1. Statement of the problem and known results.
Throughout these lectures, unless explicitly stated otherwise, \(k \) is an algebraically closed field of characteristic zero. A variety is an open subset of an irreducible proper \(k \)-variety.

A toroidal structure on a nonsingular variety \(X \) is a SNC divisor \(D_X \). \(p \in D_X \) is an \(n \)-point if \(p \) is on (exactly) \(n \) components of \(D_X \). If \(p \in X \), regular parameters \(x_1, \ldots, x_n \) in \(\mathcal{O}_{X,p} \) (or in \(\hat{\mathcal{O}}_{X,p} \)) are permissible parameters for \(D_X \) at \(p \) if there exists \(l \) (with \(0 \leq l \leq n \)) such that \(x_1 \cdots x_l = 0 \) is a local equation of \(D_X \) at \(p \).

A nonsingular subvariety \(V \) of \(X \) is a possible center for \(D_X \) if \(V \subset D_X \) and \(V \) makes SNCs with \(D_X \). The blow up \(\Phi : X_1 \to X \) of a possible center is called a possible blow up. \(D_{X_1} = \Phi^{-1}(D_X) \) is then a toroidal structure on \(X_1 \).

Recall that \(f : X \to Y \) is toroidal (with respect to \(D_Y \) and \(D_X \)) if \(f : (X, D_X) \to (Y, D_Y) \) is locally formally isomorphic to a morphism of toric varieties ([KKMS], [AK]).

The “toroidalization conjecture” of [AKMW] is:

Conjecture 1.1 Suppose that \(f : X \to Y \) is a dominant morphism of nonsingular varieties. Then there exists a commutative diagram of morphisms

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi \downarrow & & \downarrow \Psi \\
X & \xrightarrow{f} & Y
\end{array}
\]

where \(\Phi, \Psi \) are products of blow ups of nonsingular centers, and there exist SNC divisors \(D_{Y_1} \) on \(Y_1 \) and \(D_{X_1} \) on \(X_1 \) such that \(f_1 \) is toroidal with respect to \(D_{Y_1} \) and \(D_{X_1} \).

A stronger version of this (which is also stated in [AKMW]) we will call the “strong toroidalization conjecture”. It is stated as follows:

Conjecture 1.2 Suppose that \(f : X \to Y \) is a dominant morphism of nonsingular varieties. Further suppose that there is a SNC divisor \(D_Y \) on \(Y \) such that \(D_X = f^{-1}(D_Y) \) is a SNC divisor on \(X \) which contains the singular locus of the map \(f \). Then there exists a commutative diagram of morphisms

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi \downarrow & & \downarrow \Psi \\
X & \xrightarrow{f} & Y
\end{array}
\]
where Φ, Ψ are products of possible blow ups for the preimages of D_X and D_Y respectively, and f_1 is toroidal with respect to $D_{Y_1} = \Psi^{-1}(D_Y)$ and $D_{X_1} = \Phi^{-1}(D_X)$.

The characteristic zero assumption on our base field k is necessary in these conjectures. The conjecture even fails in positive characteristic for morphisms of curves (where all blowups are trivial). A simple example is

$$t = x^p + x^{p+1}$$

over a field of characteristic p. We have that $t = x^p(1 + x)$, but $(1 + x)^{\frac{1}{p}} \notin k[[x]]$.

The case where there is an “easy” proof of the conjecture is when Y is a curve.

Theorem 1.3 Suppose that $f : X \to Y$ is a morphism from an n-fold to a curve. Then f has a toroidalization

\[
\begin{array}{ccc}
X_1 & \xrightarrow{\Phi} & X \\
\downarrow & \searrow & \downarrow f \\
Y & \to & Y.
\end{array}
\]

Proof. Let $D_Y = f(\text{sing}(f))$. Embedded resolution of hypersurface singularities implies there exists a sequence of possible blow ups $\Phi : X_1 \to X$ such that $D_{X_1} := (f \circ \Phi)^{-1}(D_Y)$ is a SNC divisor on X_1. Suppose that $p \in D_{X_1}$ and $q = (f \circ \Phi)(p)$. Let $t_q \in \mathcal{O}_{Y,q}$ be a regular parameter. There exist permissible parameters x_1, \ldots, x_n in $\mathcal{O}_{X_1,p}$ such that

$$t_q = x_1^{a_1} \cdots x_l^{a_l} u$$

where $u \in \mathcal{O}_{X_1,p}$ is a unit. Set $\overline{x}_1 = x_1 u^{\frac{1}{a_1}} \in \hat{\mathcal{O}}_{X_1,p}$. Then

$$t_q = \overline{x}_1^{a_1} \cdots \overline{x}_l^{a_l}.$$

From now on, we will suppose that $f : X \to Y$ is a morphism of nonsingular varieties with toroidal structures D_Y and $D_X = f^{-1}(D_Y)$ such that $\text{sing}(f) \subset D_X$.

The character of the toroidalization problem is completely different when Y is not a curve. The essential problem is that we must then blow up above Y to toroidalize.

Example 1.4 In general, if $\dim Y \geq 2$, we must blow up above Y to toroidalize.

Consider the morphism $f : X = \mathbb{A}^2 \to Y = \mathbb{A}^2$ with toroidal structures $D_Y = \{u = 0\}$ and $D_X = \{x = 0\}$, defined by

$$u = x^a$$

$$v = P(x) + x^by$$

where $P(x)$ is a polynomial.
where P is a polynomial of degree less than b with zero constant term. Thus f is not toroidal. (To have a toroidal form, we would have to change variables to get permissible parameters related by a form $u = x^a, v = y$). Further, suppose that $\Phi: X_1 \to X$ is a sequence of blow ups of points, and $p \in X_1$ is a 1-point which maps to the origin of X. Then there are permissible parameters x_1, y_1 in $\hat{O}_{X_1, p}$ such that

$$x = x_1^m, \quad y = \sum_{i=1}^{r} \alpha_ix_1^i + x_1^ry_1.$$

Substituting into u and v, we find that

$$u = x_1^{qm}, \quad v = P(x_1^m) + x_1^{mb}(\sum_{i=1}^{r} \alpha_ix_1^r) + x_1^{mb+r}y_1$$

which is not toroidal.

The cases where the (strong) toroidalization conjecture is known to be true are:

1. dim(Y) = 1, dim(X) arbitrary.
2. dim(X) = dim(Y) = 2 [AkK], [CP1], [AKMW], [Mat].
3. Local monomialization (locally along a possibly non Noetherian valuation) [C1], [C2], [C5]. The full theorem is stated in Theorem 6.1 of these lectures. From 3, we infer the following theorem:

Theorem 1.5([C1],[C2], [C5]) *Suppose that $f: X \to Y$ is a dominant morphism of proper varieties. Then there exists a commutative diagram*

$$\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi \downarrow & & \downarrow \Psi \\
X & \xrightarrow{f} & Y
\end{array}$$

*such that f_1 is toroidal, and Φ, Ψ are locally products of blow ups of nonsingular centers. The morphisms Φ, Ψ and f_1 satisfy existence of the valuative criterion for properness, but in general uniqueness fails (so that these maps are in general not separated).

From Case 3 we also obtain the proof of “Local strong factorization” (conjectured by Abhyankar [Ab4]). Case 3 reduces the proof of the conjecture to the case of a toroidal mapping and a “toroidal” valuation. This is proven in dimension 3, by Christensen [Ch], and extended to arbitrary dimension by Karu [K]. A proof in the style of Christensen’s original proof (using determinants and elementary linear algebra) is given in [CS].

Local monomialization along a valuation could possibly be true in positive characteristic. It is certainly true for morphisms of curves, and for morphisms of n-folds to curves.
in dimensions where resolution of singularities is true. Good progress on this problem is made for morphisms of surfaces in [CP2].

4. \(\dim(X) = 3, \dim(Y) = 2 \) [C3] (strong toroidalization)
5. \(\dim(X) = \dim(Y) = 3, \ f \) birational [C6] (toroidalization), [C7] (strong toroidalization)

From 5, we reduce the “strong factorization” conjecture for birational morphisms of proper 3-folds to the case of toroidal morphisms, so we see that “strong factorization” of birational morphisms of proper 3-folds will follow from the Oda conjecture on “strong factorization” of toroidal varieties [O].

We further obtain a new proof of “weak factorization” of birational morphisms of proper 3-folds. Case 5 reduces “weak factorization” to the case of toroidal morphisms, which is solved in [D2] (dimension 3), [Mo], [W1], [AMR1], [AMR2] (arbitrary dimension). “Weak factorization” is proven in all dimensions (using geometric invariant theory) in [W2], [AKMW], [W3].

2. **Toroidalization of morphisms of surfaces.** In this section, we will suppose that \(f : X \to Y \) is a dominant morphism of nonsingular surfaces with toroidal structures \(D_Y \) and \(D_X = f^{-1}(D_Y) \) such that \(\text{sing}(f) \subset D_X \).

The proof that we give is from [AkK].

Suppose that \(p \in D_X \). The following are the possible toroidal forms for \(f \) at \(p \). Let \(q = f(p) \). There exist permissible parameters \(u, v \) in \(\mathcal{O}_{Y,q} \) and \(x, y \) in \(\hat{O}_{X,p} \) such that one of the following forms hold.

- \(q \) a 1-point and \(p \) a 1-point
 \[u = x^a, v = y. \]

- \(q \) a 2-point and \(p \) a 1-point
 \[u = x^a, v = x^b(\alpha + y) \]
 with \(0 \neq \alpha \in k \).

- \(q \) a 2-point and \(p \) a 2-point
 \[u = x^a y^b, v = x^c y^d \]
 with \(ad - bc \neq 0 \).

We will say that \(f \) is strongly prepared at \(p \) if one of the following forms hold.
\(q \) a 1-point

\[
(1) \quad u = x^a, v = P(x) + x^b y
\]

or \(q \) a 2-point

\[
(2) \quad u = (x^a y^b)^t, v = P(x^a y^b) + x^c y^d
\]

with \(ad - bc \neq 0, \gcd(a, b) = 1 \).

Theorem 2.1 \(f \) is strongly prepared.

Proof. Suppose that \(p \in D_X \). Let \(u, v \) be permissible parameters at \(q = f(p) \), \(x, y \in \hat{O}_{X,p} \) be permissible parameters such that

\[
u = x^a
\]

if \(p \) is a 1-point, and

\[
u = (x^a y^b)^t
\]

with \(\gcd(a, b) = 1 \) if \(p \) is a 2-point.

If \(p \) is a 1-point, there exists a unit \(\delta \in \hat{O}_{X,p} \) such that

\[
u x v_y - u_y v_x = \delta x^e.
\]

If \(p \) is a 2-point, there exists a unit \(\delta \in \hat{O}_{X,p} \) such that

\[
u x v_y - u_y v_x = \delta x^e y^f.
\]

Expand \(v \) as a series \(v = \sum a_{ij} x^i y^j \) with \(a_{ij} \in k \).

If \(p \) is a 1-point, then \(ax^{a-1} v_y = \delta x^e \), from which it follows that (1) holds and \(f \) is strongly prepared at \(p \).

Suppose that \(p \) is a 2-point. Then

\[
u x v_y - u_y v_x = \sum t(a_j - b_i)a_{ij} x^{a_t + i - 1} y^{b_t + j - 1} = \delta x^e y^f.
\]

This implies that

\[
v = \sum_{a_j - b_i = 0} a_{ij} x^i y^j + \epsilon x^{e+1-at} y^{f+1-bt}
\]

where \(\epsilon \) is a unit series. It follows that (2) holds and \(f \) is strongly prepared at \(p \).
The final step of the proof of toroidalization of morphisms of surfaces is the following theorem:

Theorem 2.2 There exists a commutative diagram of morphisms

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
\]

such that the vertical arrows are products of (possible) blow ups of points and \(f_1 \) is toroidal.

For \(E \) a component of \(D_X \), \(p \in E \) a 1-point, define

\[A(f, p) = \min\{b - \text{ord}_x(v)\} = A(f, E) \]

where the minimum is over permissible parameters \(u, v \) at \(q = f(p) \). Here \(\text{ord}_x(v) \) is the largest power of \(x \) which divides \(v \) in \(\mathcal{O}_{X, p} \). If \(A(f, p) > 0 \), define

\[C(f, p) = \min\{(b - \text{ord}_x(v), \text{ord}_x(v) + a)\} = C(f, E) \]

where the minimum is in the lex order over permissible parameters \(u, v \) at \(q = f(p) \).

Now define

\[A(f) = \max\{A(f, E) \mid E \text{ is a component of } D_X\} \]

If \(A(f) > 0 \), define

\[C(f) = \max\{C(f, E) \mid E \text{ is a component of } D_X \text{ such that } A(f, E) > 0\} \]

Lemma 2.3 Let \(\Psi_1 : Y_1 \to Y \) be the blow up of \(q \in D_Y \). Let \(f_1 : X \to Y_1 \) be the induced rational map.

1. Suppose that \(p \in f^{-1}(q) \) is a 1-point and \(f_1 \) is a morphism at \(p \). Then

\[A(f_1, p) \leq A(f, p). \]

If \(A(f_1, p) = A(f, p) > 0 \), then \((C, f_1, p) < C(f, p) \).

2. Suppose that \(p \in X \) is such that \(f_1 \) is not a morphism at \(p \). Let \(\Psi_1 : X_1 \to X \) be the blow up of \(p \) and \(E = \Psi_1^{-1}(p) \). Let \(\overline{f}_1 = f \circ \Psi_1 : X_1 \to Y \). Then

\[A(\overline{f}_1, E) = 0 \text{ or } A(\overline{f}_1, E) < A(f). \]
By iteration of Lemma 2.3, we reduce to $A(f) = 0$ in the proof of Theorem 2.2.
We now list the prepared forms with $A(f) = 0$, with respect to suitable permissible parameters x, y for $p \in D_X$ and u, v for $q = f(p)$.

q a 1-point and p a 1-point:

$$u = x^a, \quad v = x^b(\alpha + y)$$

with $\alpha \in k$.

q a 1-point and p a 2-point:

$$u = x^a y^b, \quad v = x^c y^d$$

with $ad - bc \neq 0$.

q a 2-point and p a 1-point:

$$u = x^a, \quad v = x^b(\alpha + y)$$

with $0 \neq \alpha \in k$.

q is a 2-point and p is a 2-point:

$$u = x^a y^b, \quad v = x^c y^d$$

with $ad - bc \neq 0$.

If E is a component of D_X and $p \in E$ is a 1-point, define

$$I(f, p) = b - a = I(f, E).$$

Define

$$I(f) = \max\{I(f, E) \mid E \text{ is a component of } D_X\}.$$

Lemma 2.4 Suppose that $A(f) = 0$. Let $\Psi_1 : Y_1 \to Y$ be the blow up of a 1-point $q \in D_Y$.
Let $f_1 : X \to Y_1$ be the induced rational map.

1. Suppose that $p \in f^{-1}(q)$ is a 1-point, f_1 is a morphism at p and $f_1(p)$ is a 1-point. Then:
 a. If $I(f, p) > 0$ then $I(f_1, p) < I(f, p)$.
 b. If $I(f, p) \leq 0$ then f_1 is toroidal at p.

7
2. Suppose that \(p \in f^{-1}(q) \) is a 1-point and \(f_1 \) is not a morphism at \(p \). Let \(\Psi_1; X_1 \to X \) be the blow up of \(p \) and \(E = \Psi_1^{-1}(p) \). Let \(\overline{f}_1 = f \circ \Psi_1; X_1 \to Y \). Then
\[
I(f, p) < I(\overline{f}_1, E) \leq 0.
\]

Now by successive application of Lemma 2.4, we reduce to the case \(A(f) = 0 \) and \(I(f) \leq 0 \). Finally, by further application of Lemma 2.4, we prove Theorem 2.2.

3. Toroidalization of morphisms from 3-folds to surfaces. In this lecture we maintain our assumption that \(f : X \to Y \) is a dominant morphism of nonsingular varieties with toroidal structures defined by SNC divisors \(D_Y \) and \(D_X = f^{-1}(D_Y) \) such that \(\text{sing}(f) \subset D_X \).

We restrict to the case where \(\dim(Y) = 2 \). Initially, we allow \(n = \dim(X) \) to be arbitrary.

With these assumptions, we say that \(f \) is strongly prepared at \(p \in D_X \) if there exist permissible parameters \(u, v \) in \(\mathcal{O}_{Y,q} \) (where \(q = f(p) \)) and \(x_1, \ldots, x_n \) in \(\widehat{\mathcal{O}}_{X,p} \) such that \(x_1 \cdots x_l = 0 \) is a local equation of \(D_X \) at \(p \), and one of the following forms hold:

1. \(u = 0 \) is a local equation of \(D_X \),
\[
u = (x_1^{a_1} \cdots x_l^{a_l})^m, v = P(x_1^{a_1} \cdots x_l^{a_l}) + x_1^{b_1} \cdots x_l^{b_l}
\]
or
2. \(u = 0 \) is a local equation of \(D_X \),
\[
u = (x_1^{a_1} \cdots x_l^{a_l})^m, v = P(x_1^{a_1} \cdots x_l^{a_l}) + x_1^{b_1} \cdots x_l^{b_l} x_{l+1}
\]
or
3. \(uv = 0 \) is a local equation of \(D_X \),
\[
u = x_1^{a_1} \cdots x_l^{a_l-1}, v = x_2^{b_2} \cdots x_l^{b_l}.
\]

In all of these cases \(\gcd(a_1, \ldots, a_l) = 0 \) and \(P \) is a series. In Case 1 we have
\[
\text{rank} \left(\begin{array}{c} a_1 \\ b_1 \\ \vdots \\ a_l \\ b_l \end{array} \right) = 2.
\]

Recall that in the case when \(n = \dim(X) = 2 \) (and \(\dim(Y) = 2 \)), Theorem 2.1 implies that \(f \) is strongly prepared. However, the situation is much more complicated if \(X \) has higher dimension.
We will say that f is prepared if conditions 1 or 2 above in the definition of strongly prepared always hold.

Example 3.1 In general, if $n = \dim(X) \geq 3$, then f is not strongly prepared.

Define a germ of a morphism $f : X \to Y$ from a 3-fold to a surface by

$$u = x^a, v = x^c F$$

where $a \geq 2$, $c \geq 0$, $r \geq 1$ and

$$F = x^rz + h(x,y)$$

where $h(x,y)$ is an arbitrary series with $h(0,0) = 0$. Define toroidal structures $D_Y = \{u = 0\}$, $D_X = \{x = 0\}$. We compute the Jacobian matrix

$$J(f) = \begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}
\end{pmatrix} = \begin{pmatrix}
a x^{a-1} & 0 & 0 \\
(c + r)x^{c-r-1}z + \frac{\partial x^c h}{\partial x} & x^c \frac{\partial h}{\partial y} & x^{c+r}
\end{pmatrix}.$$}

We see that the ideal of sing(f), which is obtained from the 2×2 minors of $J(f)$, is

$$\sqrt{I_2(J(f))} = \sqrt{(x^{a+c-1} \frac{\partial h}{\partial y}, x^{a+c+r-1})} = (x).$$

Thus $\text{sing}(f) \subset D_X = f^{-1}(D_Y)$.

Theorem 2.2 for morphisms of surfaces does generalize, but the proof is much harder.

Theorem 3.2 ([C3] if dim($X) = 3$, [CK] for arbitrary dimension) Suppose that Y is a surface, and $f : X \to Y$ is strongly prepared. Then there exists a commutative diagram of morphisms

$$
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi_1 \downarrow & & \downarrow \Psi_1 \\
X & \xrightarrow{f} & Y
\end{array}
$$

such that Φ_1 and Ψ_1 are products of possible blow ups, f_1 is toroidal.

At least in the case when X is a 3-fold, it is possible to construct a prepared morphism.

Theorem 3.3 ([C3]) Suppose that X is a 3-fold and Y is a surface. Then there exists a commutative diagram of morphisms

$$
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi_1 \downarrow & & \downarrow \Psi_1 \\
X & \xrightarrow{f} & Y
\end{array}
$$
such that Φ_1 is a product of possible blow ups and f_1 is prepared.

Now, since prepared implies strongly prepared, Theorems 3.2 and 3.3 immediately imply

Theorem 3.4 ([C3]) Strong toroidalization is true for dominant morphisms of 3-folds to surfaces

Comments on the proof of Theorem 3.3

Suppose that $p \in D_X$, $q = f(p) \in D_Y$. Then we can see from the Jacobian matrix of f that there are permissible parameters u, v in $O_{Y,q}$, x, y, z in $\hat{O}_{X,q}$ and a series P such that one of the following forms hold.

1. p is a 1-point

 $$u = x^a, v = P(x) + x^b F_p$$
 where $x \not| F_p$, F_p has no terms which are monomials in x.

2. p is a 2-point

 $$u = (x^ay^b)^m, v = P(x^ay^b) + x^c y^d F_p$$
 where $\gcd(a, b) = 1$, $x \not| F_p$, $y \not| F_p$, and $x^cy^d F_p$ has no terms which are monomials in x^ay^b.

3. p is a 3-point

 $$u = (x^ay^bz^c)^m, v = P(x^ay^bz^c) + x^d y^e z^f F_p$$
 where $\gcd(a, b, c) = 1$, $x \not| F_p$, $y \not| F_p$, $z \not| F_p$, and $x^dy^ez^f F_p$ has no terms which are monomials in $x^ay^bz^c$.

For $p \in D_X$, define

$$\nu(p) = \text{mult}(F_p).$$

It can be shown that $\nu(p)$ is an invariant of p. Set $S_r(X) = \{p \in D_X \mid \nu(p) \geq r\}$.

In Example 3.1, write

$$h(x, y) = h_0(x) + yx^m h_1(x, y)$$

where $x \not| h_1$. Suppose that $m < r$. Then we have

$$u = x^a$$

$$v = x^eh_0(x) + x^{c+m}(yh_1(x, y) + x^{r-m}z)$$

$$= P(x) + x^{c+m} F_p.$$
Thus
\[\nu(p) = \min\{r - m + 1, 1 + \text{ord}(h_1)\}. \]
Let
\[S_r(X) = \{ p \in D_X \mid \nu(p) \geq r \}. \]

\(S_r(X) \) is constructible but may not be Zariski closed, as is shown in the following example.

Example 3.5 In general, \(S_r(X) \) is not Zariski closed.

Define a germ of a morphism \(f : X \to Y \) from a 3-fold to a surface at a point \(p \in X \) by
\[u = xy, \quad v = x^2y. \]
Define toroidal structures \(D_Y = \{ uv = 0 \}, \quad D_X = \{ xy = 0 \}. \) We have \(\nu(p) = 0. \)

At 1-points \(p_1 \) on the surface \(x = 0 \), there are regular parameters \(x, y_1, z \) with \(y = y_1 + \alpha \) for some \(0 \neq \alpha \in k. \) Set \(\overline{x} = x(y_1 + \alpha) \). We then have permissible parameters \(\overline{x}, y_1, z \) at \(p_1 \) such that
\[u = \overline{x}, \quad v = \overline{x}^2(y_1 + \alpha)^{-1} \]
\[= \alpha^{-1}x^2 + \overline{x}^2y_1. \]
Thus \(\nu(p_1) = 1. \)

Other important invariants in the proof are \(\gamma(p) \) and \(\tau(p) \). \(\gamma(p) \) is defined by
\[\gamma(p) = \begin{cases} \mult F_p(0, y, z) & \text{if } p \text{ is a 1-point} \\ \mult F_p(0, 0, z) & \text{if } p \text{ is a 2-point} \end{cases} \]

Suppose that \(p \in X \) is a 1-point. We have an expression
\[u = x^a, \quad v = P(x^a) + x^bF_p, \quad F_p = \sum_{i+j+k \geq r} a_{ijk}x^iy^jz^k \]
at \(p \), where \(\nu(p) = r \). Define
\[\tau(p) = \max\{ j + k \mid \text{there exists } a_{ijk} \neq 0 \text{ with } i + j + k = r \}. \]

Suppose that \(p \in X \) is a 2-point. We have an expression
\[u = (x^ay^b)^m, \quad v = P(x^a, y^b) + x^cF_p, \quad F_p = \sum_{i+j+k \geq r} a_{ijk}x^iy^jz^k \]
at \(p \), where \(\nu(p) = r \). Define

\[
\tau(p) = \max \{ k \mid \text{there exists } a_{ijk} \neq 0 \text{ with } i + j + k = r \}.
\]

\(\tau \) measures the independence of the leading form of \(F_p \) from local equations of \(D_X \).

Lemma 3.6 \(f \) is prepared if and only if

1. If \(p \) is a 1-point then \(\nu(p) \leq 1 \).
2. If \(p \) is a 2-point then \(\gamma(p) \leq 1 \).
3. If \(p \) is a 3-point then \(\nu(p) = 0 \).

We see that Example 3.5 is prepared. It satisfies 1 and 2 of Lemma 3.6.

Lemma 3.7 Suppose that \(\nu(p) = r \), \(\Phi : X_1 \to X \) is the blow up of \(p \) and \(p_1 \in \Phi^{-1}(p) \). Then

\[
\nu_{f \circ \Phi}(p_1) \leq r + 1.
\]

If \(\nu_{f \circ \Phi}(p_1) = r + 1 \) then there are restrictions on \(\gamma \) and \(\tau \).

Example 3.8 \(\nu \) can increase after blowing up a point.

Recall the morphism of Example 3.5,

\[
u = xy, v = x^2y,
\]

with toroidal structures \(D_Y = \{ uv = 0 \} \), \(D_X = \{ xy = 0 \} \). We have \(\nu(p) = 0 \). Extend \(x, y \) to permissible parameters \(x, y, z \) at \(p \). Let \(\Phi : X_1 \to X \) be the blow up of \(p \). Suppose that \(p_1 \in \Phi^{-1}(p) \) is a 1-point with regular parameters \(x_1, y_1, z_1 \) defined by

\[
x = x_1, y = x_1(y_1 + \alpha), z = x_1z_1
\]

with \(0 \neq \alpha \in k \). Then

\[
u = x_1^2(y_1 + \alpha), v = x_1^3(y_1 + \alpha).
\]

Set

\[
x_1 = x_1(y_1 + \alpha)^{\frac{1}{2}}, y_1 = (y_1 + \alpha)^{-\frac{1}{2}} - \alpha^{-\frac{1}{2}}.
\]

Then \(x_1, y_1, z_1 \) are permissible parameters at \(p_1 \), with

\[
u = x_1^2, v = \alpha^{-\frac{1}{2}}x_1^3 + x_1^3y_1.
\]
Thus $\nu(p_1) = 1$.

Lemma 3.9 Suppose that $C \subset \overline{S}_r(X) (= \text{Zariski closure of } S_r(X))$ is a nonsingular curve which makes SNCs with D_X. Then either

1. C is r-big:

 $$F_p \in \hat{T}_{C,p}^r \text{ for all } p \in C$$

 or

2. C is r-small:

 $$F_p \in \hat{T}_{C,p}^{r-1} - \hat{T}_{C,p}^r \text{ for all } p \in C.$$

The invariants ν, γ and τ behave reasonably well under possible blow ups of such curves.

Definition 3.10 Suppose that $r \geq 2$. $\overline{A}_r(X)$ holds if

1. $\nu(p) \leq r$ if $p \in X$ is a 1-point or a 2-point.
2. If $p \in X$ is a 1-point and $\nu(p) = r$ then $\gamma(p) = r$.
3. If $p \in X$ is a 2-point and $\nu(p) = r$, then $\tau(p) > 0$.
4. $\nu(p) \leq r - 1$ if $p \in X$ is a 3-point.

$\overline{A}_r(X)$ is stable under blow ups of points. The proof of Theorem 3.3 is by descending induction on r. $\overline{A}_1(X)$ holds if and only if f is prepared (by Lemma 3.6). We must blow up points and curves which are r-big and r-small. There are a couple of stubborn cases which require blow ups of appropriately general curves.

4. **Toroidalization of morphisms from 3-folds to 3-folds.**

In this lecture we maintain our assumption that $f : X \to Y$ is a dominant morphism of nonsingular varieties with toroidal structures defined by SNC divisors D_Y and $D_X = f^{-1}(D_Y)$ such that $\text{sing}(f) \subset D_X$.

We restrict to the case where $\dim(X) = \dim(Y) = 3$.

We say that f is prepared (for D_Y and D_X) if for all $q \in D_Y$ and $p \in f^{-1}(q)$ there exist permissible parameters u, v, w in $\mathcal{O}_{Y,q}$ and x, y, z in $\hat{\mathcal{O}}_{X,p}$ such that u, v have a toroidal form in terms of x, y, z (or a related condition holds).

Suppose that $f : X \to Y$ is prepared. Then D_X is cuspidal for f if f is toroidal in a neighborhood of all components of D_X which do not contain a 3-point, and in a neighborhood of all 2-curves of D_X which do not contain a 3-point.
Theorem 4.1([C7]) Suppose that \(\dim(X) = \dim(Y) = 3 \). Then there exists a commutative diagram of morphisms

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\Phi & \downarrow & \Psi \\
X & \xrightarrow{f} & Y
\end{array}
\]

such that \(\Phi \) and \(\Psi \) are products of possible blow ups, \(f_1 \) is prepared for \(D_{Y_1} = \Phi^{-1}(D_Y) \) and \(D_{X_1} = \Psi^{-1}(D_X) \), and \(D_{X_1} \) is cuspidal for \(f_1 \).

The significance of the prepared condition is that now we can read off of the Jacobian matrix of \(f \) nice local forms for \(f \). Suppose that \(f \) is prepared, \(p \in D_X \), \(q = f(p) \), and \(u, v, w \) are permissible parameters at \(p \) such that \(u, v \) are toroidal forms at \(p \). Then there are permissible parameters \(x, y, z \) in \(\hat{O}_{X,p} \) such that one of the following cases hold:

1. \(q \) is a 2-point or a 3-point, \(p \) is a 1-point and
 \[
u = x^a, v = x^b(\alpha + y), w = g(x, y) + x^c z
\]
 where \(0 \neq \alpha \in k \) and \(g \) is a series.
2. \(q \) is 2-point or a 3-point, \(p \) is a 2-point and
 \[
u = x^a y^b, v = x^c y^d, w = g(x, y) + x^e y^f z
\]
 where \(\text{rank}((a, b), (c, d)) = 2 \) and \(g \) is a series.
3. \(q \) is a 2-point or a 3-point, \(p \) is a 2-point and
 \[
u = (x^a y^b)^k, v = (x^a y^b)^t(\alpha + z), w = g(x^a y^b, z) + x^c y^d
\]
 where \(0 \neq \alpha \in k \), \(a, b, k, t > 0 \), \(\gcd(a, b) = 1 \), \(g \) is a series and \(\text{rank}((a, b), (c, d)) = 2 \).
4. \(q \) is a 2-point or a 3-point, \(p \) is a 3-point and
 \[
u = x^a y^b z^c, v = x^d y^e z^f, w = g(x, y, z) + N
\]
 where \(\text{rank}((a, b, c), (d, e, f)) = 2 \), \(g \) is a series in monomials \(M = x^\alpha y^\beta z^\gamma \) in \(x, y, z \) such that \(\text{rank}((a, b, c), (d, e, f), (\alpha, \beta, \gamma)) = 2 \), and \(N = x^{a'} y^{b'} z^{c'} \) is such that
 \[
 \text{rank}((a, b, c), (d, e, f), (a', b', c')) = 3.
 \]
5. \(q \) is a 1-point, \(p \) is a 1-point and
 \[
u = x^a, v = y, w = g(x, y) + x^c z
\]

14
where g is a series.

6. q is a 1-point, p is a 2-point and

$$u = (x^ay^b)^k, v = z, w = g(x^ay^b, z) + x^cy^d$$

with $a, b, k > 0$, $\gcd(a, b) = 1$, g is a series and $\text{rank}((a, b), (c, d)) = 2$.

At first sight, the prepared forms for morphisms of 3-folds appear to be similar to those of prepared forms of morphisms of n-folds to surfaces, which we are able to toroidalize in Theorem 3.3. However, a little experimentation shows that the situation when the base Y is a 3-fold is much more complex. The essential problem is that prepared forms are not stable under possible blow ups above Y when Y is a 3-fold.

However, we are able to accomplish toroidalization in the case when f is birational.

Theorem 4.2 ([C6], toroidalization; [C7], strong toroidalization) *Strong toroidalization is true for birational morphisms $f : X \to Y$ of 3-folds.*

Outline of proof of Theorem 4.2

By Theorem 4.1, we may assume that f is prepared, and D_X is cuspidal for f. These conditions are preserved throughout the construction.

We define the τ-invariant of a 3-point $p \in X$. Since f is prepared, $f(p) = q$ is a 2-point or a 3-point. There are permissible parameters u, v, w in $\mathbb{O}_{Y,q}$ and x, y, z in $\hat{O}_{X,p}$ such that $xyz = 0$ is a local equation of D_X, $uv = 0$ or $uvw = 0$ is a local equation of D_Y and there is an expression

$$(3) \quad u = x^ay^bz^c, \quad v = x^dy^ez^f, \quad w = \sum_{i \geq 0} \alpha_i M_i + N$$

with $\alpha_i \in k$, $M_i = x^{ai}y^{bi}z^{ci}$, $N = x^gy^hz^i$,

$$\text{rank} \begin{pmatrix} a & b & c \\ d & e & f \\ a_i & b_i & c_i \end{pmatrix} = 2, \quad \det \begin{pmatrix} a & b & c \\ d & e & f \\ a_i & b_i & c_i \end{pmatrix} = 0 \text{ for all } i,$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \neq 0.$$

If q is a 3-point, then

$$w = \text{unit series } N$$
if and only if \(f \) is toroidal at \(p \). In this case define \(\tau_f(p) = -\infty \).

Otherwise, define

\[
H_p = Z(a, b, c) + Z(d, e, f) + \sum_i Z(a_i, b_i, c_i),
\]

\[
A_p = \begin{cases}
Z(a, b, c) + Z(d, e, f) + Z(a_0, b_0, c_0) & \text{if } q \text{ is a 3-point} \\
Z(a, b, c) + Z(d, e, f) & \text{if } q \text{ is a 2-point}.
\end{cases}
\]

Now define

\[
\tau_f(p) = |H_p/A_p|.
\]

We define

\[
\tau_f(X) = \max\{\tau_f(p) \mid p \in X \text{ is a 3-point}\}.
\]

Theorem 4.3 Suppose that \(f \) is prepared for \(D_Y \) and \(D_X = f^{-1}(D_Y) \), and \(D_X \) is cuspidal for \(f \). Further suppose that \(\tau_f(X) = -\infty \). Then \(f \) is toroidal.

We have that \(\tau_f(X) \geq 0 \) or \(\tau_f(X) = -\infty \). The proof of Theorem 4.2 is by descending induction on \(\tau_f(X) \). In our proof of Theorem 4.2 we may thus assume that \(\tau = \tau_f(X) \neq -\infty \) (so that \(\tau \geq 0 \)).

Step 1. There exist sequences of blow ups of 2-curves

\[
\begin{array}{ccc}
X_1 & \overset{f_1}{\to} & Y_1 \\
\downarrow & & \downarrow \\
X & \overset{f}{\to} & Y
\end{array}
\]

such that \(f_1 \) is prepared, \(D_{X_1} \) is cuspidal for \(f_1 \), \(\tau_f(X_1) \leq \tau \), and \(\tau_{f_1}(p) = \tau \) implies that \(f_1(p) \) is a 2-point. We use the concept of 3-point relation in this step.

Step 2. In this step we construct a commutative diagram of morphisms

\[
\begin{array}{ccc}
X_1 & \overset{f_1}{\to} & Y_1 \\
\Phi \downarrow & & \downarrow \Psi \\
X & \overset{f}{\to} & Y
\end{array}
\]

such that

1. \(\Phi \) and \(\Psi \) are products of possible blow ups.
2. \(\tau(X_1) = \tau \), and if \(p \in X \) is a 3-point such that \(\tau_f(p) = \tau \) then \(f_1(p) \) is a 2-point.
3. D_{X_1} is cuspidal for f_1.
4. f_1 is τ-very-well prepared.

Step 2 is the most difficult step technically.

We will not give the complete definition of τ-very-well prepared, which uses the concept of 2-point relation, and requires the preliminary definitions of quasi-well prepared and well prepared.

By virtue of the result of this step, we can assume that f is τ-very-well prepared. We will also assume that $\tau > 0$. The case when $\tau = 0$ is actually a little easier, but the definition is a bit different.

We now summarize some of the properties of a τ-very-well-prepared morphism.

There exists a finite, distinguished set of nonsingular algebraic surfaces $\Omega(\overline{R}_i)$ in Y, with a SNC divisor F_i on $\Omega(\overline{R}_i)$ such that the intersection graph of F_i is a tree.

Suppose that $p \in X$ is a 3-point with $\tau_f(p) = \tau$ (so that $q = f(p)$ is 2-point). Then the following conditions hold.

1. The expression (3) has the form

\begin{equation}
 w = \gamma M_0
\end{equation}

where γ is a unit series, $M_0^e = u^a v^b$, with $a, b, e \in \mathbb{Z}$, $e > 1$, and $\gcd(a, b, e) = 1$. Observe that we cannot have both $a < 0$ and $b < 0$, since M_0, u, v are all monomials in x, y, z.

2. Suppose that V is the curve in Y with local equations $u = w = 0$ (or $v = w = 0$) at q. Then V is a possible center for D_Y and there exists a commutative diagram of morphisms

\begin{equation}
 \begin{array}{ccc}
 X_1 & \xrightarrow{f_1} & Y_1 \\
 \Phi_1 \downarrow & & \downarrow \Psi_1 \\
 X & \xrightarrow{f} & Y
 \end{array}
\end{equation}

where Ψ_1 is the blow up of V (possibly followed by blow ups of some special 2-points), such that f_1 and $\overline{f} = \Psi_1 \circ f_1 : X_1 \to Y$ are prepared, $\tau_{f_1}(X_1) \leq \tau$ and Φ_1 is toroidal at 3-points $p_1 \in \Phi_1^{-1}(p)$. Further, f_1 is τ-very-well prepared.

3. There exists a surface $\Omega(\overline{R}_i)$ such that
 a. $f(p) = q \in \Omega(\overline{R}_i)$.
 b. The w of (4) gives a local equation $w = 0$ of $\Omega(\overline{R}_i)$ at q.
 c. $uv = 0$ is a local equation of F_i (on the surface $\Omega(\overline{R}_i)$) at q.

17
The necessity of several different surfaces \(\Omega(\overline{R_i}) \) arises because of the possibility that there may be several 3-points \(p_j \) with \(\tau_f(p_j) = \tau \) which map to \(q \), and require different \(w \) in their expressions (4). We require that the surfaces \(\Omega(\overline{R_i}) \) intersect in a controlled way.

The first step in the construction of a \(\tau \)-very well prepared morphism is the construction of a morphism such that for all 3-points \(p \) with \(\tau_f(p) = \tau \), an expression (4) holds for some possibly formal \(w \).

Step 3. We construct a commutative diagram

\[
\begin{array}{ccc}
X_n & \xrightarrow{f_n} & Y_n \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y \\
\end{array}
\]

such that \(\tau_{f_n}(X_n) < \tau \). By induction on \(\tau \), we then obtain the proof of Theorem 4.2.

We fix an index \(i \) of the surfaces \(\Omega(\overline{R_i}) \). A curve \(E \) on \(Y \) is good if it is a component of \(F_i \), and if \(j \) is such that \(E \cap \Omega(\overline{R_j}) \neq \emptyset \), then \(E \) is a component of \(F_j \).

In our construction we begin with \(i = 1 \), and blow up a good curve \(V \) on \(Y \), by a morphism (5). Part of the definition of \(\tau \)-very-well prepared implies the existence of a good curve. Suppose that \(p \in X \) is a 3-point with \(\tau_f(X) = \tau \) and \(q = f(p) \in V \). Suppose that \(p_1 \in \Phi_1^{-1}(p) \) is a 3-point. Set \(q_1 = f_1(p_1) \). If \(V \) has local equations \(u = w = 0 \) at \(q \), then \(q_1 \) has regular parameters \(u_1, v, w_1 \) with

\[(6) \quad u = u_1 w_1, w = w_1 \]

or

\[(7) \quad u = u_1, w = u_1(w_1 + \alpha) \]

and \(\alpha \in k \).

If (6) holds then \(q_1 \) is a 3-point. Since \(e > 1 \), we have

\[\tau_{f_1}(p_1) = |H_p/A_p + M_0\mathbf{Z}| < |H_p/A_p| = \tau. \]

If (7) holds, then \(e > 1 \) implies \(\alpha = 0 \). Thus \(f_1 \) has the form (3), (4) at \(p_1 \) with \((\overline{a}, \overline{b}, e) \) changed to \((\overline{a} - e, \overline{b}, e) \). If \(V \) has local equations \(v = w = 0 \), then \(f_1 \) has the form (3), (4) at \(p_1 \) with \((\overline{a}, \overline{b}, e) \) changed to \((\overline{a}, \overline{b} - e, e) \).

We have SNC divisors \(\Phi_1^{-1}(F_1) \) on the surfaces \(\Phi_1^{-1}(\Omega(\overline{R_i})) \). If there are no 3-points \(p_1 \) in \(X_1 \) satisfying 1, 2 and 3 of Step 2 for \(\Phi_1^{-1}(\Omega(\overline{R_i})) \), then we increase \(i \) to 2.

18
Otherwise, there exists a good curve on Y_1 for the SNC divisor $\Phi^{-1}(F_1)$ on the surface $\Phi_1^{-1}(\Omega(\mathcal{R}_1)))$. We continue to iterate, blowing up good curves. If we always have a 3-point satisfying 1, 2 and 3 for the preimage of $\Omega(\mathcal{R}_1)$, then we eventually obtain a form (4) with both $\bar{a} < 0$ and $\bar{b} < 0$ which is impossible.

We then continue this algorithm for the preimages of all of the surfaces $\Omega(\mathcal{R}_i)$. The algorithm terminates in the construction of a morphism with a drop in τ as desired.

Open problems. We conclude this section with a list of open problems on toroidalization.

1. Prove (strong) toroidalization for arbitrary dominant morphisms of 3-folds.

 By Theorem 4.1 we can assume that f is prepared. Much of the proof of Theorem 4.2 works in the case when f is not birational.

2. Suppose that $f : X \to Y$ is a dominant morphism from an n-fold to a surface Y.

 Prove that there exists a commutative diagram

 $\begin{array}{ccc}
 X_1 & \xrightarrow{f_1} & Y \\
 \downarrow{\Phi_1} & \searrow & \\
 X & \xrightarrow{f} & Y
 \end{array}$

 such that Φ_1 is a product of possible blow ups and f_1 is (strongly) prepared. Recall that Theorem 3.2 now implies that f can be toroidalized.

3. Prove the toroidalization conjecture in all dimensions.

5. **Valuations in Algebraic Geometry.** Suppose that K is an algebraic function field of dimension (transcendence degree n) over a ground field k. A valuation of K is a homomorphism

 $$\nu : K^\times \to \Gamma_\nu$$

 of the multiplicative group of K onto a totally ordered abelian group, such that $\nu(a) = 0$ if $a \in k^\times$. We formally extend ν to K by defining $\nu(0) = \infty$. Associated to a valuation ν we have a valuation ring

 $$V_\nu = \{f \in K \mid \nu(f) \geq 0\}.$$

 V_ν is a local ring with maximal ideal $m_\nu = \{f \in K \mid \nu(f) > 0\}$. V_ν contains k.

 If $A \subset B$ are local rings with respective maximal ideals m_A and m_B, we say that B dominates A if $m_B \cap A = m_A$.

 The connection of valuation theory to algebraic geometry is explained by the following lemma.
Lemma 5.1 Suppose that X is a projective variety with function field $K = k(X)$, and ν is a valuation of k. Then there exists a unique point $p \in X$ such that V_ν dominates the local ring $\mathcal{O}_{X,p}$.

This lemma is of course true (by definition) on any proper k-variety. The point p (which may not be closed) is called the center of ν on X.

We define a locally ringed space Σ_K, which we call the Zariski-Riemann manifold of K. The points of Σ_K are the valuation rings of K. We define a topology on Σ_K by taking basic open sets to be

$$\overline{U} = \{ V \in \Sigma_K \mid V \text{ dominates } \mathcal{O}_{X,p} \text{ for some } p \in U \},$$

where U is an open subset of a proper k-variety X, with function field $k(X) = K$.

The local ring $\mathcal{O}_{\Sigma_K,p}$ of a point $p = V_p \in \Sigma_K$ is the valuation ring V_p. For $\overline{U} \subset \Sigma_K$ an open set, we define

$$\Gamma(\overline{U}, \mathcal{O}_{\Sigma_K}) = \cap_{V_p \in \overline{U}} V_p.$$

Theorem 5.2 Suppose that X is a proper variety with function field K. Then the mapping $\pi_X : \Sigma_K \to X$ defined by $\pi_X(V) = p$ if V dominates $\mathcal{O}_{X,p}$ is continuous.

If K has dimension 1, then the valuation rings of K are local Dedekind domains which are essentially of finite type over k. Thus, when K has dimension 1, Σ_K is the (unique) nonsingular projective curve with function field K.

However, if K has dimension ≥ 2, then there are valuation rings V of K which are not Noetherian. Still, Σ_K is in fact always quasi-compact ([Z2], [ZS]).

There are three main invariants associated to a valuation ring V ([Z1], [ZS]). They are:

1. The dimension of V is the transcendence degree of V/m_V over k (this number is always finite, although in general V/m_V is not a finitely generated extension of k).
2. The rank of V is the length n of the sequence of prime ideals

$$0 = p_1 \subset \cdots \subset p_n = m_V$$

in V. This is also the number of isolated subgroups of Γ_V.
3. The rational rank of V is the dimension of the vector space $\Gamma_V \otimes \mathbb{Q}$. The rational rank is always finite.
We will denote the respective invariants by \(\dim(V) \), \(\text{rank}(V) \) and \(\text{rrank}(V) \). We have \(([\text{Ab}3], [\text{ZS}]) \)

\[
\dim(V) + \text{rrank}(V) \leq \text{trdeg}_k(K)
\]

and

\[
\text{rank}(V) \leq \text{rrank}(V).
\]

Valuation rings in dimension 2.

There are 4 types of valuation rings in dimension 2 \(([\text{Z1}], [\text{MS}], [\text{ZS}], [\text{C4}]) \). They are:

1. \(V \) is one dimensional. \(\Gamma_V = \mathbb{Z} \), \(\dim(V) = 1 \) and \(\text{rrank}(V) = \text{rank}(V) = 1 \).
2. \(V \) is discrete, zero dimensional of rank 1. \(\Gamma_V = \mathbb{Z} \), \(\dim(V) = 1 \) and \(\text{rrank}(V) = \text{rank}(V) = 1 \).
3. \(V \) is discrete, zero dimensional of rank 2. \(\Gamma_V = \mathbb{Z} \oplus \mathbb{Z} \) with the lex order, \(\dim(V) = 0 \) and \(\text{rrank}(V) = \text{rank}(V) = 2 \).
4. \(V \) is non-discrete of dimension zero. We have \(\dim(V) = 0 \), \(\text{rank}(V) = 1 \), and \(\text{rrank}(V) = 1 \) or 2.

We now give characteristic examples of these types. All valuations of \(K \) can be obtained by these constructions. Suppose that \(X \) is a surface with \(k(X) = K \) and \(p \in X \) is a nonsingular (closed) point. Let \(x, y \) be regular parameters in \(A = \mathcal{O}_{X,p} \). For simplicity, we assume that \(k \) is algebraically closed.

1. \(V \) is one dimensional. \(V = \mathcal{O}_{X,E} \) where \(X \) is a normal surface with \(k(X) = K \), and \(E \) is a codimension 1 subvariety.
2. \(V \) is discrete, zero dimensional of rank 1. Embed \(A \) into a power series ring \(k[[t]] \), by mapping \(x \) to \(t \) and \(y \) to a power series \(P(t) \) which is transcendental over \(k[t] \). Then \(V = k[[t]] \cap K \).
3. \(V \) is discrete, zero dimensional of rank 2. For \(f \in A \), we can factor \(f = x^n g(x, y) \) in \(\hat{A} = k[[x, y]] \), so that \(x \nmid g \). Define \(\nu(f) = (n, \text{ord} g(0, y)) \).
4. \(V \) is non-discrete of dimension zero.
 a. \(\text{rrank}(V) = 2 \). Choose \(\tau \in \mathbb{R} \) which is irrational. Define \(\nu(x) = 1, \nu(y) = \tau \). If \(f \in A \), expand

\[
f = \sum a_{ij}x^i y^j
\]
in $k[[x, y]]$ where $a_{ij} \in k$. Define

$$\nu(f) = \min\{i + \tau j \mid a_{ij} \neq 0\}.$$

Since τ is irrational, there is a unique monomial in f which attains this minimum. This property implies that ν is a valuation. The value group of ν is the ordered subgroup $\mathbb{Z} + \mathbb{Z} \tau$ of \mathbb{R}.

b. $\text{rrank}(V) = 1$. This is the really interesting case. Let S be the field of “formal” series

$$f = \sum_{\rho} a_{\alpha,\rho} t^{\alpha_{\rho}},$$

where $\alpha_{\rho} \in \mathbb{R}$ increase monotonically with ρ, $a_{\alpha,\rho} \in k$ are nonzero and the sum is over all ordinal numbers $\rho \leq \sigma$ for some fixed ordinal number σ. S has a valuation defined by $\nu(g(t)) = \text{ord}(g(t))$. We embed A in S by mapping x to t and y to some $P(t) \in S$. For $f \in A$, $\nu(f) = \text{ord}(f(t, P(t))$. Any subgroup of \mathbb{Q} can be obtained as a value group Γ_V by this construction.

Local uniformization.

An algebraic local ring R of an algebraic function field K is the local ring $\mathcal{O}_{X, p}$ of a point on a variety X with $k(X) = K$. A monoidal transform of an algebraic local ring R in an inclusion $R \subset R_1$ where $R_1 = \mathcal{O}_{X_1, p_1}$ is a local ring of the blow up $\pi_1 : X_1 \to X$ of a nonsingular subvariety of X, and $\pi_1(p_1) = p$. If V is a valuation ring which dominates R, then there is a unique point $p_1 \in X_1$ whose local ring R_1 is dominated by V (p_1 is the center of V on X_1). We say that $R \to R_1$ is a monoidal transform along V.

Theorem 5.3 ([Z3]) Suppose that k is a field of characteristic zero, K is an algebraic function field over k, and ν is a valuation of K which dominates an algebraic local ring R of K. Then there exists a sequence of monoidal transforms $R \to R'$ along ν such that R' is a regular local ring.

The first proof of resolution in dimension 3 used local uniformization.

Corollary 5.4 ([Z1], [Z4]) Resolution of singularities is true in characteristic zero for varieties of dimension ≤ 3.

[Z4] was published in 1944, about 20 years before Hironaka’s characteristic zero proof [H] of resolution in all dimensions.
The first proof of resolution of surfaces and of resolution of 3-folds in positive characteristic was by local uniformization ([Ab1], [Ab2]). There has recently been progress on local uniformization in positive characteristic (including [Kuhl2], [Sp], [T]).

6. Local Monomialization.

Suppose that $R \subset S$ is a local homomorphism of local rings essentially of finite type over a field k, and that V is a valuation ring of the quotient field K of S, such that V dominates S. Then we can ask if there are sequences of moniodal transforms $R \to R'$ and $S \to S'$ along V such that V dominates S', S' dominates R' and $R' \to S'$ is a “monomial mapping”,

$$
\begin{array}{c}
R' \rightarrow S' \subset V \\
\uparrow \quad \uparrow \\
R \rightarrow S
\end{array}
$$

We completely answer this question in the affirmative when k is a field of characteristic zero.

Theorem 6.1 ([C1], [C3], [C5]) Suppose that k is a field of characteristic zero, $K \to K^*$ is a (possibly transcendental) extension of algebraic function fields over k, and that ν^* is a valuation of K^* which is trivial on k. Further suppose that R is an algebraic local ring of K and S is an algebraic local ring of K^* such that S dominates R and ν^* dominates S. Then there exist sequences of monoidal transforms $R \to R'$ and $S \to S'$ along ν^* such that R' and S' are regular local rings, S' dominates R', there exist regular parameters (y_1, \ldots, y_n) in S', (x_1, \ldots, x_m) in R', units $\delta_1, \ldots, \delta_m \in S'$ and an $m \times n$ matrix (c_{ij}) of nonnegative integers such that (c_{ij}) has rank m, and

$$
x_i = \prod_{j=1}^n y_j^{c_{ij}} \delta_i
$$

for $1 \leq i \leq m$.

We make a few comments and observations.

1. In the case when $K = k$, so that R is just the field k, Theorem 6.1 specializes to the local uniformization theorem Theorem 5.3.

2. Since k has characteristic zero in Theorem 6.1, and (c_{ij}) has rank m, we can obtain a toroidal form of $R' \to S'$, by choosing regular parameters $\overline{y}_1, \ldots, \overline{y}_n$ in \hat{S}' so that

$$
x_i = \prod_{j=1}^n \overline{y}_j^{c_{ij}}.
$$
3. The question of the existence of a diagram (8) makes sense over fields of positive characteristic. Certainly it is true when R has dimension 1, and S has dimension ≤ 2 (or in any dimension of S where good resolution theorems hold).

4. Some applications of Theorem 6.1 were given in Section 1 to local toroidalization and local factorization. Applications to the ramification theory of general valuations are given in [CP2], and [CG].

5. The proof of Theorem 6.1 actually gives a very special form to the matrix (c_{ij}) which depends on the rank and rational rank of ν and ν^*, which we call “strong local monomialization”.

For simplicity, assume that K^* is finite over K. Let $r = \text{rank } \nu = \text{rank } \nu^*$, $s = \text{rrank } \nu = \text{rrank } \nu^*$. In the valuation ring V^* of ν^*, let

$$0 = P_0 \subset \cdots \subset P_r = m_V$$

be the chain of prime ideals. Then $V_{P_i}/(P_{i-1})_{P_i}$ for $1 \leq i \leq r$ are rank 1 valuation rings of rational rank s_i, where $s_1 + \cdots + s_r = s$. These are the “composite” valuation rings of V.

The (square) matrix $C = (c_{ij})$ has the block form

$$C = \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & A_r \end{pmatrix}.$$

Each A_i has the block form

$$A_i = \begin{pmatrix} B_i \\ & I \end{pmatrix}$$

where B_i is an $s_i \times s_i$ matrix and I is an appropriate identity matrix.

6. The first case where local monomialization along a valuation is open is when K and K^* have dimension 2 over an algebraically closed field k of positive characteristic. Local monomialization for all of the cases of valuations in the classification given in Section 5 can be proven to be true fairly easily, except for the last case 4 b, where V is a nondiscrete valuation ring of rank 1. This case is studied in [CP2]. An example is given where “strong monomialization” (stated in 5. above) fails. Good local forms are constructed along valuations in general, which are shown to give strong monomialization for defectless ([ZS], [Kuhl1]) extensions.

The less restrictive question of local monomialization along nondiscrete valuations in an extension K^*/K with defect remains open.
Bibliography.

