Y_{i,5}, \nu_{p}^{j}) \) for all components \(E \) of \(D \) for \(Y_{i,5} \) which contain a curve \(C(Y_{i,5}, \nu_{p}^{j}) \) with \(\alpha \in T_0 \).

Let

\[
T_{i+1,0} = \left\{ \begin{array}{l}
2\text{-points } q \text{ for } D \text{ of } C(X_{i+1,0}, \nu_{p}^{j}) \setminus \cup_{p' \in \Omega} \text{Preimage}(X_{i+1,0}, p')
\end{array} \right\}
\]

where \(\Omega = \{ p' \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right) \mid C(X_{i+1,0}, \nu_{p}^{j}) = C(X_{i+1,0}, \nu_{p'}^{j}) \text{ for some } l \} \)

such that \(\sigma_{D}(q) > 0 \) and such that \(p \in T_0 \) with

\[
\sigma_{D}(\eta) = \max \{ 0, r - i - 1 \} \text{ for } \eta \in C(X_{i+1,0}, \nu_{p}^{j}) \text{ a general point}.
\]

Now repeat this procedure for other components of \(D_{Y_{i,5}} \) with \(\alpha \in T_0 \) for some \(j \) to construct \(X_{i+1,0} \rightarrow Y_{i,5} \) so that \(X_{i+1,0} \) is 3-prepared over \(E \setminus \cup_{p \in T_0 \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{k=0}^{\min(j-1,r-1)} T_{j,k} \right)} \Lambda(Y_{i,5}, \nu_{p}^{j}) \) for all components \(E \) of \(D \) for \(Y_{i,5} \) which contain a curve \(C(Y_{i,5}, \nu_{p}^{j}) \) with \(\alpha \in T_0 \).

Case 2 Now suppose that \(l < \min\{i - 1, r - 1\} \). We will construct \(X_{i,l+1} \rightarrow X_{i,l} \). Let \(\Omega \) be the set of points \(q \in T_{i,l} \) such that \(q \) is contained in a curve \(C(X_{i,l}, \nu_{p}^{j}) \) where \(p \in T_0 \) and \(\sigma_{D}(\eta) = \max \{ 0, r - i \} \) for \(\eta \in C(X_{i,l}, \nu_{p}^{j}) \) a general point. By condition 2.5) satisfied by \(X_{i,l} \),

\[
\max \{ 1, r - i \} \leq \sigma_{D}(q) \leq r - l - 1
\]

for \(q \in \Omega \). Let \(Y \rightarrow X_{i,l} \) be a morphism which is an isomorphism over \(X_{i,l} \setminus \Omega \) and is toroidal for \(D_{Y} \) above \(q \in \Omega \) and such that \(C(Y, \nu_{p}^{j}) \cap W(Y, q) = \emptyset \) if \(C(Y, \nu_{p}^{j}) \) is such that \(p \in T_0 \), \(\sigma_{D}(\eta) = \max \{ 0, r - i \} \) if \(\eta \in C(Y, \nu_{p}^{j}) \) is a general point, and \(C(Y, \nu_{p}^{j}) \neq C(Y, \nu_{p}^{j}) \) for any \(k \). For such a case we have by (55), that \(\sigma_{D}(\eta) \leq \max \{ 0, r - l - 2 \} \) if \(\eta = \Lambda(Y, \nu_{p}^{j}) \).

Now we may construct, using the method of Case 1, a morphism \(X_{i,l+1} \rightarrow Y \) such that
$X_{i,l+1} \to X_{i,l}$ is toroidal for D above $X_{i,l} \setminus \Omega$, and the conditions 2.2) - 2.6) following (52) hold. This completes the inductive construction of (52).

For m sufficiently large in (52), we have that for $p \in T_0$, $I_p \mathcal{O}_{X,m,r-1,p}$ is locally principal at a general point η of a curve $C(X,m,r-1,\nu_p^1)$.

After possibly performing a toroidal morphism for D, we have that the locus where $I_p(\mathcal{O}_{X,m,r-1}| \text{Preimage}(X,m,r-1, U_p))$ is not locally principal is supported above p for $p \in T_0$. Thus toroidal morphisms for D_p above Preimage$(X,m,r-1, U_p)$ which principalize I_p above U_p for $p \in T_0$ extend to a morphism $Z^1 \to X_{m,r-1}$ which is an isomorphism over $X_{m,r-1} \setminus \cup_{p \in T_0} \text{Preimage}(X_{m,r-1}, p)$. We have that $W(Z^1, p) = \emptyset$ for $p \in T_0$. We have that Z^1 is 2-prepared at $q \in Z^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}} W(Z^1, p)$ and $\sigma_D(q) \leq r - 1$ for $q \in Z^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}} W(Z^1, p)$.

If $r = 1$, then Z^1 is prepared. In this case let $X_1 = Z^1$. Suppose that $r > 1$. Let $Z^1 \to Z^1$ be a toroidal morphism for D so that components of D containing curves $C(Z^1, \nu_p^1)$ for $p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$ are pairwise disjoint, and that if $p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$, then $W(Z^1, p)$ is contained in $C(Z^1, \nu_p^1) \cup C(Z^1, \nu_p^2) \cup \text{Preimage}(Z^1, p)$.

Let E be a component of D on Z^1 which contains $C(Z^1, \nu_p^1)$ for some $p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$ or contains a point $q \in E \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}} W(Z^1, p)$ such that $\sigma_D(q) = r - 1$.

Then there exists $Z_2^1 \to Z^1$ which is an isomorphism over

$$Z^1 \setminus E \cap (\cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}} W(Z^1, p)),$$

is toroidal for D_q over $W(Z^1, q) \cap E$ for $q \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$, is an isomorphism over $C(Z^1, \nu_q^1) \setminus \text{Preimage}(Z^1, q)$ for all $q \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$ and factors as a sequence of permissible blow ups of points and curves

$$Z_2^1 = Z_2^{1,n} \to Z_2^{1,n-1} \to \cdots \to Z_2^{1,1} \to Z^1,$$

such that the center blown up in $Z_2^{1,t} \to Z_2^{1,t-1}$ is a curve or point contained in $W(Z_2^{1,t-1}, p)$ for some $p \in \cup_{j=1}^{m} \cup_{l=1}^{\min(j-1, r-1)} T_{j,l}$, and so that if E is the strict transform of E on Z_2^1, then for $p \in \cup_{j=1}^{m} \cup_{k=1}^{\min(j-1, r-1)} T_{j,k}$, one of the following holds:

\begin{equation}
W(Z_2^1, p) \cap E = \emptyset
\end{equation}
or

(57)

There exists a unique \(j \) such that

\[W(Z_2^1, p) \cap \mathcal{E} \subset C(Z_2^1, \nu^j_0) \subset \mathcal{E}, \]

and

if \(\overline{p}_j = \Lambda(Z_2^1, \nu^j_0) \), then \(C(Z_2^1, \nu^j_0) \) is smooth at \(\overline{p}_j \),

and either \(\overline{p}_j \) is an isolated point in \(\text{Sing}_1(Z_2^1) \) or \(C(Z_2^1, \nu^j_0) \)

is the only curve in \(\text{Sing}_1(Z_2^1) \) which is contained in \(\mathcal{E} \) and contains \(\overline{p}_j \),

and

\(\overline{p}_j \in C(Z_2^1, \nu^j_0) \) for some \(p' \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \) implies \(C(Z_2^1, \nu^j_0) = C(Z_2^1, \nu^j_0) \)

and

If \(\gamma \) is a 2-curve of \(D \) on \(E \) which contains \(\overline{p}_j \),

then \(\sigma_D(q) \leq r - 2 \) for \(q \in \gamma \setminus \{ \overline{p}_j \} \).

Note that no new components of \(D \) containing points

\[p \in D \setminus \left(\cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_2^1, p) \right) \]

with \(\sigma_D(p) = r - 1 \) can be created as

\[q \in \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} \text{(Preimage}(Z_2^1, W(Z_1^1, p)) \setminus W(Z_2^1, p)) \]

implies \(\sigma_D(q) \leq r - 2 \).

We further have that \(Z_2^1 \) is 2-prepared at \(q \in Z_2^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_2^1, p) \) and

\(\sigma_D(q) \leq r - 1 \) for \(q \in Z_2^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_2^1, p) \).

Now repeat this procedure for other such components \(E \) of \(D \) for \(Z_2^1 \) which contain

\(C(Z_2^1, \nu^j_0) \) for some \(p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \) or contain a point

\[q \in E \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_2^1, p) \]

with \(\sigma_D(q) = r - 1 \) (which are necessarily the strict transform of a component of \(D \)

on \(Z_1^1 \)) to construct \(Z_3^1 \to Z_2^1 \) so that for all \(p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \), condition

(56) or (57) hold for all components \(E \) of \(D \) for \(Z_3^1 \) which contain \(C(Z_3^1, \nu^j_0) \) for some

\(p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \) or contain a point \(q \in E \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_3^1, p) \) with

\(\sigma_D(q) = r - 1 \). We have that \(Z_3^1 \) is 2-prepared at \(q \in Z_3^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_3^1, p) \)

and \(\sigma_D(q) \leq r - 1 \) for \(q \in Z_3^1 \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_3^1, p) \).

Now by Lemma 3.4, we can perform a toroidal morphism for \(D \) (which is a sequence of blowups of 2-curves for \(D \)) \(Z_3^1 \to Z_3^1 \), so that we further have that if \(G \) is a component of \(D_{Z_4^1} \) containing a curve \(C(Z_4^1, p) \) for some \(p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \) or

\(G \setminus \cup_{p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k}} W(Z_4^1, p) \) contains a point \(q \) with \(\sigma_D(q) = r - 1 \), then \(Z_4^1 \) is 3-

prepared at all 2-points and 3-points of \(G \). We further have that for all \(p \in \cup_{j=1}^{m} \cup_{k=1}^{\min\{j-1, r-1\}} T_{j,k} \), (56) or (57) holds on \(G \).
We now may apply Proposition 3.14 to the union H of components E of D for Z^1_4 containing a curve $C(Z^1_4, \nu^q_p)$ for some $p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k}$, or containing a point q with $\sigma_D(q) = r - 1$

$$A = \{ q \in H \ | \ Z^1_4 \text{ is not 3-prepared at } q \text{ (which are necessarily one points of } D) \}$$

being sure that none of the finitely many 2-points for $D

$$B = \{ \Lambda(Z^1_4, \nu^q_j) \ | \ p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k} \}$$

are in the image of the general curves blown up, to construct $X^1 \to Z^1_4$ so that X^1

is 3-prepared over $E \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k}} \Lambda(X^1, \nu^q_p)$ for all components E of D for X^1 which contain a curve $C(X^1, \nu^q_p)$ for some $p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k}$, or contain a point $q \in X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p)$ with $\sigma_D(q) = r - 1$. Further, for all

$$p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k},$$

condition (56) or (57) hold on components F of D for X^1

containing a curve $C(X^1, \nu^q_p)$ or a point $q \in X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=1}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p)$ such that $\sigma_D(q) = r - 1$.

We now have (using Lemma 5.1) the following:

3.1) $X^1 \to X_{j,k}$ is toroidal for D_p for $p \in T_{j,k}$ with $1 \leq j \leq m$, $0 \leq k \leq \min\{j-1,r-1\}$ in a neighborhood of $W(X^1, p)$.

3.2) $X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p)$ is 2-prepared and $\sigma_D(q) \leq r - 1$ for $q \in X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p)$.

3.3) Suppose that $1 < r$. Then

a) X^1 is 3-prepared at all points

$$q \in C(X^1, \nu^k_p) \setminus \bigcup_{p' \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p'),$$

for $p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}$.

b) X^1 is 3-prepared at all points of

$$\left(X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p) \right) \cap \text{Sing}_{r-1}(X^1),$$

and if $C \subset \text{Sing}_{r-1}(X^1)$ is not equal to a curve $C(X^1, \nu^k_p)$ for some $p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}$, then

$$C \cap \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p) = \emptyset.$$

3.4) Suppose that $1 < r$. Let

$$T^1_0 = \left\{ \begin{array}{ll} 2\text{-points } q \text{ of } X^1 \setminus \bigcup_{p \in \bigcup_{j=1}^m \bigcup_{k=0}^{\min\{j-1,r-1\}} T_{j,k}} W(X^1, p) & \text{such that } \sigma_D(q) = r - 1, \end{array} \right\}$$
For \(p \in T_0^1 \), let \((U_p, \overline{\mathcal{D}}_p, \nu_p^1, \nu_p^2)\) be associated local resolvers. Let \(\Gamma_1 \) be the union of the curves
\[
\left\{ C(X^1, \nu_p^1) \text{ such that } p \in \left(\bigcup_{j=1}^{m} \bigcup_{j=0}^{\min\{j-1, r-j\}} T_{j,k} \right) \cup T_0^1 \right\}
\]
and \(\sigma_D(\eta) = r - 1 \) for \(\eta \in C(X^1, \nu_p^1) \) a general point
and any remaining curves \(C \) in
\[
\text{Sing}_{r-1}(X^1 \setminus \left(\bigcup_{j=1}^{m} \bigcup_{j=0}^{\min\{j-1, r-j\}} T_{j,k} \right) \cup T_0^1)
\]
(which are necessarily closed in \(X^1 \) and do not contain 2-points).

3.5) Suppose that \(1 < r \). Suppose that
\[
p \in \left(\bigcup_{j=1}^{m} \bigcup_{j=0}^{\min\{j-1, r-j\}} T_{j,k} \right) \cup T_0^1
\]
and \(C(X^1, \nu_p^1) \) is such that \(\sigma_D(\eta) = r - 1 \) for \(\eta \in C(X^1, \nu_p^1) \) the generic point. Then \(\sigma_D(q) = r - 1 \) for
\[
q \in C(X^1, \nu_p^1) \setminus \left(\bigcup_{p' \in \left(\bigcup_{j=1}^{m} \bigcup_{j=0}^{\min\{j-1, r-j\}} T_{j,k} \right) \cup T_0^1} W(X^1, p') \right).
\]
Further, if \(q \in \left(\bigcup_{j=1}^{m} \bigcup_{j=0}^{\min\{j-1, r-j\}} T_{j,k} \right) \cup T_0^1 \) and \(W(X^1, q) \cap C(X^1, \nu_p^1) \neq \emptyset \), then
\(C(X^1, \nu_p^1) = C(X^1, \nu_q^n) \) for some \(n \).

Now we proceed in this way to inductively construct sequences of blow ups for \(0 \leq j \leq r - 1 \) (as in the algorithm of (52)), where we identify \(X_0^0 \) with \(X_{i,l} \),
\[
X^j \to X^j_{m_j-1, r-j-1}
\]
for \(1 \leq j \leq r \) (as in the construction of \(X^1 \)) such that for \(1 \leq j \leq r \),
\begin{enumerate}
\item \(X^j \to X^j_{i,k} \) is toroidal for \(\overline{\mathcal{D}}_p \) for \(p \in T^j_{i,k} \) with \(1 \leq i \leq m_{j-1}, 0 \leq k \leq \min\{i-1, r-j\} \) in a neighborhood of \(W(X^j, p) \).
\item \(X^j \setminus \bigcup_{p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min\{i-1, r-j\} T_{i,k}}} W(X^j, p) \) is 2-prepared and \(\sigma_D(q) \leq r - j \) for \(q \in \bigcup_{p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min\{i-1, r-j\} T_{i,k}}} W(X^j, p) \).
\item \(X^j \) is 3-prepared at all points
\end{enumerate}

\begin{enumerate}
\item \(q \in C(X^j, \nu_p^k) \setminus \bigcup_{p' \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min\{i-1, r-j\} T_{i,k}}} W(X^j, p') \) for some \(l \) \(\text{Preimage}(X^j, p') \)
\item \(X^j \) is 3-prepared at all points of
\[
\left(X^j \setminus \bigcup_{p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min\{i-1, r-j\} T_{i,k}}} W(X^j, p) \right) \cap \text{Sing}_{r-j}(X^j).
\]
\end{enumerate}
and if $C \subset \text{Sing}_{r-j}(X^j)$ is not equal to a curve $C(X^j, \nu^j_p)$ for some $p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1}$, then

$$C \cap \bigcup_{p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1}} W(X^j, p) = \emptyset.$$

4.4) Suppose that $j < r$. Let

$$T_0^j = \left\{ \begin{array}{ll}
2\text{-points } q \text{ of } X^j - \bigcup_{p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1}} W(X^j, p) & \\
\text{such that } \sigma_{D}(q) = r - j &
\end{array} \right\}$$

For $p \in T_0^j$, let $(U_p, D_p, \nu^j_p, \nu^n_p)$ be associated local resolvers.

Let Γ_j be the union of the curves

$$\left\{ (X^j, \nu^j_i) \text{ such that } p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1} \cup T_0^j \text{ and } \sigma_{D}(\eta) = r - j \text{ for } \eta \in (X^j, \nu^j_p) \text{ a general point} \right\}$$

and any remaining curves C in

$$\text{Sing}_{r-j}(X^j \setminus \left(\bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1} \cup T_0^j \right))$$

(which are necessarily closed in X^j and do not contain 2-points).

4.5) Suppose that $j < r$. Suppose that

$$p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1} \cup T_0^j$$

and $C(X^j, \nu^j_p)$ is such that $\sigma_{D}(\eta) = r - j$ for $\eta \in C(X^j, \nu^j_p)$ the generic point. Then $\sigma_{D}(q) = r - j$ for

$$q \in C(X^j, \nu^j_p) \setminus \bigcup_{p' \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1} \cup T_0^j} W(X^j, p').$$

Further, if $q \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min(i-1,r-j)} T_{i,k}^{j-1} \cup T_0^j$ and $W(X^j, q) \cap C(X^j, \nu^j_p) \neq \emptyset$, then $C(X^j, \nu^j_p) = C(X^j, \nu^n_q)$ for some n.

For $0 \leq j \leq r - 1$, $0 \leq i \leq m_j$ and $0 \leq k \leq \min\{i-1, r-j-1\}$,

5.1) $X^j_{i,0} \to X^j$ is the canonical sequence of blow ups above a general point η of a curve in Γ_j (so that $\sigma_{D}(\eta) = r - j$), and for $i > 0$,

$$X^j_{i+1,0} \to X^j_{i,\min\{i-1, r-j-1\}}$$

is the canonical sequence of blow ups above a general point η of a curve

$$C(X^j_{i,\min\{i-1, r-j-1\}}, \nu^j_p)$$

with $p \in \bigcup_{i=1}^{m_j} \bigcup_{k=0}^{\min\{i-1, r-j\}} T_{i,k}^{j-1} \cup T_0^j$ and $\sigma_{D}(\eta) = \max\{0, r - i - j\}$,

and the following properties hold. Let

$$S_{i,k}^j = \left(\bigcup_{l=1}^{m_j} \bigcup_{n=0}^{\min\{l-1, r-j\}} T_{l,n}^{j-1} \cup T_0^j \cup \left(\bigcup_{l=1}^{i-1} \bigcup_{n=0}^{\min\{l-1, r-j-1\}} T_{l,n}^j \right) \cup \left(\bigcup_{n=0}^{k-1} T_{i,n}^j \right) \right).$$
5.2) $X_{i,k}^j \to X_{l,n}^s$ is toroidal for D_p in a neighborhood of $W(X_{i,k}^j, p)$ for $p \in S_{i,k}^j$ (with $p \in X_{l,n}^s$).

5.3) $X_{i,k}^j \setminus (\bigcup_{p \in S_{i,k}^j} W(X_{i,k}^j, p))$ is 2-prepared and $\sigma_D(p) < r - j$ for $q \in X_{i,k}^j \setminus (\bigcup_{p \in S_{i,k}^j} W(X_{i,k}^j, p))$.

5.4) If $p \in \left(\bigcup_{l=1}^{m_j-1} \bigcup_{n=0}^{\min(l-1,r-j)} T_{i,n}^{j-1} \right) \cup T_0^j$, then $\sigma_D(\eta) \leq \max\{0, r - i - j\}$ for $\eta \in C(X_{i,k}^j, \nu_p^j)$ the generic point and $X_{i,k}^j$ is 3-prepared at q for

$$q \in C(X_{i,k}^j, \nu_p^j) \setminus \bigcup_{p' \in S_{i,k}^j} \setminus C(X_{i,k}^j, \nu_{p'}^j) = C(X_{i,k}^j, \nu_p^j)$$

for some i.

5.5) We have the set

$$T_{i,n}^j = \left\{ \begin{array}{l}
2\text{-points } q \text{ for } D \text{ of } C(X_{i,k}^j, \nu_p^j) \setminus \bigcup_{p' \in \Omega} \text{Preimage}(X_{i,k}^j, p'), \\
\text{such that } \sigma_D(q) > 0 \text{ and such that } \\
p \in \left(\bigcup_{l=1}^{m_j-1} \bigcup_{n=0}^{\min(l-1,r-j)} T_{i,n}^{j-1} \right) \cup T_0^j \\
\text{with } \sigma_D(\eta) = \max\{0, r - i - j\} \text{ for } \eta \in C(X_{i,k}^j, \nu_p^j) \text{ the generic point.}
\end{array} \right\}$$

$X_{i,k}^j$ is 3-prepared at $p \in T_{i,k}^j$. We have local resolvers $(U_p, D_p, I_p, \nu_p^j, \nu_p^2)$ at $p \in T_{i,k}^j$. We have $\max\{1, r - i - j\} \leq \sigma_D(q) \leq r - j - k - 1$ for $q \in T_{i,k}^j$.

5.6) Suppose that

$$p \in \left(\bigcup_{l=1}^{m_j-1} \bigcup_{n=0}^{\min(l-1,r-j)} T_{i,n}^{j-1} \right) \cup T_0^j$$

and $C(X_{i,k}^j, \nu_p^j)$ is such that $\sigma_D(\eta) = \max\{0, r - i - j\}$ for $\eta \in C(X_{i,k}^j, \nu_p^j)$ a general point. Then $\sigma_D(q) = \max\{0, r - i - j\}$ for $q \in C(X_{i,k}^j, \nu_p^j) \setminus \bigcup_{p' \in S_{i,k}^j \setminus T_{i,k}^j} W(X_{i,k}^j, p')$.

Further,

a) If $q \in S_{i,k}^j$ and $W(X_{i,k}^j, q) \cap C(X_{i,k}^j, \nu_p^j) \neq \emptyset$, then $C(X_{i,k}^j, \nu_p^j) = C(X_{i,k}^j, \nu_q^n)$ for some n.

b) If $q \in T_{i,k}^j$ and $q \in C(X_{i,k}^j, \nu_p^j)$, then either $C(X_{i,k}^j, \nu_p^j) = C(X_{i,k}^j, \nu_q^n)$ for some n or

$$\max\{0, r - i - j\} < \sigma_D(q) \leq r - k - j - 1.$$

By the definition of $T_{i,k}^j$ in 5.5) above, we have that $\bigcup_{l=1}^{m_j-1} \bigcup_{n=0}^{\min(l-1,r-j)} T_{i,k}^{j-1} = \emptyset$. Thus 4.2), following (59), implies that X^r is prepared.

\[\square\]

6. Proof of Toroidalization

Theorem 6.1. Suppose that k is an algebraically closed field of characteristic zero, and $f : X \to S$ is a dominant morphism from a nonsingular 3-fold over k to a nonsingular surface S over k and D_S is a reduced SNC divisor on S such that $D_X = f^{-1}(D_S)_{\text{red}}$ is a SNC divisor on X which contains the locus where f is not smooth. Further suppose that f is 1-prepared. Then there exists a sequence of blow ups of points and nonsingular curves $\pi_2 : X_1 \to X$, which are contained in the preimage of D_X, such that the induced morphism $f_1 : X_1 \to S$ is prepared with respect to D_S.

Proof. The proof is immediate from Lemma 2.2, Proposition 2.7 and Theorem 5.3. \[\square\]
Theorem 6.1 is a slight restatement of Theorem 17.3 of [15]. Theorem 17.3 [15] easily follows from Lemma 2.2 and Theorem 6.1.

Theorem 6.2. Suppose that k is an algebraically closed field of characteristic zero, and $f : X \to S$ is a dominant morphism from a nonsingular 3-fold over k to a nonsingular surface S over k and D_S is a reduced SNC divisor on S such that $D_X = f^{-1}(D_S)_{\text{red}}$ is a SNC divisor on X which contains the locus where f is not smooth. Then there exists a sequence of blow ups of points and nonsingular curves $\pi_2 : X_1 \to X$, which are contained in the preimage of D_X, and a sequence of blow ups of points $\pi_1 : S_1 \to S$ which are in the preimage of D_S, such that the induced rational map $f_1 : X_1 \to S_1$ is a morphism which is toroidal with respect to $D_{S_1} = \pi_1^{-1}(D_S)$.

Proof. The proof follows immediately from Theorem 6.1, and Theorems 18.19, 19.9 and 19.10 of [15].

References

[29] Hironaka, H., A program for resolution of singularities, in all characteristics $p > 0$ and in all dimensions, Lecture notes from the school and conference on Resolution of singularities, Trieste, 2006; Clay Math Institute Workshop, 2008; and RIMS Workshop, 2008.
[31] Kawanoue H., and Matsuki, K., Toward resolution of singularities over a field of positive characteristic (The Kawanoue program), Part II. Basic invariants associated to the idealistic filtration and their properties. AG/0612008.
[38] Seidenberg, A., Reduction of the singularities of the differential equation $Ady = Bdx$, Amer. J. Math. 90 (1968), 248 -269.

Steven Dale Cutkosky, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: cutkoskys@missouri.edu