EXAMPLES OF MULTIPLICITIES AND MIXED MULTIPLICITIES OF FILTRATIONS

STEVEN DALE CUTKOSKY

Abstract. In this paper we construct examples of irrational behavior of multiplicities and mixed multiplicities of divisorial filtrations. The construction makes essential use of anti-positive intersection products.

1. Introduction

In this paper, we begin by giving an overview of the theory of multiplicities and mixed multiplicities of (not necessarily Noetherian) filtrations, including an interpretation of multiplicities and mixed multiplicities of divisorial filtrations as anti-positive intersection multiplicities. Using this interpretation, we construct a resolution of singularities of a normal three dimensional local ring and compute the multiplicities and mixed multiplicities of its divisorial filtrations, showing essentially irrational behavior.

The study of mixed multiplicities of m_R-primary ideals in a Noetherian local ring R with maximal ideal m_R was initiated by Bhattacharya [1], Rees [29] and Teissier and Risler [35]. In [11] the notion of mixed multiplicities is extended to arbitrary, not necessarily Noetherian, filtrations of R by m_R-primary ideals. It is shown in [11] that many basic theorems for mixed multiplicities of m_R-primary ideals are true for filtrations.

The development of the subject of mixed multiplicities and its connection to Teissier’s work on equisingularity [35] can be found in [16]. A survey of the theory of mixed multiplicities of ideals can be found in [34, Chapter 17], including discussion of the results of the papers [30] of Rees and [33] of Swanson, and the theory of Minkowski inequalities of Teissier [35], [36], Rees and Sharp [32] and Katz [18]. Later, Katz and Verma [19], generalized mixed multiplicities to ideals which are not all m_R-primary.

Let R be a Noetherian local ring of dimension d with maximal ideal m_R. Let $\ell_R(M)$ denote the length of an R-module M.

A filtration $\mathcal{I} = \{I_n\}_{n \in \mathbb{N}}$ of a ring R is a descending chain

$$R = I_0 \supset I_1 \supset I_2 \supset \cdots$$

of ideals such that $I_i I_j \subset I_{i+j}$ for all $i, j \in \mathbb{N}$. A filtration $\mathcal{I} = \{I_n\}$ of a local ring R by m_R-primary ideals is a filtration $\mathcal{I} = \{I_n\}_{n \in \mathbb{N}}$ of R such that I_n is m_R-primary.

The author was partially supported by NSF grant DMS-1700046.
for \(n \geq 1 \). A filtration \(\mathcal{I} = \{I_n\}_{n \in \mathbb{N}} \) of a ring \(R \) is said to be Noetherian if \(\bigoplus_{n \geq 0} I_n \) is a finitely generated \(R \)-algebra.

The nilradical \(N(R) \) of \(R \) is

\[
N(R) = \{ x \in R \mid x^n = 0 \text{ for some positive integer } n \}.
\]

We have that \(\dim N(R) = d \) if and only if there exists a minimal prime \(P \) of \(R \) such that \(\dim R/P = d \) and \(R/P \) is not reduced. Let \(\hat{R} \) be the \(m_R \)-adic completion of \(R \).

In [6, Theorem 1.1] and [7, Theorem 4.2] we have shown that the limit

\[
\lim_{n \to \infty} \frac{\ell_R(R/I_n)}{n^d}
\]

exists for any filtration \(\mathcal{I} = \{I_n\} \) of \(R \) by \(m_R \)-primary ideals if and only if \(\dim N(\hat{R}) < d \). We observe that the condition \(\dim N(\hat{R}) < d \) holds if \(R \) is analytically unramified; that is, \(\hat{R} \) is reduced.

The problem of existence of such limits (1) has been considered by Ein, Lazarsfeld and Smith [14] and Mustaţă [27]. When the ring \(R \) is a domain and is essentially of finite type over an algebraically closed field \(k \) with \(R/m_R = k \), Lazarsfeld and Mustaţă [24] showed that the limit exists for all filtrations of \(R \) by \(m_R \)-primary ideals. Cutkosky proved it in the complete generality stated above in [6] and [7]. These proofs use the theory of volumes of cones of Okounkov [28], Kaveh and Khovanskii [21] and Lazarsfeld and Mustaţă [24].

We now impose the necessary condition that the dimension of the nilradical \(N(\hat{R}) \) of the completion \(\hat{R} \) of \(R \) is less than the dimension of \(R \), to insure the existence of limits. We define the multiplicity of \(R \) with respect to a filtration \(\mathcal{I} = \{I_n\} \) of \(m_R \)-primary ideal to be

\[
e_R(\mathcal{I}; R) = \lim_{n \to \infty} \frac{\ell_R(R/I_n)}{n^d/d!}.
\]

In the case that \(\mathcal{I} = \{I^n\}_{n \in \mathbb{N}} \) is the filtration of powers of a fixed \(m_R \)-primary ideal \(I \), the filtration \(\mathcal{I} \) is Noetherian, and we have that

\[
e_R(\mathcal{I}; R) = e_R(I; R)
\]

is the ordinary multiplicity of \(R \) with respect to the ideal \(R \) (here we use the notation \(e_R(I; R) \) of [34]).

Mixed multiplicities of filtrations are defined in [11]. Let \(M \) be a finitely generated \(R \)-module where \(R \) is a \(d \)-dimensional Noetherian local ring with \(\dim N(\hat{R}) < d \). Let \(\mathcal{I}(1) = \{I(1)_n\}, \ldots, \mathcal{I}(r) = \{I(r)_n\} \) be filtrations of \(R \) by \(m_R \)-primary ideals. In [11, Theorem 6.1] and [11, Theorem 6.6], it is shown that the function

\[
P(n_1, \ldots, n_r) = \lim_{m \to \infty} \frac{\ell_R(M/I(1)_{m n_1} \cdots I(r)_{m n_r}, M)}{m^d}
\]

is equal to a homogeneous polynomial \(G(n_1, \ldots, n_r) \) of total degree \(d \) with real coefficients for all \(n_1, \ldots, n_r \in \mathbb{N} \).
We define the mixed multiplicities of \(M \) from the coefficients of \(G \), generalizing the definition of mixed multiplicities for \(m_R \)-primary ideals. Specifically, we write

\[
G(n_1, \ldots, n_r) = \sum_{d_1 + \cdots + d_r = d} \frac{1}{d_1! \cdots d_r!} e_R(\mathcal{I}(1)^{[d_1]}, \ldots, \mathcal{I}(r)^{[d_r]}; M) n_1^{d_1} \cdots n_r^{d_r}.
\]

We say that \(e_R(\mathcal{I}(1)^{[d_1]}, \ldots, \mathcal{I}(r)^{[d_r]}; M) \) is the mixed multiplicity of \(M \) of type \((d_1, \ldots, d_r)\) with respect to the filtrations \(\mathcal{I}(1), \ldots, \mathcal{I}(r) \). Here we are using the notation

\[
e_R(\mathcal{I}(1)^{[d_1]}, \ldots, \mathcal{I}(r)^{[d_r]}; M)
\]

to be consistent with the classical notation for mixed multiplicities of \(M \) with respect to \(m_R \)-primary ideals from [35]. The mixed multiplicity of \(M \) of type \((d_1, \ldots, d_r)\) with respect to \(m_R \)-primary ideals \(I_1, \ldots, I_r \), denoted by \(e_R(I_1^{[d_1]}, \ldots, I_r^{[d_r]}; M) \) ([35], [34, Definition 17.4.3]) is equal to the mixed multiplicity \(e_R(\mathcal{I}(1)^{[d_1]}, \ldots, \mathcal{I}(r)^{[d_r]}; M) \), where the Noetherian \(I \)-adic filtrations \(\mathcal{I}(1), \ldots, \mathcal{I}(r) \) are defined by

\[
\mathcal{I}(1) = \{ I_1 \}_{i \in \mathbb{N}}, \ldots, \mathcal{I}(r) = \{ I_r \}_{i \in \mathbb{N}}.
\]

We have that

\[
e_R(\mathcal{I}; M) = e_R(\mathcal{I}^{[d]}; M)
\]

if \(r = 1 \), and \(\mathcal{I} = \{ I_i \} \) is a filtration of \(R \) by \(m_R \)-primary ideals. Thus

\[
e_R(\mathcal{I}; M) = \lim_{m \to \infty} \frac{\ell_R(M/IM^M)}{m^d/d!}.
\]

In [11], it is shown that many classical theorems about mixed multiplicities of \(m_R \)-primary ideals continue to hold for filtrations. For instance, the four “Minkowski inequalities” for mixed multiplicities are proven in [11, Theorem 6.3].

Theorem 1.1. ([11, Theorem 6.3], **Minkowski Inequalities**) Suppose that \(R \) is a Noetherian \(d \)-dimensional local ring with \(\dim N(\mathcal{R}) < d \), \(M \) is a finitely generated \(R \)-module and \(\mathcal{I}(1) = \{ I(1)_i \} \) and \(\mathcal{I}(2) = \{ I(2)_i \} \) are filtrations of \(R \) by \(m_R \)-primary ideals. Then

1. \(e_R(\mathcal{I}(1)^{[i]}, \mathcal{I}(2)^{[d-i]}; M)^2 \leq e_R(\mathcal{I}(1)^{[i+1]}, \mathcal{I}(2)^{[d-i-1]}; M)e_R(\mathcal{I}(1)^{[i]}, \mathcal{I}(2)^{[d-i+1]}; M) \)
 for \(1 \leq i \leq d-1 \).
2. For \(0 \leq i \leq d \), \(e_R(\mathcal{I}(1)^{[i]}, \mathcal{I}(2)^{[d-i]}; M) \leq e_R(\mathcal{I}(1); M)e_R(\mathcal{I}(2); M) \).
3. For \(0 \leq i \leq d \), \(e_R(\mathcal{I}(1)^{[d-i]}, \mathcal{I}(2)^{[i]}; M)^d \leq e_R(\mathcal{I}(1); M)^d - e_R(\mathcal{I}(2); M)^i \) and
4. \(e_R(\mathcal{I}(1)^{[d]}, \mathcal{I}(2)^{[d]}; M)^\frac{1}{2} \leq e_R(\mathcal{I}(1); M)^\frac{1}{2} + e_R(\mathcal{I}(2); M)^\frac{1}{2} \),
 where \(\mathcal{I}(1)^{[d]} \mathcal{I}(2) = \{ I(1)_i, I(2)_i \} \).

The Minkowski inequalities were formulated and proven for \(m_R \)-primary ideals by Teissier [35], [36] and proven in full generality, for \(m_R \)-primary ideals in Noetherian local rings, by Rees and Sharp [32]. The fourth inequality, was proven for filtrations
of \(R \) by \(m_R \)-primary ideals in a regular local ring with algebraically closed residue field by Mustaţă ([27, Corollary 1.9]) and more recently by Kaveh and Khovanskii ([20, Corollary 7.14]). The inequality 4) was proven with our assumption that \(\dim N(\hat{R}) < d \) in [7, Theorem 3.1].

Another important property is that the mixed multiplicities are always nonnegative ([13, Proposition 1.3]). In contrast, the mixed multiplicities are strictly positive in the classical case of \(m_R \)-primary ideals ([35] or [34, Corollary 17.4.7]).

Suppose that \(R \) is a \(d \)-dimensional excellent local domain, with quotient field \(K \). A valuation \(\nu \) of \(K \) is called an \(m_R \)-valuation if \(\nu \) dominates \(R \) (\(R \subset V_\nu \)) and \(m_\nu \cap R = m_R \), where \(V_\nu \) is the valuation ring of \(\nu \) with maximal ideal \(m_\nu \) and \(\text{trdeg}_{R/m_R} V_\nu /m_\nu = d-1 \).

Suppose that \(I \) is an ideal in \(R \). Let \(X \) be the normalization of the blowup of \(I \), with projective birational morphism \(\phi : X \to \text{Spec}(R) \). Let \(E_1, \ldots, E_t \) be the irreducible components of \(\phi^{-1}(V(I)) \) (which necessarily have dimension \(d-1 \)). The Rees valuations of \(I \) are the discrete valuations \(\nu_i \) for \(1 \leq i \leq t \) with valuation rings \(V_\nu = \mathcal{O}_{X,E_i} \). If \(R \) is normal, then \(X \) is equal to the blowup of the integral closure \(\overline{I} \) of an appropriate power \(I^s \) of \(I \).

Every Rees valuation \(\nu \) that dominates \(R \) is an \(m_R \)-valuation and every \(m_R \)-valuation is a Rees valuation of an \(m_R \)-primary ideal by [31, Statement (G)].

Associated to an \(m_R \)-valuation \(\nu \) are valuation ideals

\[
I(\nu)_n = \{ f \in R \mid \nu(f) \geq n \}
\]

for \(n \in \mathbb{N} \). In general, the filtration \(\mathcal{I}(\nu) = \{ I(\nu)_n \} \) is not Noetherian. In a two-dimensional normal local ring \(R \), the condition that the filtration of valuation ideals of \(R \) is Noetherian for all \(m_R \)-valuations dominating \(R \) is the condition (N) of Muhly and Sakuma [25]. It is proven in [5] that a complete normal local ring of dimension two satisfies condition (N) if and only if its divisor class group is a torsion group. An example is given in [3] of an \(m_R \)-valuation of a 3-dimensional regular local ring \(R \) such that the filtration is not Noetherian.

Definition 1.2. Suppose that \(R \) is an excellent local domain. We say that a filtration \(\mathcal{I} \) of \(R \) by \(m_R \)-primary ideals is a divisorial filtration if there exists a projective birational morphism \(\phi : X \to \text{Spec}(R) \) such that \(X \) is the normalization of the blowup of \(m_R \)-primary ideal and there exists a nonzero effective Cartier divisor \(D \) on \(X \) with exceptional support for \(\phi \) such that \(\mathcal{I} = \{ I(mD) \}_{m \in \mathbb{N}} \) where

\[
I(mD) = \Gamma(X, \mathcal{O}_X(-mD)) \cap R.
\]

We will write

\[
\mathcal{I}(D) = \{ I(mD) \}_{m \in \mathbb{N}}.
\]

If \(R \) is normal, then \(I(mD) = \Gamma(X, \mathcal{O}_X(-mD)) \). If \(D = \sum_{i=1}^t a_i E_i \) where the \(a_i \in \mathbb{N} \) and the \(E_i \) are prime exceptional divisors of \(\phi \), with associated \(m_R \)-valuations \(\nu_i \), then

\[
I(mD) = I(\nu_1)_{a_1 m} \cap \cdots \cap I(\nu_t)_{a_t m}.
\]
Rees has shown in [29] that if R is a formally equidimensional Noetherian local ring and $I \subset I'$ are m_R-primary ideals such that $e_R(I; R) = e_R(I'; R)$, then $\bigoplus_{n \geq 0}(I')^n$ is integral over $\bigoplus_{n \geq 0}I^n$ (I and I' have the same integral closure). An exposition of this converse to the above cited [34, Proposition 11.2.1] is given in [34, Proposition 11.3.1], in the section entitled “Rees’s Theorem”. Rees’s theorem is not true in general for filtrations of m_R-primary ideals (a simple example in a regular local ring is given in [11]) but it is true for divisorial filtrations.

In Theorem [9, Theorem 3.5], it is shown that Rees’s theorem is true for divisorial filtrations of an excellent local domain.

Theorem 1.3. ([9, Theorem 1.4 and Theorem 3.5]) Suppose that R is a d-dimensional excellent local domain. Let $\phi : X \rightarrow \text{Spec}(R)$ be the normalization of the blowup of an m_R-primary ideal. Suppose that D_1 and D_2 are effective Cartier divisors on X with exceptional support such that $D_1 \leq D_2$. Then

$$e_R(I(D_1); R) = e_R(I(D_2); R)$$

if and only if

$$I(mD_1) = I(mD_2) \text{ for all } m \in \mathbb{N}.$$
m_R-primary ideals such that the multiplicity is not rational. Let k be a field and $R = k[[x]]$ be a power series ring over k. Let $I_n = (x^{[n\sqrt{2}]})$ where $[\alpha]$ is the round up of a real number α (the smallest integer which is greater than or equal to α). Then $I = \{I_n\}$ is a filtration of m_R-primary ideals such that
\[
e_R(I; R) = \lim_{n \to \infty} \frac{\ell_R(R/I_n)}{n} = \sqrt{2}
\]
is an irrational number.

There are also irrational examples determined by the valuation ideals of a discrete valuation. In Example 6 of [12] an example is given of a normal 3 dimensional local ring R which is essentially of finite type over a field of arbitrary characteristic and a divisorial valuation ν on the quotient field of R which dominates R such that the filtration of m_R-primary ideals $I(\nu) = \{I(\nu)_n\}$ defined by
\[
I(\nu)_n = \{f \in R \mid \nu(f) \geq n\}
\]
satisfies that the limit
\[
e_R(I(\nu); R) = \lim_{n \to \infty} \frac{\ell_R(R/I_n)}{n^{3/3!}}
\]
is irrational. In this paper we give an example of this behavior in (12), and give examples of irrational mixed multiplicities.

We define a multigraded filtration $I = \{I_{n_1,\ldots,n_r}\}_{n_1,\ldots,n_r \in \mathbb{N}}$ of ideals on a ring R to be a collection of ideals of R such that $R = I_{0,\ldots,0}$,
\[
I_{n_1,\ldots,n_{j-1},n_j+1,n_{j+1},\ldots,n_r} \subset I_{n_1,\ldots,n_{j-1},n_j,n_{j+1},\ldots,n_r}
\]
for all $n_1,\ldots,n_r \in \mathbb{N}$ and $I_{a_1,\ldots,a_r}I_{b_1,\ldots,b_r} \subset I_{a_1+b_1,\ldots,a_r+b_r}$ whenever $a_1,\ldots,a_r, b_1,\ldots,b_r \in \mathbb{N}$.

A multigraded filtration $I = \{I_{n_1,\ldots,n_r}\}$ of ideals on a local ring R is a multigraded filtration of R by m_R-primary ideals if I_{n_1,\ldots,n_r} is m_R-primary whenever $n_1 + \cdots + n_r > 0$.

In [11, Section 7], we give an example showing that the mixed multiplicities of filtrations (explained between (2) and (3) of this paper) do not have a good extension to arbitrary multigraded non Noetherian filtrations $I = \{I_{n_1,\ldots,n_r}\}$ of m_R-primary ideals, even in a power series ring in one variable over a field. In the example in [11], we have $d = 1$ and the function
\[
P(n_1,n_2) = \lim_{m \to \infty} \frac{\ell_R(R/I_{mn_1,mn_2})}{m} = \lceil \sqrt{n_1^2 + n_2^2} \rceil
\]
for $n_1,n_2 \in \mathbb{N}$, where $[x]$ is the round up of a real number x. The function $P(n_1,n_2)$ is far from polynomial like.

However, it is shown in [11, Section 7] that the function $P(n_1,\ldots,n_r)$ is polynomial like in an important situation. Let R be an excellent, normal, two dimensional local ring, and $\phi : X \to \text{Spec}(R)$ be a resolution of singularities. Let E_1,\ldots,E_r
be the irreducible exceptional divisors of \(\phi \), and let \(\{ I_{n_1, \ldots, n_r} \} \) be the multigraded filtration of \(m_R \)-primary ideals defined by

\[
I_{n_1, \ldots, n_r} = I(n_1 E_1 + \cdots + n_r E_r).
\]

It is shown in [11, Section 7] (using some results from [10]) that the function

\[
P(n_1, \ldots, n_r) = \lim_{m \to \infty} \frac{\ell_R(R/I_{mn_1, \ldots, mn_r})}{m^2}
\]

is a piecewise rational polynomial function on an abstract complex of rational polyhedral sets whose union is \((\mathbb{Q} \geq 0)^r\). This holds, even though the filtration \(\{ I_{n_1, \ldots, n_r} \} \) is generally not Noetherian.

The function \(P(n_1, \ldots, n_r) \) of (10) is in fact given by the anti-intersection product (9) on the resolution of singularities. The anti-positive intersection product of (9) is in this case the ordinary intersection product of the Zariski decomposition of \(-D\) (where \(D = n_1 E_1 + \cdots + n_r E_r \)).

In Theorem 1.4 below, we give an example of such a function on a resolution of singularities of a normal three dimensional excellent local ring with two irreducible exceptional divisors such that the function \(P(n_1, n_2) \) is a piecewise polynomial function on an abstract complex of polyhedral sets, but the polynomials and the polyhedral sets are not rational.

In this paper, we compute the functions

\[
\lim_{m \to \infty} \frac{\ell_R(R/I(mD))}{m^3} \quad \text{and} \quad \lim_{m \to \infty} \frac{\ell_R(R/I(mn_1D_1)I(mn_2D_2))}{m^d}
\]

and the associated multiplicities and mixed multiplicities

\[
e_R(\mathcal{I}(D); R) \quad \text{and} \quad e_R(\mathcal{I}(D_1), \mathcal{I}(D_2); R)
\]

in a specific example. We compute the anti-positive intersection numbers in order to determine these functions. Let \(k \) be an algebraically closed field. We construct a 3-dimensional normal algebraic local ring \(R \) over \(k \) and the blow up \(\phi : X \to \text{Spec}(R) \) of an \(m_R \)-primary ideal such that \(X \) is nonsingular with two irreducible exceptional divisors, which we denote by \(S \) and \(F \). Theorems 1.4 and 1.5 below refer to this example. These theorems are proven in this paper.

The resolution of singularities of a three dimensional normal local ring which we construct is similar to the one constructed in [12, Example 6], referred to above, which is used to give an example of a valuative filtration with irrational multiplicity. In [12, Example 6], no details of the construction or analysis of the example are given. We give complete details in this paper. We illustrate the application of anti-positive intersection products in the proof.

Theorem 1.4. Let \(D = nS + jF \) with \(n, j \in \mathbb{N} \). Then

\[
\lim_{m \to \infty} \frac{\ell_R(R/I(mD))}{m^3} = \begin{cases}
33n^3 & \text{if } j < n \\
78n^3 - 81n^2j + 27nj^2 + 9j^3 & \text{if } n \leq j < n \left(3 - \frac{\sqrt{3}}{3}\right) \\
\left(\frac{2007}{369} - \frac{9\sqrt{3}}{338}\right)J & \text{if } n \left(3 - \frac{\sqrt{3}}{3}\right) < j.
\end{cases}
\]
In particular,
\[e_R(\mathcal{I}(D); R) = \begin{cases}
198n^3 & \text{if } j < n \\
468n^3 - 486n^2j + 162nj^2 + 54j^3 & \text{if } n \leq j < n \left(3 - \frac{\sqrt{3}}{3}\right) \\
\left(\frac{12042}{169} - \frac{27\sqrt{3}}{169}\right)j^3 & \text{if } n \left(3 - \frac{\sqrt{3}}{3}\right) < j.
\end{cases} \]

As a consequence, we have that
\[\lim_{m \to \infty} \frac{\ell_R(R/I(mF))}{m^3} = \left(\frac{2007}{169} - \frac{9\sqrt{3}}{338}\right) \]
and
\[e_R(\mathcal{I}(F); R) = \frac{12042}{169} - \frac{27\sqrt{3}}{169}, \]
giving an example of a divisorial valuation \(\nu = \nu_I \) dominating \(R \) such that \(e_R(\mathcal{I}(\nu); R) = e_R(\mathcal{I}(F); R) \) is an irrational number, where \(\mathcal{I}(\nu) = \{I(\nu)_m\} \) and \(I(\nu)_n \) is the valuation ideal \(I(\nu)_m = \{f \in R \mid \nu(f) \geq m\} \).

Theorem 1.5. For \(n, j \in \mathbb{N} \),
\[\lim_{m \to \infty} \frac{\ell_R(R/I(mS))}{m^3} = 33n^3 + \left(\frac{891}{26} + \frac{99\sqrt{3}}{26}\right)n^2j + \left(\frac{6021}{169} - \frac{27\sqrt{3}}{338}\right)n^2j + \left(\frac{6021}{169} - \frac{27\sqrt{3}}{338}\right)j^3. \]

In particular, the mixed multiplicities are
\[e_R(\mathcal{I}(S)^{[3]}; R) = e_R(\mathcal{I}(S); R) = 198 \]
\[e_R(\mathcal{I}(S)^{[2]}, \mathcal{I}(F)^{[1]}; R) = \frac{891}{13} + \frac{27\sqrt{3}}{13} \]
\[e_R(\mathcal{I}(S)^{[1]}, \mathcal{I}(F)^{[2]}; R) = \frac{12042}{169} - \frac{27\sqrt{3}}{169} \]
\[e_R(\mathcal{I}(F)^{[3]}; R) = e_R(\mathcal{I}(F); R) = \frac{12042}{169} - \frac{27\sqrt{3}}{169}. \]

2. **Anti-positive intersection products**

2.1. The construction of anti-positive intersection products. In this subsection we review the construction of anti-positive intersection products in [9].

Anti-positive intersection products generalize the positive intersection products of Cartier divisors defined on projective varieties in [2] over an algebraically closed field of characteristic zero and in [8] over an arbitrary field.

Let \(K \) be an algebraic function field over a field \(k \). An algebraic local ring of \(K \) is a local ring \(R \) that is a localization of a finitely generated \(k \)-algebra and is a domain whose quotient field is \(K \) with maximal ideal \(m_R \). Let \(R \) be a \(d \)-dimensional algebraic normal local ring of \(K \). Let BirMod\((R)\) be the directed set of blowups \(\varphi : X \to \text{Spec}(R) \) of an \(m_R \)-primary ideal \(I \) of \(R \) such that \(X \) is normal.

Suppose that \(\varphi : X \to \text{Spec}(R) \) is in BirMod\((R)\). Let \(\{E_1, \ldots, E_t\} \) be the irreducible exceptional divisors of \(\varphi \). We define \(M^1(X) \) to be the subspace of the real vector space \(E_1\mathbb{R} + \cdots + E_t\mathbb{R} \) that is generated by the Cartier divisors. An element of \(M^1(X) \) will be called an \(\mathbb{R} \)-divisor on \(X \). We will say that \(D \in M^1(X) \) is a \(\mathbb{Q} \)-Cartier divisor if there exists \(n \in \mathbb{Z}_+ \) such that \(nD \) is a Cartier divisor.
In Section 6.1 of [9], we define a natural intersection product $(D_1 \cdot D_2 \cdots \cdot D_d)$ on X for $D_1, \ldots, D_d \in M^1(X)$. The intersection product is a restriction of the one defined in [22].

We will say that a divisor $F = a_1E_1 + \cdots + a_tE_t \in M^1(X)$ is effective if $a_i \geq 0$ for all i, and anti-effective if $a_i \leq 0$ for all i. This defines a partial order \leq on $M^1(X)$ by $A \leq B$ if $B - A$ is effective. The effective cone $\text{EF}(X)$ is the closed convex cone in $M^1(X)$ of effective \mathbb{R}-divisors. The anti-effective cone $\text{AEF}(X)$ is the closed convex cone in $M^1(X)$ consisting of all anti-effective \mathbb{R}-divisors.

We will say that an anti-effective divisor $F \in M^1(X)$ is numerically effective (nef) if

$$(F \cdot C) \geq 0$$

for all closed curves C in $\phi^{-1}(m_R)$. The nef cone $\text{Nef}(X)$ is the closed convex cone in $M^1(X)$ of all nef \mathbb{R}-divisors on X. There is an inclusion of cones $\text{Nef}(X) \subset \text{AEF}(X)$. We define a divisor $F \in M^1(X)$ to be ample if F is a formal sum $F = \sum a_iF_i$ where F_i are ample anti-effective Cartier divisors and a_i are positive real numbers. A divisor D is anti-ample if $-D$ is ample. We define the convex cone

$$\text{Amp}(X) = \{ F \in M^1(X) \mid F \text{ is ample} \}.$$

We have that $\text{Amp}(X) \subset \text{Nef}(X)$, the closure of $\text{Amp}(X)$ is $\text{Nef}(X)$, and the interior of $\text{Nef}(X)$ is $\text{Amp}(X)$, as in [22], [23, Theorem 1.4.23].

Suppose that $X \in \text{BirMod}(R)$. Let E_1, \ldots, E_r be the exceptional components of X for the morphism $X \to \text{Spec}(R)$. For $0 < p \leq d$, we define $M^p(X)$ to be the direct product of $M^1(X)$ p times, and we define $M^0(X) = \mathbb{R}$. For $1 < p \leq d$, we define $L^p(X)$ to be the vector space of p-multilinear forms from $M^p(X)$ to \mathbb{R}, and define $L^0(X) = \mathbb{R}$.

The intersection product gives us p-multilinear maps

$$M^p(X) \to L^{d-p}(X) \quad (13)$$

for $0 \leq p \leq d$.

We have that $\text{BirMod}(R)$ is a directed set by the R-morphisms $Y \to X$ for $X,Y \in \text{BirMod}(R)$. There is at most one R-morphism $X \to Y$ for $X,Y \in \text{BirMod}(X)$.

The set $\{M^p(Y_i) \mid Y_i \in \text{BirMod}(R)\}$ is a directed system of real vector spaces, where we have a linear mapping $f_{ij}^p : M^p(Y_i) \to M^p(Y_j)$ if the natural birational map $f_{ij} : Y_j \to Y_i$ is an R-morphism. We define

$$M^p(R) = \lim_{Y_i} M^p(Y_i)$$

Anti-positive intersection products $\langle \alpha_1 \cdots \alpha_p \rangle$ for anti-effective $\alpha_1, \ldots, \alpha_p \in M^1(R)$ are defined in [9, Definition 7.4], generalizing the positive intersection products defined on projective varieties in [2] over an algebraically closed field of characteristic zero, and in [8, Definition 4.4] over an arbitrary field. The anti-positive intersection product $\langle \alpha_1 \cdots \alpha_d \rangle$ of d anti-effective divisors $\alpha_1, \ldots, \alpha_d \in M^1(R)$ is always a non positive real number.
The proof of the following proposition is similar to that of [8, Proposition 4.12], replacing the reference to [8, Proposition 4.3] with [9, Proposition 7.3], and replacing the use of the continuity statement of [8, Proposition 4.7] with the continuity statement of [9, Proposition 7.5].

Proposition 2.1. Suppose that $\alpha_1, \ldots, \alpha_p \in M^1(R)$ are anti-effective. Then the anti-positive intersection product $\langle \alpha_1, \ldots, \alpha_p \rangle$ is the least upper bound of all ordinary intersection products $\beta_1 \cdots \beta_p$ in $L^{d-p}(R)$ with $\beta_i \in M^1(R)$ anti-effective and nef and $\beta_i \leq \alpha_i$.

2.2. $\gamma_E(D)$ and anti-positive intersection products. Let $\phi : X \to \text{spec}(R) \in \text{BirMod}(R)$. Let E_1, \ldots, E_i be the irreducible exceptional divisors of ϕ.

Suppose that $D = \sum a_i E_i$ is an effective \mathbb{Q}-Cartier divisor on X. If D is Cartier, then $\Gamma(X, \mathcal{O}_X(-D))$ is an m_R-primary ideal since R is normal. Write $I(D) = \Gamma(X, \mathcal{O}_X(-D))$.

Let ν_{E_i} be the natural discrete valuation with valuation ring \mathcal{O}_{X, E_i}.

Let r be a fixed positive integer such that rD is a Cartier divisor. Define

$$\tau_{rm,E_i}(rD) = \min \{ \nu_{E_i}(f) \mid f \in \Gamma(X, \mathcal{O}_X(-mrD)) \}$$

and $\gamma_{E_i}(D) = \inf_m \frac{\tau_{rm,E_i}(rD)}{mr}$. The real number $\gamma_{E_i}(D)$ is independent of r. We have that

$$\gamma_{E_i}(D) \geq a_i$$

for all i, and

$$I(mrD) = \Gamma(X, \mathcal{O}_X(-mrD)) = \Gamma(X, \mathcal{O}_X(-[\sum mr\gamma_{E_i}(D)E_i]))$$

for all $m \in \mathbb{N}$ (this is shown in [9, Lemma 3.1]). Here $[x]$ denotes the round up of a real number x.

Lemma 2.2. Suppose that D is anti-nef. Then $\gamma_{E_i}(D) = a_i$ for all i.

Proof. If $-D$ is ample, then $\mathcal{O}_X(-mrD)$ is generated by global sections if r is such that rD is Cartier and $m \gg 0$. Thus for all i, there exists $f \in \Gamma(X, \mathcal{O}_X(-rmD))$ such that $\nu_{E_i}(f) = mra_i$. Thus $\gamma_{E_i}(D) = a_i$.

Now suppose that $-D$ is nef. Given $\epsilon > 0$, there exists an anti-ampl effective \mathbb{Q}-Cartier divisor A on X such that $A = \sum c_i E_i$ with $a_i \leq c_i < a_i + \epsilon$ for all i. Let r be such that rA and rD are Cartier divisors. For $m \gg 0$, there exists $f \in \Gamma(X, \mathcal{O}_X(-mrA))$ such that $\nu_{E_i}(f) = mr\epsilon_i < mr\epsilon_i + mra_i$. Thus $\gamma_{E_i}(D) \leq a_i + \epsilon$. Since this is true for all ϵ, we have that $\gamma_{E_i}(D) = a_i$. \qed

Lemma 2.3. Suppose that $D \in M^1(X)$ is an effective \mathbb{Q}-Cartier divisor such that $-\sum \gamma_{E_i}(D) E_i$ is nef. Suppose that $Y \to \text{Spec}(R) \in \text{BirMod}(R)$ and there exists a factorization $\psi : Y \to X$. If $G \in M^1(Y)$ is an effective and anti-nef \mathbb{Q}-Cartier divisor such that $-G \leq \psi^*(-D)$ then $-G \leq \psi^*(-\sum \gamma_{E_i}(D) E_i)$.

Proof. Let F_1, \ldots, F_s be the irreducible exceptional divisors of $Y \to \text{Spec}(R)$. Since $-\sum \gamma_{E_i}(D)E_i$ is nef, we have that $\sum \gamma_{F_i}(\psi^*(D))F_i = \psi^*(\sum \gamma_{E_i}(D)E_i)$. Write $G = \sum g_i F_i$. Since $-G$ is nef, we have that $\gamma_{F_i}(G) = g_i$ for all i. Thus

$$O_Y(-mG) \subset O_Y(-\psi^*(mrD))$$

whenever rG, rD are Cartier divisors and $m > 0$, we have that $\gamma_{F_i}(D) \leq \gamma_{F_i}(G) = g_i$ for all i. Thus

$$-G \leq -\sum \gamma_{F_i}(\psi^*(D))F_i = -\psi^*(\sum \gamma_{E_i}(D)E_i).$$

□

The following proposition is a consequence of Proposition 2.1 and 2.3.

Proposition 2.4. Suppose that $D_1, \ldots, D_d \in M^1(X)$ are effective \mathbb{Q}-Cartier divisors such that the divisors $-\sum \gamma_{E_i}(D_j)E_i$ are nef for $1 \leq j \leq d$. Then the positive intersection product $(-D_1, \ldots, -D_d)$ is the ordinary intersection product $(-\sum \gamma_{E_i}(D_1)E_i, \ldots, -\sum \gamma_{E_i}(D_d)E_i)$.

3. Intersection Theory on Projective Surfaces

In this section we review some material on intersection theory on Projective varieties. We refer to [22] and [23]. Let k be an algebraically closed field. Let T be a nonsingular projective surface over k. Then $(\text{Pic}(T)/\equiv) \otimes \mathbb{R}$, where \equiv denotes numerical equivalence, is a finite dimensional real vector space. We will often abuse notation, identifying the class of an invertible sheaf $O_T(D)$ with the class of the divisor D.

We will denote the closure of the real cone in $(\text{Pic}(T)/\equiv) \otimes \mathbb{R}$ generated by the classes of effective divisors by $\text{Eff}(T)$ and the closure of the real cone in $(\text{Pic}(T)/\equiv) \otimes \mathbb{R}$ generated by the classes of numerically effective divisors by $\text{Nef}(T)$, and the closure of the real cone in $(\text{Pic}(T)/\equiv) \otimes \mathbb{R}$ generated by the classes of ample divisors by $\text{Amp}(T)$.

If V is a nonsingular r-dimensional projective variety and D_1, \ldots, D_r are divisors on V we will denote the intersection product of D_1, \ldots, D_r on V by $(D_1 \cdot D_2 \cdot \ldots \cdot D_r)_V$. When there is no danger of confusion about the ambient variety, we will simply write $(D_1 \cdot D_2 \cdot \ldots \cdot D_r)$.

4. An Example

In this section, we construct a resolution of singularities of a three dimensional normal local ring, and compute the multiplicities and mixed multiplicities of its divisorial filtrations. This resolution of singularities is similar to the one constructed in [12, Example 6], which is used to give an example of a filtration of a divisorial valuation with irrational multiplicity. In [12, Example 6], no details of the construction or analysis of the example are given. We give complete details in this section.
Let k be an algebraically closed field, let W be an elliptic curve over k and S be the abelian surface $S = W \times W$. Let $\pi_1 : S \to W$ and $\pi_2 : S \to W$ be the two projections. Let $p \in W$ be a closed point, $A = \pi_1^*(p)$, $B = \pi_2^*(p)$ and $\Delta \subset W \times W = S$ be the diagonal. Let V be the real subspace of $(\text{Pic}(S)/\equiv) \otimes \mathbb{R}$ generated by the classes of A, B and Δ. As shown in [4] and [12, Example 4], we have that V has dimension 3 and

$$(\Delta^2) = (A^2) = (B^2) = 0 \text{ and } (A \cdot B) = (A \cdot \Delta) = (B \cdot \Delta) = 1.$$ \hspace{1cm}

Further, $\text{Am}(S) = \overline{\text{Eff}}(S) = \overline{\text{Nef}}(S)$, and $V \cap \overline{\text{Eff}}(S)$ is the real cone which is the component of

$$\{ xA + yB + z\Delta \mid (xA + yB + z\Delta)^2 \geq 0 \}$$

which contains the ample divisor $A + B + \Delta$.

If $j, n \geq 0$ we have that

$$(14) \quad n(A + 2B + 3\Delta) - j(A + B + \Delta) \in \overline{\text{Eff}}(S) \text{ if and only if } j < n \left(2 - \frac{\sqrt{3}}{3} \right).$$

The canonical divisor of the Abelian surface S is $K_S = 0$.

Let X be the projective bundle $X = \mathbb{P}(\mathcal{O}_S(-3(A + 2B + 3\Delta)) \oplus \mathcal{O}_S)$ with projection $\pi : X \to S$. Identify the section of π corresponding to the natural surjection of \mathcal{O}_S-modules

$$\mathcal{O}_S(-3(A + 2B + 3\Delta)) \oplus \mathcal{O}_S \to \mathcal{O}_S(-3(A + 2B + 3\Delta))$$

with S (c.f. [17, Proposition 7.12]). Then $\mathcal{O}_X(1) \cong \mathcal{O}_X(S)$ and

$$\mathcal{O}_X(S) \otimes \mathcal{O}_S \cong \mathcal{O}_S(-3(A + 2B + 3\Delta)).$$

A canonical divisor on X is $K_X = -2S + \pi^*(-3(A + 2B + 3\Delta))$ (this can be seen by applying adjunction on a fiber of π and then on the section S). The Picard group of X is

$$\text{Pic}(X) = \mathcal{O}_X(1)\mathbb{Z} \oplus \pi^*\text{Pic}(S).$$

Suppose that Γ is an effective divisor on X. Then $\Gamma \sim nS + \pi^*(L)$ for some divisor L on X. We have that $n = (\Gamma \cdot g) \geq 0$ for a fiber g of π. Since Γ is effective,

$$0 < h^0(X, \mathcal{O}_X(\Gamma)) = h^0(S, \text{Sym}^n(\mathcal{O}_S(-3(A + 2B + 3\Delta)) \oplus \mathcal{O}_S) \otimes \mathcal{O}_S(L)) = \sum_{i=0}^n h^0(S, \mathcal{O}_S(L - i3(A + 2B + 3\Delta))).$$

Thus $L \in \overline{\text{Eff}}(S)$.

Let T be the section of π corresponding to the surjection of \mathcal{O}_S-modules

$$\mathcal{O}_S(-3(A + 2B + 3\Delta)) \oplus \mathcal{O}_S \to \mathcal{O}_S.$$ \hspace{1cm}

Then $\mathcal{O}_X(1) \otimes \mathcal{O}_T \cong \mathcal{O}_S$ so that $T \cap S = \emptyset$. Further, $\mathcal{O}_X(T) \cong \mathcal{O}_X(S + 3(A + 2B + 3\Delta))$. Now $3(A + 2B + 3\Delta)$ is very ample on S (by the theorem in Section 17 [26]), so the complete linear system $|T|$ on X is base point free, and thus induces a projective morphism $X \to Z$ which contracts S. Suppose that γ is an irreducible
curve on X which is not contained in S and is not a fiber of π. Let $\overline{\gamma}$ be the image of γ by π in S which is a curve. We have that

$$(\gamma \cdot T)_X = (\gamma \cdot (S + \pi^*(3(A + 2B + 3\Delta))))_X = \deg(O_X(S + \pi^*(3(A + 2B + 3\Delta))) \otimes O_{\gamma}) \geq \deg(O_X(\pi^*(3(A + 2B + 3\Delta))) \otimes O_{\gamma}) = \deg(\gamma/\overline{\gamma})(\overline{\gamma} \cdot (A + 2B + 3\Delta))_S > 0$$

by the projection formula ([15, Example 7.1.9]), and since $A + 2B + 3\Delta$ is ample. Thus $X \setminus S \to Z$ is finite to one. Let \overline{Z} be the normalization of Z in the function field of X. Then there is an induced birational projective morphism $\lambda : X \to \overline{Z}$ such that S is contracted to a point q of \overline{Z} and $X \setminus S \to \overline{Z} \setminus q$ is an isomorphism.

The divisor $-S$ is relatively ample for λ since $O_X(-S) \otimes O_S$ is ample on S. Thus there exists $n > 0$ such that X is the blow up of the ideal sheaf $\lambda_*O_X(-nS)$ of \overline{Z}, which has the property that the support of $O_{\overline{Z}}/\lambda_*O_X(-nS)$ is the point q.

The divisor $A + B + \Delta$ is ample on S so $3(A + B + \Delta)$ is very ample (Theorem in Section 17 [26]). Thus by Bertini’s theorem ([17, Theorem II.8.18 and Remark III.7.9]) there exists an integral and nonsingular curve C on S such that $C \sim 3(A + B + \Delta)$. Let I_C be the ideal sheaf of C in X. Let $\tau : Y \to X$ be the blow up of C, so that $Y = \text{Proj}(\oplus_{n \geq 0} I^n_C/I^{n+1}_C)$. Let $F = \text{Proj}(\oplus_{n \geq 0} I^n_C/I^{n+1}_C)$ be the exceptional divisor and let $\tau : F \to C$ be the induced morphism.

The composed morphism $Y \to \overline{Z}$ contracts F and the strict transform \overline{S} of S to the point q of \overline{Z} and is an isomorphism everywhere else, and is the blow up of an ideal sheaf I of O_Z such that the support of O_Z/I is the point q. The map τ induces an isomorphism of \overline{S} and S.

Let $G = \pi^*(C)$ which is an integral nonsingular surface in X. We have that C is the scheme theoretic intersection of G and S. Thus

$$(O_X(-S) \otimes O_C) \oplus (O_X(-G) \otimes O_C) \cong I_C/I^2_C,$$

and so $F = \mathbb{P}(O_X(-S) \otimes O_C) \oplus (O_X(-G) \otimes O_C)$. We have that $O_Y(-F) = I_CO_Y = O_Y(1)$, so $O_Y(-F) \otimes O_F \cong O_F(1)$.

The Picard group of F is

$$\text{Pic}(F) = O_F(1)\mathbb{Z} \oplus \pi^*\text{Pic}(C).$$

A canonical divisor of Y is $K_Y = \tau^*K_X + F = -2\overline{S} - F + (\pi\tau)^*(3(A+2B+3\Delta))$. Since $\tau^*(S) = \overline{S} + F$ and C is (isomorphic) to the scheme theoretic intersection of F and \overline{S}, we have that

$$O_Y(\overline{S}) \otimes O_{\overline{S}} \cong O_S(-3(2A + 3B + 4\Delta)).$$

We have that

$$O_Y(-n\overline{S} - jF) \otimes O_{\overline{S}} \cong O_X(-nS) \otimes O_S(-(j - n)C)$$
so by (14),

\begin{equation}
\mathcal{O}_Y(-n\overline{S} - jF) \otimes \mathcal{O}_{\overline{S}} \in \mathcal{E}_{\overline{S}} \text{ if and only if } j < n \left(3 - \frac{\sqrt{3}}{3}\right). \tag{15}
\end{equation}

We have that \(F \cong \mathbb{P}(\mathcal{E}) \) where \(\mathcal{E} = \mathcal{O}_C \oplus (\mathcal{O}_X(H) \otimes \mathcal{O}_C) \) with \(H = S - G \) (by [17, Proposition V.2.2]). Let \(C_0 \) be the section of \(\mathfrak{t} \) corresponding to the natural surjection of \(\mathcal{O}_C \)-modules \(\mathcal{E} \to \mathcal{O}_X(H) \otimes \mathcal{O}_C \). Then \(\mathcal{O}_F(C_0) \cong \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) \) and since

\[\mathcal{O}_X(H) \otimes \mathcal{O}_C \cong \mathcal{O}_S(-3(2A + 3B + 4\Delta)) \otimes \mathcal{O}_C, \]

we have that

\[(C_0^2)_F = \deg \mathcal{O}_X(H)\otimes \mathcal{O}_C = (3(A + B + \Delta) \cdot 3(-2A - 3B - 4\Delta))_S = -9 \times 18 = -162. \]

Let \(f \) be a fiber of \(\mathfrak{t} \) over a closed point of \(C \).

Let \(K_F \) be a canonical divisor of \(F \). By adjunction, we have

\[\mathcal{O}_F(K_F) \cong \mathcal{O}_Y(K_Y + F) \otimes \mathcal{O}_F \cong \mathcal{O}_Y(-2\overline{S} + \pi^*\pi(-3(A + 2B + 3\Delta))) \otimes \mathcal{O}_F. \]

By adjunction on \(f \) and \(C_0 \),

\[\mathcal{O}_F(K_F) \cong \mathcal{O}_F(-2C_0) \otimes \tau^*\mathcal{O}_C(K_C) \otimes \mathcal{O}_X(H)). \tag{17} \]

Let \(C_\overline{S} \) be the scheme theoretic intersection of \(\overline{S} \) and \(F \), which is an integral curve which is a section over \(\tau \). Comparing (16) and (17), we have that

\[\mathcal{O}_F(-2C_\overline{S}) \cong \mathcal{O}_F(-2C_0) \otimes \tau^*\mathcal{O}_C(K_C) \otimes \mathcal{O}_X(H) \otimes \mathcal{O}_S(3(A + 2B + 3\Delta)) \cong \mathcal{O}_F(-2C_0) \]

since \(\mathcal{O}_C(K_C) \cong \mathcal{O}_X(G) \otimes \mathcal{O}_C \) by adjunction, as \(\mathcal{O}_X(G) \otimes \mathcal{O}_S \cong \mathcal{O}_S(C) \). Since \((C_0^2)_F < 0 \), we have that \(C_0 = C_\overline{S} \).

We have that

\[\tau^*\mathcal{O}_X(S) \otimes \mathcal{O}_C \cong \tau^*\mathcal{O}_Y(S) \otimes \mathcal{O}_F \cong \mathcal{O}_Y(\overline{S} + F) \otimes \mathcal{O}_F \cong \mathcal{O}_F(C_\overline{S}) \otimes \mathcal{O}_Y(F). \]

Thus

\[\mathcal{O}_Y(F) \otimes \mathcal{O}_F \cong \mathcal{O}_F(-C_0) \otimes \tau^*\mathcal{O}_X(S) \otimes \mathcal{O}_C, \]

where

\[\deg(\mathcal{O}_X(S) \otimes \mathcal{O}_C) = \deg \mathcal{O}_S(-3(A + 2B + 3\Delta)) \otimes \mathcal{O}_C \]

\[= (-3(A + 2B + 3\Delta) \cdot 3(A + B + \Delta)) \]

\[= -9 \times 12 = -108. \]

Thus \(\mathcal{O}_Y(F) \otimes \mathcal{O}_F \) is represented in \((\text{Pic}(F)/\equiv) \otimes \mathbb{R} \) by the class of \(-C_0 - 108f\).

Suppose that \(\gamma \) is an irreducible curve on \(F \) which is not equal to \(C_0 \) and is not equal to a fiber over a closed point of \(C \). There exists \(n \in \mathbb{Z} \) and a divisor \(\delta \) on \(C \) such that \(\gamma \sim nC_0 + \tau^*(\delta) \). Then \((\gamma \cdot f) > 0 \) implies \(n > 0 \) and \((\gamma \cdot C_0) \geq 0 \) implies \(n(C_0^2) + \deg \delta \geq 0 \). Thus \(\deg \delta \geq -n(C_0)^2 = n162 > 0 \).

We now compute

\[(\gamma^2) = n^2(C_0^2) + 2n \deg \delta \geq n^2(C_0^2) - 2n^2(C_0^2) = -n^2(C_0^2) > 0. \]

Thus \(C_0 \) is the only irreducible curve on \(F \) with negative intersection number.
It follows that $\operatorname{Eff}(F) = \mathbb{R}_+ C_0 + \mathbb{R}_+ f$ and

$$\operatorname{Nef}(F) = \{ nC_0 + mf \mid n, m \geq 0 \text{ and } m \geq 162n \} = \mathbb{R}_+(C_0 + 162f) + \mathbb{R}_+ f.$$

Let $j = n \left(3 - \frac{\sqrt{3}}{3} \right)$. On F, we have the numerical equivalence

$$(-nS - jF) \cdot F \equiv (j-n)C_0 + 108jf = n \left(2 - \frac{\sqrt{3}}{3} \right) C_0 + 108n \left(3 - \frac{\sqrt{3}}{3} \right) f.$$

Letting $a = n \left(2 - \frac{\sqrt{3}}{3} \right)$ and $b = 108n \left(3 - \frac{\sqrt{3}}{3} \right)$, we have that

$$\frac{b}{a} = \frac{108}{33} \left(51 + 3\sqrt{3} \right) > 162.$$

Now suppose that $j = n$. Then

$$(-nS - jF) \cdot F \equiv 108jf.$$

The nature of the sections of $\mathcal{O}_Y(-nS - jF)$ for $n, j \in \mathbb{N}$ is determined by which of three separate regions of the positive quadrant of the plane contains the point (n, j). They are:

1) $j < n$
2) $n \leq j < n \left(3 - \frac{\sqrt{3}}{3} \right)$ and
3) $n \left(3 - \frac{\sqrt{3}}{3} \right) < j$.

In case 1),

$$\mathcal{O}_Y(-nS - jF) \otimes \mathcal{O}_F \not\in \operatorname{Eff}(F).$$

In case 2),

$$\mathcal{O}_Y(-nS - jF) \otimes \mathcal{O}_S \in \operatorname{Nef}(\mathcal{S}) \text{ and } \mathcal{O}_Y(-nS - jF) \otimes \mathcal{O}_F \in \operatorname{Nef}(F).$$

In case 3),

$$\mathcal{O}_Y(-nS - jF) \otimes \mathcal{O}_S \not\in \operatorname{Eff}(\mathcal{S}).$$

Let $R = \mathcal{O}_{\mathbb{Z}, q}$ (q is the point on \mathbb{Z} which S and F contract to) and $U = Y \times \mathbb{Z} \operatorname{Spec}(R)$ with the natural projective morphism $U \to \operatorname{Spec}(R)$ induced by $Y \to \mathbb{Z}$. The morphism $U \to \operatorname{Spec}(R)$ is the blow up of the m-primary ideal I_q. An effective Cartier divisor $D = nS + jF$ on U is anti-nef on U if and only if $\mathcal{O}_Y(-D) \otimes \mathcal{O}_S \in \operatorname{Nef}(\mathcal{S})$ and $\mathcal{O}_Y(-D) \otimes \mathcal{O}_F \in \operatorname{Nef}(F)$. If D is anti-nef on U, then $\gamma_{\mathcal{S}}(D) = n$ and $\gamma_F(D) = j$ by Lemma 2.2.

We deduce the following theorem.

Theorem 4.1. Let $D = nS + jF$ with $j, n \in \mathbb{N}$, an effective exceptional divisor on U.

1) Suppose that $j < n$. Then $\gamma_{\mathcal{S}}(D) = n$ and $\gamma_F(D) = n$.
2) Suppose that $n \leq j < n \left(3 - \frac{\sqrt{3}}{3} \right)$. Then $\gamma_{\mathcal{S}}(D) = n$ and $\gamma_F(D) = j$.
3) Suppose that $n \left(3 - \frac{\sqrt{3}}{3} \right) < j$. Then $\gamma_{\mathcal{S}}(D) = \frac{3}{9 - \sqrt{3}} j$ and $\gamma_F(D) = j$.

In all three cases, $-\gamma_{\mathcal{S}}(D)S - \gamma_F(D)F$ is nef on U.

Proof. If D is in case 1), then $\Gamma(U,\mathcal{O}_U(-nm(\mathfrak{S} + F))) = \Gamma(U,\mathcal{O}_U(-mD))$ for all $m \in \mathbb{N}$ by (18) and $\mathfrak{S} + F$ is anti-nef on U by (19). If D is in case 2), then D is anti-nef on U by (19). If D is in case 3), then $\Gamma(U,\mathcal{O}_U(-\frac{m^3}{9-\sqrt{3}}\mathfrak{S} + mjF)) = \Gamma(U,\mathcal{O}_U(-mD))$ for all $m \in \mathbb{N}$ by (20) and $\frac{3}{9-\sqrt{3}}\mathfrak{S} + F$ is anti-nef on U by (19). □

From Theorem 4.1, (9) and Proposition 2.4, we have that for $D = n\mathfrak{S} + jF$ with $m, j \in \mathbb{N},$

$$\lim_{m \to \infty} \frac{\ell_R(R/I(mD))}{m^3} = -\frac{\langle (-\gamma_\mathfrak{S}(D)\mathfrak{S} - \gamma_F(D)F)^3 \rangle}{3!},$$

and we have by (3), Theorem 4.1, (8) and Proposition 2.4 that

$$\lim_{m \to \infty} \frac{\ell_R(R/I(mn\mathfrak{S}))}{m} = \sum_{i_1+i_2=3} \frac{1}{i_1!i_2!} \epsilon_R(\mathcal{I}(1)^{[i_1]}, \mathcal{I}(2)^{[i_2]}) n^{i_1} j^{i_2}$$

$$= \sum_{i_1+i_2=3} \frac{1}{i_1!i_2!} \left((-\gamma_\mathfrak{S}(\mathfrak{S})\mathfrak{S} - \gamma_F(\mathfrak{S})F)^{i_1} \cdot (-\gamma_\mathfrak{S}(F)\mathfrak{S} - \gamma_F(F)F)^{i_2} \right) n^{i_1} j^{i_2}$$

We now make equations (21) and (22) explicit. To compute the necessary intersection numbers, we use the facts that

$$\mathcal{O}_Y(\mathfrak{S}) \otimes \mathcal{O}_\mathfrak{S} \cong \mathcal{O}_S(-3(2A + 3B + 4\Delta)), \quad \mathcal{O}_Y(F) \otimes \mathcal{O}_\mathfrak{S} \cong \mathcal{O}_S(3A + B + \Delta),$$

$$\mathcal{O}_Y(\mathfrak{S}) \otimes \mathcal{O}_F \cong \mathcal{O}_F(C_0), \quad \mathcal{O}_Y(F) \otimes \mathcal{O}_F \cong \mathcal{O}_F(-C_0 - 108f),$$

to calculate that

$$(\mathfrak{S}^2) = (-3(2A + 3B + 4\Delta) \cdot -3(2A + 3B + 4\Delta))_S = 9 \times 52 = 468$$

$$(\mathfrak{S}^2 \cdot F) = (-3(2A + 3B + 4\Delta) \cdot 3(A + B + \Delta))_S = -9 \times 18 = -162$$

$$(\mathfrak{S} \cdot F^2) = (3(A + B + \Delta) \cdot 3(A + B + \Delta))_S = 9 \times 6 = 54$$

$$(F^3) = ((-C_0 - 108f) \cdot (-C_0 - 108f))_F = 9 \times 6 = 54.$$

The formulas of Theorems 1.4 and 1.5 of the introduction are now a consequence of Theorem 4.1, equations (21) and (22) and the above formulas computing intersection multiplicities.

References

STEVEN DALE CUTKOSKY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211, USA
Email address: cutkoskys@missouri.edu