1. Matrices

Suppose that F is a field. F^n will denote the set of $n \times 1$ column vectors with coefficients in F, and F^m will denote the set of $1 \times m$ row vectors with coefficients in F. $M_{m,n}(F)$ will denote the set of $m \times n$ matrices $A = (a_{ij})$ with coefficients in F. We will sometimes denote the zero vector of F^n by 0^n, the zero vector of F_m by 0_m and the zero vector of $M_{m,n}$ by $0_{m,n}$. We will also sometimes abbreviate these different zeros as $\vec{0}$ or 0. We will let $e_i \in F^n$ be the column vector whose entries are all zero, except for a 1 in the i-th row. If $A \in M_{m,n}(F)$ then $A^t \in M_{n,m}(F)$ will denote the transpose of A. We will write $A = (A_1, A_2, \ldots, A_n)$ where $A_i \in F_m$ are the columns of A, and
definition
$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}$$
definition
where $A_j \in F_n$ are the rows of A. For $x = (x_1, \ldots, x_n)^t \in F^n$, we have the formula
$$Ax = x_1 A^1 + x_2 A^2 + \cdots + x_n A^n.$$
In particular, $A e_i = A^i$ for $1 \leq i \leq n$ and $(e_i)^t A e_j = a_{ij}$ for $1 \leq i \leq m$, $1 \leq j \leq n$. We also have
$$Ax = \begin{pmatrix} A_1 x \\ A_2 x \\ \vdots \\ A_m x \end{pmatrix} = \begin{pmatrix} (A_1)^t \cdot x \\ (A_2)^t \cdot x \\ \vdots \\ (A_m)^t \cdot x \end{pmatrix}$$
definition
where for $x = (x_1, \ldots, x_n)^t, y = (y_1, \ldots, y_n) \in F^n$, $x \cdot y = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$ is the dot product on F^n.

Lemma 1.1. The following are equivalent for two matrices $A, B \in M_{m,n}(F)$.

1. $A = B$.
2. $Ax = Bx$ for all $x \in F^n$.
3. $A e_i = B e_i$ for $1 \leq i \leq n$.

\mathbb{N} will denote the natural numbers $\{0,1,2\ldots\}$. \mathbb{Z}_+ is the set of positive integers $\{1,2,3,\ldots\}$.
In this section we suppose that \(V \) is a vector space over a field \(F \). We will denote the zero vector in \(V \) by \(0_V \). Sometimes, we will abbreviate, and write the zero vector as \(\vec{0} \) or \(0 \).

Definition 2.1. Suppose that \(S \) is a nonempty subset of \(V \). Then
\[
\text{Span}(S) = \{ c_1 v_1 + \cdots + c_n v_n \mid n \in \mathbb{Z}_+, v_1, \ldots, v_n \in S \text{ and } c_1, \ldots, c_n \in F \}.
\]
This definition is valid even when \(S \) is an infinite set. We define \(\text{Span}\{\emptyset\} = \{ \vec{0} \} \).

Lemma 2.2. Suppose that \(S \) is a subset of \(V \). Then \(\text{Span}(S) \) is a subspace of \(V \).

Definition 2.3. Suppose that \(S \) is a subset of \(V \). \(S \) is a linearly dependent set if there exists \(n \in \mathbb{Z}_+, v_1, \ldots, v_n \in S \) and \(c_1, \ldots, c_n \in F \) such that \(c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0 \). \(S \) is a linearly independent set if it is not linearly dependent.

Observe that \(\emptyset \) is a linearly independent set.

Definition 2.4. Suppose that \(S \) is subset of \(V \) which is a linearly independent set and \(\text{Span}(S) = V \). Then \(S \) is a basis of \(V \).

Theorem 2.5. Suppose that \(V \) is a vector space over a field \(F \). Then \(V \) has a basis.

We have that the empty set \(\emptyset \) is a basis of the 0 vector space \(\{ \vec{0} \} \).

Theorem 2.6. (Extension Theorem) Suppose that \(V \) is a vector space over a field \(F \) and \(S \) is a subset of \(V \) which is a linearly independent set. Then there exists a basis of \(V \) which contains \(S \).

Theorem 2.7. Suppose that \(V \) is a vector space over a field \(F \) and \(S_1 \) and \(S_2 \) are two bases of \(V \). Then \(S_1 \) and \(S_2 \) have the same cardinality.

This theorem allows us to make the following definition.

Definition 2.8. Suppose that \(V \) is a vector space over a field \(F \). Then the dimension of \(V \) is the cardinality of a basis of \(V \).

The dimension of \(\{ \vec{0} \} \) is 0.

Definition 2.9. \(V \) is called a finite dimensional vector space if \(V \) has a finite basis.

For the most part, we will consider finite dimensional vector spaces. If \(V \) is finite dimensional of dimension \(n \), a basis is considered as an ordered set \(\beta = \{ v_1, \ldots, v_n \} \).

Lemma 2.10. Suppose that \(V \) is a finite dimensional vector space and \(W \) is a subspace of \(V \). Then \(\dim W \leq \dim V \), and \(\dim W = \dim V \) if and only if \(V = W \).

Lemma 2.11. Suppose that \(V \) is a finite dimensional vector space and \(\beta = \{ v_1, v_2, \ldots, v_n \} \) is a basis of \(V \). Suppose that \(v \in V \). Then \(v \) has a unique expression
\[
v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n
\]
with \(c_1, \ldots, c_n \in F \).

Lemma 2.12. Let \(\{ v_1, \ldots, v_n \} \) be a set of generators of a vector space \(V \). Let \(\{ v_1, \ldots, v_r \} \) be a maximal subset of linearly independent elements. Then \(\{ v_1, \ldots, v_r \} \) is a basis of \(V \).
3. Direct Sums

Suppose that V is a vector space over a field F, and W_1, W_2, \ldots, W_m are subspaces of V. Then the sum

\[W_1 + \cdots + W_m = \text{Span}(W_1 \cup \cdots \cup W_m) = \{ w_1 + w_2 + \cdots + w_m \mid w_i \in W_i \text{ for } 1 \leq i \leq m \} \]

is the subspace of V spanned by W_1, W_2, \ldots, W_m.

The sum $W_1 + \cdots + W_m$ is called a direct sum, denoted by $W_1 \oplus W_2 \oplus \cdots \oplus W_m$, if every element $v \in W_1 + W_2 + \cdots + W_m$ has a unique expression $v = w_1 + \cdots + w_m$ with $w_i \in W_i$ for $1 \leq i \leq m$.

We have the following useful criterion.

Lemma 3.1. The sum $W_1 + W_2 + \cdots + W_m$ is a direct sum if and only if $0 = w_1 + w_2 + \cdots + w_m$ with $w_i \in W_i$ for $1 \leq i \leq m$ implies $w_i = 0$ for $1 \leq i \leq m$.

In the case when V is finite dimensional, the direct sum is characterized by the following equivalent conditions.

Lemma 3.2. Suppose that V is a finite dimensional vector space. Let $n = \dim (W_1 + \cdots + W_m)$ and $n_i = \dim W_i$ for $1 \leq i \leq m$. The following conditions are equivalent

1. If $v \in W_1 + W_2 + \cdots + W_m$ then v has a unique expression $v = w_1 + \cdots + w_m$ with $w_i \in W_i$ for $1 \leq i \leq m$.
2. Suppose that $\beta_i = \{ w_{i,1}, \ldots, w_{i,n_i} \}$ are bases of W_i for $1 \leq i \leq m$. Then $\beta = \{ w_{1,1}, \ldots, w_{n_1,1}, w_{2,1}, \ldots, w_{n_2,1}, \ldots, w_{n_m,1}, \ldots, w_{n_m,n_m} \}$ is a basis of $W_1 + \cdots + W_m$.
3. $n = n_1 + \cdots + n_m$.

The following lemma gives a useful criterion.

Lemma 3.3. Suppose that U and W are subspaces of a vector space V. Then $V = U \oplus W$ if and only if $V = U + W$ and $U \cap W = \{0\}$.

4. Linear Maps

In this section, we will suppose that all vector spaces are over a fixed field F.

We recall the definition of equality of maps, which we will use repeatedly to show that two maps are the same. Suppose that $f : V \to W$ and $g : V \to W$ are maps (functions). Then $f = g$ if and only if $f(v) = g(v)$ for all $v \in V$.

If $f : U \to V$ and $g : V \to W$, we will usually write the composition $g \circ f : U \to W$ as gf. If $x \in U$, we will sometimes write fx for $f(x)$, and gf for $(g \circ f)(x)$.

Definition 4.1. Suppose that V and W are vector spaces. A map $L : V \to W$ is linear if $L(v_1 + v_2) = L(v_1) + L(v_2)$ for $v_1, v_2 \in V$ and $L(cv) = cL(v)$ for $v \in V$ and $c \in F$.

Lemma 4.2. Suppose that $L : V \to W$ is a linear map. Then

1. $L(0_V) = 0_W$.
2. $L(-v) = -L(v)$ for $v \in V$.

Lemma 4.3. Suppose that $L : V \to W$ is a linear map and $T : W \to U$ is a linear map. Then the composition $TL : V \to U$ is a linear map.

If S and T are sets, a map $f : S \to T$ is 1-1 and onto if and only if there exists a map $g : T \to S$ such that $g \circ f = I_S$ and $f \circ g = I_T$, where I_S is the identity map of S and I_T is
the identity map of T. When this happens, g is uniquely determined. We write $g = f^{-1}$ and say that g is the inverse of f.

Definition 4.4. Suppose that $L : V \to W$ is a linear map. L is an isomorphism if there exists a linear map $T : W \to V$ such that $TL = I_V$ is the identity map of V, and $LT = I_W$ is the identity map of W.

The map T in the above definition is unique, if it exists, by the following lemma. If L is an isomorphism, we write $L^{-1} = T$, and call T the inverse of L.

Lemma 4.5. Suppose that $L : V \to W$ is a map. Suppose that $T : W \to V$ and $S : W \to V$ are maps which satisfy $TL = I_V$, $LT = I_W$ and $SL = I_V$, $LS = I_W$. Then $S = T$.

Lemma 4.6. A linear map $L : V \to W$ is an isomorphism if and only if L is 1-1 and onto.

Lemma 4.7. Suppose that $L : V \to W$ is a linear map. Then

1. $\text{Image } L = \{L(v) \mid v \in V\}$ is a subspace of W.
2. $\text{Kernel } L = \{v \in V \mid L(v) = 0\}$ is a subspace of V.

Lemma 4.8. Suppose that $L : V \to W$ is a linear map. Then L is 1-1 if and only if $\text{Kernel } L = \{0\}$.

Definition 4.9. Suppose that F is a field, and V, W are vector spaces over F. Let $\mathcal{L}_F(V, W)$ be the set of linear maps from V to W.

We will sometimes write $L(V, W) = \mathcal{L}_F(V, W)$ if the field is understood to be F.

Lemma 4.10. Suppose that F is a field, and V, W are vector spaces over F. Then $\mathcal{L}_F(V, W)$ is a vector space.

Theorem 4.11. (Dimension Theorem) Suppose that $L : V \to W$ is a homomorphism of finite dimensional vector spaces. Then

$$\dim \text{ Kernel } L + \dim \text{ Image } L = \dim V.$$

Proof. Let $\{v_1, \ldots, v_r\}$ be a basis of $\text{Kernel } L$. Extend this to a basis $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$ of V. Let $w_i = L(v_i)$ for $r + 1 \leq i \leq n$. We will show that $\{w_{r+1}, \ldots, w_n\}$ is a basis of $\text{Image } L$. Since L is linear, $\{w_{r+1}, \ldots, w_n\}$ span $\text{Image } L$. We must show that $\{w_{r+1}, \ldots, w_n\}$ are linearly independent. Suppose that we have a relation

$$c_{r+1}w_{r+1} + \cdots + c_nw_n = 0$$

for some $c_{r+1}, \ldots, c_n \in F$. Then

$$L(c_{r+1}v_{r+1} + \cdots + c_nv_n) = c_{r+1}L(v_{r+1}) + \cdots + c_nL(v_n) = c_{r+1}w_{r+1} + \cdots + c_nw_n = 0.$$

Thus $c_{r+1}v_{r+1} + \cdots + c_nv_n \in \text{Kernel } L$, so that we have an expansion

$$c_{r+1}v_{r+1} + \cdots c_nv_n = d_1v_1 + \cdots + d_r v_r$$

for some $d_1, \ldots, d_r \in F$, which we can rewrite as

$$d_1v_1 + \cdots + d_r v_r - c_{r+1}v_{r+1} - \cdots - c_nv_n = 0.$$

Since $\{v_1, \ldots, v_r\}$ are linearly independent, we have that $d_1 = \cdots = d_r = c_{r+1} = \cdots = c_n = 0$. Thus $\{w_{r+1}, \ldots, w_n\}$ are linearly independent. \qed
Corollary 4.12. Suppose that V is a finite dimensional vector space and $\Phi : V \to V$ and $\Psi : V \to V$ are linear maps such that $\Psi \Phi = I_V$. Then Φ and Ψ are isomorphisms and $\Psi = \Phi^{-1}$.

Theorem 4.13. (Universal Property of Vector Spaces) Suppose that V and W are finite dimensional vector spaces, $\beta = \{v_1, \ldots, v_n\}$ is a basis of V, and $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $L : V \to W$ such that $L(v_i) = w_i$ for $1 \leq i \leq n$.

Proof. We first prove existence. For $v \in V$, define $L(v) = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ if $v = c_1v_1 + \cdots + c_nv_n$ with $c_1, \ldots, c_n \in F$. L is a well-defined map since every $v \in V$ has a unique expression $v = c_1v_1 + \cdots + c_nv_n$ with $c_1, \ldots, c_n \in F$, as β is a basis of V. We have that $L(v_i) = w_i$ for $1 \leq i \leq n$. We leave the verification that L is linear to the reader.

Now we prove uniqueness. Suppose that $T : V \to W$ is a linear map such that $T(v_i) = w_i$ for $1 \leq i \leq n$. Suppose that $v \in V$. Then $v = c_1v_1 + \cdots + c_nv_n$ for some $c_1, \ldots, c_n \in F$. We have that

$$T(v) = T(c_1v_1 + \cdots + c_nv_n) = c_1T(v_1) + \cdots + c_nT(v_n) = c_1w_1 + \cdots + c_nw_n = L(v).$$

Since $T(v) = L(v)$ for all $v \in V$, we have that $T = L$. \hfill \Box

Lemma 4.14. Suppose that $A \in M_{m,n}(F)$. Then the map $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ for $x \in F^n$ is linear.

Lemma 4.15. Suppose that $A = (A^1, \ldots, A^n) \in M_{m,n}(F)$. Then

$$\text{Image } L_A = \text{Span}\{A^1, \ldots, A^n\}.$$

$$\text{Kernel } L_A = \{x \in F^n \mid Ax = 0\}$$

is the solution space to $Ax = 0$.

Lemma 4.16. Suppose that $A, B \in M_{m,n}(F)$. Then $L_{A+B} = L_A + L_B$. Suppose that $c \in F$. Then $cL_A = L_{cA}$. Suppose that $A \in M_{m,n}(F)$ and $C \in M_{l,m}$. Then the composition of maps $L_CL_A = L_{CA}$.

Lemma 4.17. The map $\Phi : M_{m,n} \to \mathcal{L}_F(F^n, F^m)$ defined by $\Phi(A) = L_A$ for $A \in M_{m,n}(F)$ is an isomorphism.

Proof. By Lemma 4.16, Φ is a linear map. We will now show that Kernel Φ is $\{0\}$. Let $A \in \text{Kernel } \Phi$. Then $L_A = 0$. Thus $Ax = 0$ for all $x \in F^n$. By Lemma 1.1, we have that $A = 0$. Thus Kernel $\Phi = \{0\}$ and Φ is 1-1. Suppose that $L \in \mathcal{L}_F(F^n, F^m)$. Let $w_i = L(e_i)$ for $1 \leq i \leq n$. Let $A = (w_1, \ldots, w_n) \in M_{m,n}(F)$. For $1 \leq i \leq n$, we have that $L_A(e_i) = Ae_i = w_i$. By Theorem 4.13, $L = L_A$. Thus Φ is onto, and Φ is an isomorphism. \hfill \Box

Definition 4.18. Suppose that V is a finite dimensional vector space. Suppose that $\beta = \{v_1, \ldots, v_n\}$ is a basis of V. Define the coordinate vector $(v)_\beta \in F^n$ of v with respect to β by

$$(v)_\beta = (c_1, \ldots, c_n)^T,$$

where $c_1, \ldots, c_n \in F$ are the unique elements of F such that $v = c_1v_1 + \cdots + c_nv_n$.

Lemma 4.19. Suppose that V is a finite dimensional vector space. Suppose that $\beta = \{v_1, \ldots, v_n\}$ is a basis of V. Suppose that $u_1, u_2 \in V$ and $c \in F$. Then $(u_1 + u_2)_\beta = (u_1)_\beta + (u_2)_\beta$ and $(cu_1)_\beta = c(u_1)_\beta$.

Theorem 4.20. Suppose that V is a finite dimensional vector space. Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V. Then the map $\Phi : V \to F^n$ defined by $\Phi(v) = (v)_\beta$ is an isomorphism.
Proof. \(\Phi \) is a linear map by Lemma 4.19. Note that \(\Phi(v_i) = e_i \) for \(1 \leq i \leq n \). By Theorem 4.13, there exists a unique linear map \(\Psi : F^n \to V \) such that \(\Psi(e_i) = v_i \) for \(1 \leq i \leq n \) (where \(\{e_1, \ldots, e_n\} \) is the standard basis of \(F^n \)). Now \(\Psi \Phi : V \to V \) is a linear map which satisfies \(\Psi \Phi(v_i) = v_i \) for \(1 \leq i \leq n \). By Theorem 4.13, there is a unique linear map from \(V \to V \) which takes \(v_i \) to \(v_i \) for \(1 \leq i \leq n \). Since the identity map \(I_V \) of \(V \) has this property, we have that \(\Psi \Phi = I_V \). By a similar calculation, \(\Phi \Psi = I_{F^n} \). Thus \(\Phi \) is an isomorphism (with inverse \(\Psi \)). \(\square \)

Definition 4.21. Suppose that \(V \) and \(W \) are finite dimensional vector spaces. Suppose that \(\beta = \{v_1, \ldots, v_n\} \) is a basis of \(V \) and \(\beta' = \{w_1, \ldots, w_m\} \) is a basis of \(W \). Suppose that \(L : V \to W \) is a linear map. Define the matrix \(M^\beta_{\beta'}(L) \in \mathbb{M}_{m,n}(F) \) of \(L \) with respect to the bases \(\beta \) and \(\beta' \) to be the matrix

\[
M^\beta_{\beta'}(L) = ((L(v_1)_{\beta'}, (L(v_2))_{\beta'}, \ldots, (L(v_n))_{\beta'}).
\]

The matrix \(M^\beta_{\beta'}(L) \) of \(L \) with respect to \(\beta \) and \(\beta' \) has the following important property:

\[M^\beta_{\beta'}(L)(v)_\beta = (L(v))_{\beta'} \]

for all \(v \in V \). In fact, \(M^\beta_{\beta'}(L) \) is the unique matrix \(A \) such that \(A(v)_\beta = (L(v))_{\beta'} \) for all \(v \in V \).

Lemma 4.22. Suppose that \(V \) and \(W \) are finite dimensional vector spaces. Suppose that \(\beta = \{v_1, \ldots, v_n\} \) is a basis of \(V \) and \(\beta' = \{w_1, \ldots, w_m\} \) is a basis of \(W \). Suppose that \(L_1, L_2 \in \mathcal{L}_F(V,W) \) and \(c \in F \). Then \(M^\beta_{\beta'}(L_1 + L_2) = M^\beta_{\beta'}(L_1) + M^\beta_{\beta'}(L_2) \) and \(M^\beta_{\beta'}(cL_1) = cM^\beta_{\beta'}(L_1) \).

Theorem 4.23. Suppose that \(V \) and \(W \) are finite dimensional vector spaces. Suppose that \(\beta = \{v_1, \ldots, v_n\} \) is a basis of \(V \) and \(\beta' = \{w_1, \ldots, w_m\} \) is a basis of \(W \). Then the map \(\Lambda : \mathcal{L}_F(V,W) \to \mathbb{M}_{m,n}(F) \) defined by \(\Lambda(L) = M^\beta_{\beta'}(L) \) is an isomorphism.

Proof. \(\Lambda \) is a linear map by Lemma 4.22. It remains to verify that \(\Lambda \) is 1-1 and onto, from which it will follow that \(\Lambda \) is an isomorphism. Suppose that \(L_1, L_2 \in \mathcal{L}_F(V,W) \) and \(\Lambda(L_1) = \Lambda(L_2) \). Then \(M^\beta_{\beta'}(L_1) = M^\beta_{\beta'}(L_2) \) so that \((L_1(v_i))_{\beta'} = (L_2(v_i))_{\beta'} \) for \(1 \leq i \leq n \). Thus \(L_1(v_i) = L_2(v_i) \) for \(1 \leq i \leq n \). Since \(\beta \) is a basis of \(V \), \(L_1 = L_2 \) by the uniqueness statement of Theorem 4.13. Thus \(\Lambda \) is 1-1. Suppose that \(A = (a_{ij}) \in \mathbb{M}_{m,n}(F) \). Write \(A = (A^1, \ldots, A^n) \) where \(A^i = (a_{1,i}, \ldots, a_{m,i}) \in F^m \) are the columns of \(A \). Let \(z_i = \sum_{j=1}^m a_{ji}w_j \in W \) for \(1 \leq i \leq n \). By Theorem 4.13, there exists a linear map \(L : V \to W \) such that \(L(v_i) = z_i \) for \(1 \leq i \leq n \). We have that \((L(v_i))_{\beta'} = (z_i)_{\beta'} = A^i \) for \(1 \leq i \leq n \). We have that \(\Lambda(L) = M^\beta_{\beta'}(L) = (A^1, \ldots, A^n) = A \), and thus \(\Lambda \) is onto. \(\square \)

Corollary 4.24. Suppose that \(V \) is a vector space of dimension \(n \) and \(W \) is a vector space of dimension \(m \). Then \(\mathcal{L}_F(V,W) \) is a vector space of dimension \(mn \).

Lemma 4.25. Suppose that \(U, V \) and \(W \) are finite dimensional vector spaces, with respective bases \(\beta_1, \beta_2, \beta_3 \). Suppose that \(L_1 \in \mathcal{L}_F(U,V) \) and \(L_2 \in \mathcal{L}_F(V,W) \). Then

\[
M^\beta_{\beta_3}(L_2L_1) = M^\beta_{\beta_3}(L_2)M^\beta_{\beta_2}(L_1).
\]

Theorem 4.26. Suppose that \(V \) is a finite dimensional vector space, and \(\beta \) is a basis of \(V \). Then the map \(\Lambda : \mathcal{L}_F(V,V) \to \mathbb{M}_{n,n}(F) \) defined by \(\Lambda(L) = M^\beta_{\beta}(L) \) is a ring isomorphism.
5. Bilinear Forms

Let U, V, W be vector spaces over a field F. Let $\text{Bil}(U \times V, W)$ be the set of bilinear maps from $U \times V$ to W. $\text{Bil}(U \times V, W)$ is a vector space over F. We call an element of $\text{Bil}_F(U \times V, F)$ a bilinear form. A bilinear form is usually written as a pairing $<v, w> \in F$ for $v, w \in V$. A bilinear form $<,>$ is symmetric if $<v, w> = <w, v>$ for all $v, w \in V$. A symmetric bilinear form is nondegenerate if whenever $v \in V$ is such that $<v, w> = 0$ for all $w \in V$ then $v = 0$.

Theorem 5.1. Let F be a field and $A \in M_{m,n}(F)$. Let $g_A : F^m \times F^n \rightarrow F$ be defined by $g_A(v, w) = v'^t A w$. Then $g_A \in B_1(F^m \times F^n, F)$. Further, the map $\Psi : M_{m,n}(F) \rightarrow B_1(F^m \times F^n, F)$ defined by $\Psi(A) = g_A$ is an isomorphism of F-vector spaces.

Also, in the case when $m = n$,

1. Ψ gives a 1-1 correspondence between $n \times n$ matrices and bilinear forms on F^n.
2. Ψ gives a 1-1 correspondence between $n \times n$ symmetric matrices and symmetric forms on F^n.
3. Ψ gives a 1-1 correspondence between invertible $n \times n$ symmetric matrices and nondegenerate symmetric forms.

From now on in this section, suppose that V is a vector space over a field F, and $<,>$ is a nondegenerate symmetric form on V. An important example is the dot product on F^n. We begin by stating the identity

$$<v, w> = \frac{1}{2} [<v + w, v + w> - <v, v> - <w, w>]$$

for $v, w \in V$.

Define $v, w \in V$ to be orthogonal (or perpendicular) if $<v, w> = 0$. Suppose that $S \subset V$ is a subset. Define

$$S^\perp = \{v \in V | <v, w> = 0 \text{ for all } w \in S\}.$$

Lemma 5.2. Suppose that S is a subset of V. Then

1. S^\perp is a subspace of V.
2. If U is the subspace $\text{Span}(S)$ of V, then $U^\perp = S^\perp$.

Lemma 5.3. Suppose

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix} \in M_{m,n}(F).$$

Let $U = \text{Span}\{A_1^t, \ldots, A_m^t\} \subset F^n$, which is the column space of A^t. Then $U^\perp = \text{Kernel } L_A$.

A basis $\beta = \{v_1, \ldots, v_n\}$ of V is called an orthogonal basis if $<v_i, v_j> = 0$ whenever $i \neq j$.

Theorem 5.4. Suppose that V is a finite dimensional vector space with a symmetric nondegenerate bilinear form $<,>$. Then V has an orthogonal basis.

Proof. We prove the theorem by induction on $n = \dim V$. If $n = 1$, the theorem is true since any basis is an orthogonal basis.

Assume that $\dim V = n > 1$, and that any subspace of V of dimension less than n has an orthogonal basis. There are two cases. The first case is when every $v \in V$ satisfies
< v, v >= 0. Then by (2), we have < v, w >= 0 for every v, w ∈ V. Thus any basis of V is an orthogonal basis.

Now assume that there exists v₁ ∈ V such that < v₁, v₁ > ≠ 0. Let U = Span{v₁}, a one dimensional subspace of V. Suppose that v ∈ V. Let
c = \frac{< v, v₁ >}{< v₁, v₁ >} ∈ F.
Then v - cv₁ ∈ U⊥, and thus v = cv₁ + (v - cv₁) ∈ U + U⊥. It follows that V = U + U⊥. We have that U ∩ U⊥ = {0}, since < v₁, v₁ > ≠ 0. Thus V = U ⊕ U⊥. Since U⊥ has dimension n - 1 by Lemma 3.2, we have by induction that U⊥ has an orthogonal basis {v₂, ..., vₙ}. Thus {v₁, v₂, ..., vₙ} is an orthogonal basis of V.

Theorem 5.5. Let V be a finite dimensional vector space over a field F, with a symmetric bilinear form < , >. Assume dim V > 0. Let V₀ be the subspace of V defined by

V₀ = V ⊥ = {v ∈ V | < v, w >/= 0 for all w ∈ V}.

Let {v₁, ..., vₙ} be an orthogonal basis of V. Then the number of integers i such that < vᵢ, vᵢ >/= 0 is equal to the dimension of V₀.

Proof. Order the {v₁, ..., vₙ} so that < vᵢ, vᵢ > ≥ 0 for 1 ≤ i ≤ r and < vᵢ, vᵢ > ≠ 0 for r < i ≤ n. Suppose that w ∈ V. Then w = c₁v₁ + ... + cₙvₙ for some c₁, ..., cₙ ∈ F.

< vᵢ, w >/= \sum_{j=1}^{n} cᵢ < vᵢ, vⱼ >/= cᵢ < vᵢ, vᵢ >/= 0

for 1 ≤ i ≤ r. Thus v₁, ..., vᵣ ∈ V₀.

Now suppose that v ∈ V₀. We have v = d₁v₁ + ... + dₙwₙ for some d₁, ..., dₙ ∈ F. We have

0 =< vᵢ, v >/= \sum_{j=1}^{n} dⱼ < vᵢ, vⱼ >/= dᵢ < vᵢ, vᵢ >

for 1 ≤ i ≤ r. Since < vᵢ, vᵢ > ≠ 0 for r < i ≤ n we have dᵢ = 0 for r < i ≤ n. Thus v = d₁v₁ + ... + dᵣvᵣ ∈ Span{v₁, ..., vᵣ}. Thus V₀ = Span{v₁, ..., vᵣ}. Since v₁, ..., vᵣ are linearly independent, they are a basis of V₀, and thus dim V₀ = r.

The dimension of V₀ in Theorem 5.5 is called the index of nullity of the form.

Theorem 5.6. (Sylvester’s Theorem) Let V be a finite dimensional vector space over R with a symmetric bilinear form. There exists an integer r with the following property. If {v₁, ..., vₙ} is an orthogonal basis of V, then there are precisely r integers i such that < vᵢ, vᵢ >/= 0.

Proof. Let {v₁, ..., vₙ} and {w₁, ..., wₙ} be orthogonal bases of V. We may suppose that their elements are arranged so that < vᵢ, vᵢ >/= 0 is 1 ≤ i ≤ r, < vᵢ, vᵢ >/= 0 for r + 1 ≤ i ≤ s and < wᵢ, wᵢ >/= 0 if s + 1 ≤ i ≤ n. Similarly, < wᵢ, wᵢ >/= 0 is 1 ≤ i ≤ r′, < wᵢ, wᵢ >/= 0 if r′ + 1 ≤ i ≤ s′. If s′ + 1 ≤ i ≤ n.

We first prove that v₁, ..., vᵣ, wᵣ₊₁, ..., wₙ are linearly independent. Suppose we have a relation

x₁v₁ + ... + xᵣvᵣ + yᵣ₊₁wᵣ₊₁ + ... + yₙwₙ = 0

for some x₁, ..., xᵣ, yᵣ₊₁, ..., yₙ ∈ F. Then

x₁v₁ + ... + xᵣvᵣ = -yᵣ₊₁wᵣ₊₁ + ... + yₙwₙ).
Since the left hand side is \geq preceding equation with itself, we have y independent.
Let c of the two bases in the proof, we also obtain form.

$$\dim V = r$$

The integer r in the proof of Sylvester’s theorem is call the index of positivity of the form.

6. Exercises

1. Let V be an n-dimensional vector space over a field F. The dual space of V is the vector space $V^* = L(V, F)$. Elements of V^* are called functionals.

i) Suppose that $\beta = \{v_1, \ldots, v_n\}$ is a basis of V. For $1 \leq i \leq n$, define $v^*_i \in V^*$ by $v^*_i(v) = c_i$ if $v = c_1v_1 + \cdots + c_nv_n \in V$ (so that $v^*_i(v_j) = \delta_{ij}$). Prove that the v^*_i are elements of V^* and that they form a basis of V^*. (This basis is called the dual basis to β.)

ii) Suppose that V has a nondegenerate symmetric bilinear form $<,>$. For $v \in V$ define $L_v : V \to F$ by $L_v(w) = <v, w>$ for $w \in V$. Show that $L_v \in V^*$, and that the map $\Phi : V \to V^*$ defined by $\Phi(v) = L_v$ is an isomorphism of vector spaces.

2. Suppose that $L : V \to W$ is a linear map of finite dimensional vector spaces. Define $\hat{L} : W^* \to V^*$ by $\hat{L}(\varphi) = \varphi L$ for $\varphi \in W^*$.

i) Show that \hat{L} is a linear map.

ii) Suppose that L is 1-1. Is \hat{L} 1-1? Is \hat{L} onto? Prove your answers.

iii) Suppose that L is onto. Is \hat{L} 1-1? Is \hat{L} onto? Prove your answers.

iv) Suppose that $A \in M_{m,n}(F)$ where F is a field, and $L = L_A : F^m \to F^m$. Let $\{e_1, \ldots, e_n\}$ be the standard basis of F^n, and $\{f_1, \ldots, f_m\}$ be the standard basis of F^m. Let $\beta = \{e_{\beta_1}, \ldots, e_{\beta_m}\}$ be the dual basis of $(F^n)^*$ and let $\beta' = \{f_{\beta_1}, \ldots, f_{\beta_n}\}$ be the dual basis of $(F^m)^*$. Compute $M_{\beta'}(\hat{L})$.

3. Let V be a vector space of dimension n, and W be a subspace of V. Define

$$\text{Perp}_{V^*}(W) = \{ \varphi \in V^* \mid \varphi(w) = 0 \text{ for all } w \in W \}.$$

i) Prove that $\dim W + \dim \text{Perp}_{V^*}(W) = n$.

ii) Suppose that V has a nondegenerate symmetric bilinear form $<,>$. Prove that the map $v \mapsto L_v$ of Problem 1.ii) induces an isomorphism of

$$W^\perp = \{ v \in V \mid <v, w> = 0 \text{ for all } w \in W \}$$

with $\text{Perp}_{V^*}(W)$. Conclude that $\dim W + \dim W^\perp = n$.

iii) Use the conclusions of Problem 3.ii) to prove that the column rank of a matrix is equal to the row rank of a matrix (see Definition 7.4). This gives a different proof of part of Theorem 7.5.

iv) (rank-nullity theorem) Suppose that $A \in M_{m,n}(F)$ is a matrix. Show that the dimension of the solution space

$$\{ x \in F^n \mid Ax = \vec{0} \}$$
is equal to $n - \text{rank } A$. Thus with the notation of Lemma 5.3,
$$\dim U^\perp + \text{rank } A = n.$$

v) Consider the complex vector space \mathbb{C}^n with the dot product as nondegenerate symmetric bilinear form. Give an example of a subspace W of \mathbb{C}^n such that $\mathbb{C}^n \neq W \oplus W^\perp$. Verify for your example that $\dim W + \dim W^\perp = \dim \mathbb{C}^2 = 2$.

4. Suppose that V is a finite dimensional vector space with a nondegenerate symmetric bilinear form $< , >$. An operator Φ on V is a linear map $\Phi : V \to V$. If Φ is an operator on V, show that there exists a unique operator $\Psi : V \to V$ such that $< \Phi(v), w > = < v, \Psi(w) >$ for all $v, w \in V$. Ψ is called the transpose of Φ, and we write $\Psi = \Phi^t$.

Hint: Define a map $\Psi : V \to V$ as follows. For $w \in V$, let $L : V \to F$ be the map defined by $L(v) = < \Phi(v), w >$ for $v \in V$. Verify that L is linear, so that $L \in V^*$. By Problem 1.ii), there exists a unique $w' \in V$ such that for all $v \in V$, we have $L(v) = < v, w' >$. Define $\Psi(w) = w'$. Prove that Ψ is linear, and that $< \Phi(v), w > = < v, \Psi(w) >$ for all $v, w \in V$. Don’t forget to prove that Ψ is unique!

5. Let $V = F^n$ with the dot product as nondegenerate symmetric bilinear form. Suppose that $L : V \to V$ is an operator. Show that $L^t = L_A$ if $A \in M_{n \times n}(F)$ is the $n \times n$ matrix such that $L = L_A$.

6. Give a “down to earth” (but “coordinate dependent”) proof of Problem 4, starting like this. Let $\beta = \{ v_1, \ldots, v_n \}$ be a basis of V. The linear map $\Phi_\beta : V \to F^n$ defined by $\Phi_\beta(v) = (v)\beta$ is an isomorphism, with inverse $\Psi : F^n \to V$ defined by $\Psi([x_1, \ldots, x_n]^t) = x_1v_1 + \cdots + x_nv_n$. Define a product $[,]$ on F^n by $[x, y] = < \Psi(x), \Psi(y) >$. Verify that $[,]$ is a nondegenerate symmetric bilinear form on F^n.

By our classification of nondegenerate symmetric bilinear forms on F^n, we know that $[x, y] = x^tBy$ for some symmetric invertible matrix $B \in M_{n \times n}(F)$.

7. Determinants

Theorem 7.1. Suppose that F is a field, and n is a positive integer. Then there exists a unique function $\text{Det} : M_{n,n}(F) \to F$ which satisfies the following properties:

1. Det is multilinear in the columns of matrices in $M_{n,n}(F)$.
2. Det is alternating in the columns of matrices in $M_{n,n}(F)$; that is $\text{Det}(A) = 0$ whenever two columns of A are equal.
3. $\text{Det}(I_n) = 1$.

Existence can be proven by defining a function on $A = (a_{ij}) \in M_{n,n}(F)$ by
$$\text{Det}(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{\sigma(1),1}a_{\sigma(2),2}\cdots a_{\sigma(n),n}$$
where for a permutation $\sigma \in S_n$,
$$\text{sgn}(\sigma) = \begin{cases}
1 & \text{if } \sigma \text{ is even} \\
-1 & \text{if } \sigma \text{ is odd}.
\end{cases}$$

It can be verified that Det is multilinear, alternating and $\text{Det}(I_n) = 1$.

Uniqueness is proven by showing that if a function $\Phi : M_{n,n}(F) \to F$ is multilinear and alternating on columns and satisfies $\Phi(I_n) = 1$ then $\Phi = \text{Det}$.

Lemma 7.2. Suppose that $A, B \in M_{n,n}(F)$. Then
1. \(\text{Det}(AB) = \text{Det}(A)\text{Det}(B) \).
2. \(\text{Det}(A^i) = \text{Det}(A) \).

Lemma 7.3. Suppose that \(A \in M_{n,n}(F) \) Then the following are equivalent

1. \(\text{Det}(A) \neq 0 \)
2. The columns \(\{A^1, \ldots, A^n\} \) of \(A \) are linearly independent.
3. The solution space to \(Ax = 0 \) is \((0)\).

Proof. 2. is equivalent to 3. by the dimension formula, applied to the linear map \(L_A : F^n \to F^n \).

We will now establish that 1. is equivalent to 2. Suppose that \(\{A^1, \ldots, A^n\} \) are linearly dependent. Then, after possibly permuting the columns of \(A \) such that
\[
A_1: \cdots : A_{s-1}, A_s, \cdots, A_n^m
\]
\(A \) has rank \(s \). Now suppose that \(\{A^1, \ldots, A^n\} \) are independent. Then, after permuting the columns of \(A \).

\[
\text{Det}(A) = \text{Det}(A_1, \ldots, A_n^	ext{m-1}, A_m)
\]
\[
= \text{Det}(A_1, \ldots, A_n^	ext{m-1}, c_1A_1 + \cdots + c_m A_n - 1)
\]
\[
= c_1\text{Det}(A_1, \ldots, A_n^	ext{m-1}, A_1') + \cdots + c_m\text{Det}(A_1, \ldots, A_n^	ext{m-1}, A_n')
\]
\[
= 0.
\]

Now suppose that \(\{A^1, \ldots, A^n\} \) are linearly independent. Then \(\text{dim Image} L_A = n \). By the dimension theorem, \(\text{dim Kernel} L_A = 0 \). Thus \(L_A \) is an isomorphism, so \(A \) is invertible with an inverse \(B \). We have that \(1 = \text{Det}(I_n) = \text{Det}(AB) = \text{Det}(A)\text{Det}(B) \). Thus \(\text{Det}(A) \neq 0 \). \(\square \)

Definition 7.4. Suppose that \(A \in M_{m,n}(F) \).

1. The column rank of \(A \) is the dimension of the column space \(\text{Span}\{A^1, \ldots, A^n\} \), which is a subspace of \(F^m \).
2. The row rank of \(A \) is the dimension of the row space \(\text{Span}\{A_1, \ldots, A_m\} \), which is a subspace of \(F_n \).
3. The rank of \(A \) is the largest integer \(r \) such that there exists an \(r \times r \) submatrix \(B \) of \(A \) such that \(\text{Det}(B) \neq 0 \).

Theorem 7.5. Suppose that \(A \in M_{m,n}(F) \). Then the column rank of \(A \), the row rank of \(A \) and the rank of \(A \) are all equal.

Proof. Let \(s \) be the column rank of \(A \), and let \(r \) be the rank of \(A \). We will show that \(s = r \).

There exists an \(r \times r \) submatrix \(B \) of \(A \) such that \(\text{Det}(B) \neq 0 \). There exist \(1 \leq i_1 < i_2 < \cdots < i_r \leq m \) and \(1 \leq j_1 < j_2 < \cdots < j_r \leq n \) such that \(B \) is obtained from \(A \) by deleting the rows \(A_{i_1}, \ldots, A_{i_r} \) and the columns \(A_{j_1}, \ldots, A_{j_r} \) such that \(j \notin \{j_1, \ldots, j_r\} \). We have that the columns of \(B \) are linearly independent, so the columns \(A_{i_1}^1, \ldots, A_{i_r}^n \) of \(A \) are linearly independent. Thus \(s \geq r \).

We now will prove that \(r \geq s \) by induction on \(n \), from which it follows that \(r = s \). The case \(n = 1 \) is easily verified; \(r \) and \(s \) are either 0 or 1, depending on if \(A \) is zero or not.

Assume that the induction statement is true for matrices of size less than \(n \). After permuting the columns of \(A \), we may assume that the first \(s \) columns of \(A \) are linearly independent. Since the column space is a subspace of \(F^m \), we have that \(s \leq m \). Let \(B \) be the submatrix consisting of the first \(s \) rows of \(A \). If \(s < n \), then by induction we have that the rank of \(B \) is \(s \), so that \(A \) has rank \(r \geq s \).

We have reduced to the case where \(s = n \leq m \). Let \(C \) be the \((n-1) \times m \) submatrix of \(A \) consisting of the first \(n-1 \) columns of \(A \). By induction, there exists an \((n-1) \times (n-1) \) submatrix \(E \) of \(C \) whose determinant is non zero. After possibly interchanging rows of \(C \), we may assume that \(E \) consists of the first \(n-1 \) rows of \(C \). For \(1 \leq i \leq n \), let \(E_i \) be the
column vector consisting of the first \(n - 1 \) rows of the \(i \)-th column of \(A \), and for \(1 \leq i \leq n \) and \(n \leq j \leq m \), let \(E_i^j \) be the column vector consisting of the first \(n - 1 \) rows of the \(i \)-th column of \(A \), followed by the \(j \)-th row of the \(i \)-th column of \(A \).

Since \(\text{Det}(E) \neq 0 \), \(\{E_1, \ldots, E_{n-1}\} \) are linearly independent, and are thus a basis of \(F^{n-1} \). Thus there are unique elements \(a_1, \ldots, a_{n-1} \in F \) such that

\[
(3) \quad a_1E_1 + \cdots + a_{n-1}E_{n-1} = E_n.
\]

Suppose that all determinants of \(n \times n \) submatrices of \(A \) are zero. Then \(\{E_1^1, \ldots, E_n^n\} \) are linearly dependent for \(n \leq j \leq m \). By uniqueness of the relation (3), we must then have that

\[
a_1E_1^1 + \cdots + a_{n-1}E_{n-1}^j - E_n = 0
\]

for \(n \leq j \leq m \). Thus

\[
a_1A^1 + \cdots + a_{n-1}A^{n-1} - A^n = 0,
\]

a contradiction to our assumption that \(A \) has column rank \(n \). Thus some \(n \times n \) submatrix of \(A \) has nonzero determinant, and thus \(r \geq s \).

Taking the transpose of \(A \), the above argument shows that the row rank of \(A \) is equal to the rank of \(A \).

\[\square\]

8. Rings

A set \(R \) is a ring if it has an addition operation under which \(A \) is an abelian group, and an associative multiplication operation such that \(a(b + c) = ab + ac \) and \((b + c)a = ba + ca \) for all \(a, b, c \in A \). \(A \) further has a multiplicative identity \(1_A \) (written 1 when there is no danger of confusion). A ring \(A \) is a commutative ring if \(ab = ba \) for all \(a, b \in A \).

Suppose that \(A \) and \(B \) are rings. A ring homomorphism \(\varphi : A \to B \) is a mapping such that \(\varphi \) is a homomorphism of abelian groups, \(\varphi(ab) = \varphi(a)\varphi(b) \) for \(a, b \in A \) and \(\varphi(1_A) = 1_B \).

Suppose that \(B \) is a commutative ring, \(A \) is a subring of \(B \) and \(S \) is a subset of \(B \). The subring of \(B \) generated by \(S \) and \(A \) is the intersection of all subrings \(T \) of \(B \) which contain \(A \) and \(S \). The subring of \(B \) generated by \(S \) and \(A \) is denoted by \(A[S] \). It should be verified that \(A[S] \) is in fact a subring of \(B \), and that

\[
A[S] = \left\{ \sum_{i_1, i_2, \ldots, i_r=0}^{n} a_{i_1, \ldots, i_r} s_1^{i_1} \cdots s_r^{i_r} \mid r \in \mathbb{N}, n \in \mathbb{N}, a_{i_1, \ldots, i_r} \in A, s_1, \ldots, s_r \in S \right\}.
\]

and let \(R_i = R \) for \(i \in \mathbb{N} \). Let

\[
T = \{\{a_i\} \in \times_{i \in \mathbb{N}} R_i \mid a_i = 0 \text{ for } i \gg 0\}.
\]

We can also write a sequence \(\{a_i\} \in T \) as \((a_0, a_1, a_2, \ldots, a_r, 0, 0, \ldots) \) for some \(r \in \mathbb{N} \). \(T \) is a ring with addition \(\{a_i\} + \{b_i\} = \{a_i + b_i\} \) and \(\{a_i\}\{b_i\} = \{c_k\} \) where \(c_k = \sum_{i+j=k} a_i b_j \).

The zero element \(0_T \) is the sequence all of whose terms are 0, and \(1_T \) is the sequence all of whose terms are zero expect the zero’th term which is 1. That is, \(0_T = (0, 0, \ldots) \) and \(1_T = (1, 0, 0, \ldots) \). Let \(x \) be the sequence whose first term is 1 and all other terms are zero; that is, \(x = (0, 1, 0, 0, \ldots) \). Then \(x^t \) is the sequence whose \(i \)-th term is 1 and all other terms are zero. The natural map of \(R \) into \(T \) which maps \(a \in R \) to the sequence whose zero-th term is \(a \) and all other terms are zero identifies \(R \) with a subring of \(T \). Suppose
that \(\{a_i\} \in T \). Then there is some natural number \(r \) such that \(a_i = 0 \) for all \(i > r \). We have that
\[
\{a_i\} = (a_0, a_1, \ldots, a_r, 0, 0, \ldots) = \sum_{i=0}^{r} a_i x^i.
\]
Thus the subring \(R[x] \) of \(T \) generated by \(x \) and \(R \) is equal to \(T \). \(R[x] \) is called a polynomial ring.

Lemma 8.1. Suppose that \(f(x), g(x) \in R[x] \) have expansions \(f(x) = a_0 + a_1 x + \cdots + a_r x^r \in R[x] \) and \(g(x) = b_0 + b_1 x + \cdots + b_r x^r \in R[x] \) with \(a_0, \ldots, a_r \in R \) and \(b_0, \ldots, b_r \in R \). Suppose \(f(x) = g(x) \). Then \(a_i = b_i \) for \(0 \leq i \leq r \).

Proof. We have \(f(x) = (a_0, a_1, \ldots, a_r, 0, \ldots) \) and \(g(x) = (b_0, b_1, \ldots, b_r, 0, \ldots) \) as elements of \(\times_{i \in \mathbb{N}} R_i \). Since two sequences in \(\times_{i \in \mathbb{N}} R_i \) are equal if and only if their coefficients are equal, we have that \(a_i = b_i \) for all \(i \). \(\square \)

Theorem 8.2. (Universal Property of Polynomial Rings) Suppose that \(A \) and \(B \) are commutative rings and \(\varphi : A \to B \) is a ring homomorphism. Suppose that \(b \in B \). Then there exists a unique ring homomorphism \(\overline{\varphi} : A[x] \to B \) such that \(\overline{\varphi}(a) = \varphi(a) \) for \(a \in A \) and \(\overline{\varphi}(x) = b \).

Proof. We first prove existence. Define \(\overline{\varphi} : A \to B \) by \(\overline{\varphi}(f(x)) = \varphi(a_0) + \varphi(a_1)b + \cdots + \varphi(a_r) b^r \) for
\[
f(x) = a_0 + a_1 x + \cdots + a_r x^r \in R[x]
\]
with \(a_0, \ldots, a_r \in R \). This map is well defined, since the expansion (4) is unique by Lemma 8.1. It should be verified that \(\overline{\varphi} \) is a ring homomorphism with the desired properties.

We will now prove uniqueness. Now suppose that \(\Psi : A[x] \to B \) is a ring homomorphism such that \(\Psi(a) = \varphi(a) \) for \(a \in A \) and \(\Psi(x) = b \). Suppose that \(f(x) \in A[x] \). Write \(f(x) = a_0 + a_1 x + \cdots + a_r x^r \) with \(a_0, \ldots, a_r \in A \). We have
\[
\Psi(f(x)) = \Psi(a_0 + a_1 x + \cdots + a_r x^r) = \Psi(a_0) + \Psi(a_1) \Psi(x) + \cdots + \Psi(a_r) \Psi(x)^r
\]
\[
= \varphi(a_0) + \varphi(a_1) b + \cdots + \varphi(a_r) b^r = \overline{\varphi}(a_0 + a_1 x + \cdots + a_r x^r)
\]
\[
= \overline{\varphi}(f(x)).
\]
Since this identity is true for all \(f(x) \in A[x] \), we have that \(\Psi = \overline{\varphi} \). \(\square \)

Let \(F \) be a field, and \(F[x] \) be a polynomial ring over \(F \). Suppose that \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x] \) with \(a_0, \ldots, a_n \in F \) and \(a_n \neq 0 \). The degree of \(f(x) \) is defined to be \(\deg f(x) = n \). If \(f(x) = 0 \) define \(\deg f(x) = -\infty \). For \(f, g \in F[x] \) we have
\[
\deg fg = \deg f + \deg g
\]
and
\[
\deg f + g \leq \max \{ \deg f, \deg g \}.
\]
f \in F[x] is a unit (has a multiplicative inverse in \(F[x] \)) if and only if \(f \) is a nonzero element of \(F \), if and only if \(\deg f = 0 \) (this follows from the formulas on degree). \(F[x] \) is a domain; that is it has no zero divisors. A basic result is Euclidean division.

Theorem 8.3. Suppose that \(f, g \in F[x] \) with \(f \neq 0 \). Then there exist unique polynomials \(q, r \in F[x] \) such that \(g = qf + r \) with \(\deg r < \deg f \).

Corollary 8.4. Suppose that \(f(x) \in F[x] \) is nonzero. Then \(f(x) \) has at most \(\deg f \) distinct roots in \(F \).
Corollary 8.5. \(F[x] \) is a principal ideal domain; that is every ideal in \(F[x] \) is generated by a single element.

An element \(f(x) \in F[x] \) is defined to be irreducible if it has degree \(\geq 1 \), and \(f \) cannot be written as a product \(f = gh \) with \(f, g \notin F \). A polynomial \(f(x) \in F[x] \) of positive degree \(n \) is monic if \(f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n \) for some \(a_0, \ldots, a_{n-1} \in F \).

Theorem 8.6. (Unique Factorization) Suppose that \(f(x) \in F[x] \) has positive degree. Then there is a factorization

\[
f(x) = cf_1^{n_1} \cdots f_r^{n_r}
\]

where \(r \) is a positive integer, \(f_1, \ldots, f_r \in F[x] \) are monic irreducible, \(0 \neq c \in F \) and \(n_1, \ldots, n_r \) are positive integers.

This factorization is unique, in the sense that any other factorization of \(f(x) \) as a product of monic irreducibles is obtained from (6) by permuting the \(f_i \).

If \(F \) is an algebraically closed field (such as the complex numbers \(\mathbb{C} \)) the monic irreducibles are exactly the linear polynomials \(x - \alpha \) for \(\alpha \in F \).

Theorem 8.7. Suppose that \(F \) is an algebraically closed field and \(f(x) \in F[x] \) has positive degree. Then there is a (unique) factorization

\[
f(x) = c(x - \alpha_1)^{n_1} \cdots (x - \alpha_r)^{n_r}
\]

where \(r \) is a positive integer, \(\alpha_1, \ldots, \alpha_r \in F \) are distinct, \(0 \neq c \in F \) and \(n_1, \ldots, n_r \) are positive integers.

Suppose that \(f(x), g(x) \in F[x] \) are not both zero. A common divisor of \(f \) and \(g \) in \(F[x] \) is an element \(h \in F[x] \) such that \(h \) divides \(f \) and \(h \) divides \(g \) in \(F[x] \). A greatest common divisor of \(f \) and \(g \) in \(F[x] \) is an element \(d \in F[x] \) such that \(d \) is a common divisor of \(f \) and \(g \) in \(F[x] \) and \(d \) divides every other common divisor of \(f \) and \(g \) in \(F[x] \).

Theorem 8.8. Suppose that \(f, g \in F[x] \) are not both zero. Then

1. there exists a unique monic greatest common divisor \(d(x) = \gcd(f, g) \) of \(f \) and \(g \) in \(F[x] \).
2. There exist \(p, q \in F[x] \) such that \(d = pf + qg \).
3. Suppose that \(K \) is a field containing \(F \). Then \(d \) is a greatest common divisor of \(f \) and \(g \) in \(K[x] \).

9. Eigenvalues and Eigenvectors

Suppose that \(F \) is a field.

Definition 9.1. Suppose that \(V \) is a vector space over a field \(F \) and \(L : V \rightarrow V \) is a linear map. An element \(\lambda \in F \) is an eigenvalue of \(L \) if there exists a nonzero element \(v \in V \) such that \(L(v) = \lambda v \). A nonzero vector \(v \in V \) such that \(L(v) = \lambda v \) is called an eigenvector of \(L \) with eigenvalue \(\lambda \). If \(\lambda \in F \) is an eigenvalue of \(L \), then

\[
E(\lambda) = \{ v \in V \mid L(v) = \lambda v \}
\]

is the eigenspace of \(\lambda \) for \(L \).

Lemma 9.2. Suppose that \(V \) is a vector space over a field \(F \), \(L : V \rightarrow V \) is a linear map, and \(\lambda \in F \) is an eigenvalue of \(L \). Then \(E(\lambda) \) is a subspace of \(V \) of positive dimension.
Theorem 9.3. Suppose that V is a vector space over a field F, and $L : V \to V$ is a linear map. Let $\lambda_1, \ldots, \lambda_r \in F$ be distinct eigenvalues of L. Then the subspace of V spanned by $E(\lambda_1), \ldots, E(\lambda_r)$ is a direct sum; that is

$$E(\lambda_1) + E(\lambda_2) + \cdots + E(\lambda_r) = E(\lambda_1) \bigoplus E(\lambda_2) \bigoplus \cdots \bigoplus E(\lambda_r).$$

Proof. We prove the Lemma by induction on r. The case $r = 1$ follows from the definition of direct sum. Now assume that the Lemma is true for $r - 1$ eigenvalues. Suppose that $v_i \in E(\lambda_i)$ for $1 \leq i \leq r$, $w_i \in E(\lambda_i)$ for $1 \leq i \leq r$ and

$$v_1 + v_2 + \cdots + v_r = w_1 + w_2 + \cdots + w_r. \quad (7)$$

We must show that $v_i = w_i$ for $1 \leq i \leq r$. Multiplying equation (7) by λ_i, we obtain

$$\lambda_i v_1 + \lambda_i v_2 + \cdots + \lambda_i v_r = \lambda_i w_1 + \lambda_i w_2 + \cdots + \lambda_i w_r. \quad (8)$$

Applying L to equation (7) we obtain

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_r v_r = \lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_r w_r. \quad (9)$$

Subtracting equation (8) from (9), we obtain

$$(\lambda_1 - \lambda_r)v_1 + \cdots + (\lambda_{r-1} - \lambda_r)v_{r-1} = (\lambda_r - \lambda_r)w_1 + \cdots + (\lambda_{r-1} - \lambda_r)w_{r-1}. \quad (10)$$

Now by induction on r, and since $\lambda_i - \lambda_r \neq 0$ for $1 \leq i \leq r - 1$, we get that $v_i = w_i$ for $1 \leq i \leq r - 1$. Substituting into equation (7), we then obtain that $v_r = w_r$, and we see that the sum is direct. \qed

Corollary 9.4. Suppose that V is a finite dimensional vector space over a field F, and $L : V \to V$ is linear. Then L has at most $\dim(V)$ distinct eigenvalues.

10. Characteristic Polynomials

Suppose that F is a field. We let $F[t]$ be a polynomial ring over F.

Definition 10.1. Suppose that F is a field, and $A \in M_{n,n}(F)$. The characteristic polynomial A is the polynomial $p_A(t) = \det(tI_n - A) \in F[t]$.

$p_A(t)$ is a monic polynomial of degree n.

Lemma 10.2. Suppose that V is an n-dimensional vector space over a field F, and $L : V \to V$ is a linear map. Let β, β' be two bases of V. Then

$$p_{M_\beta^\beta(L)}(t) = p_{M_\beta^{\beta'}(L)}(t).$$

Proof. We have that

$$M_\beta^{\beta'}(L) = M_\beta^\beta(I)M_\beta^\beta(L)M_\beta^{\beta'}(I).$$

Let $A = M_\beta^\beta(L)$, $B = M_\beta^{\beta'}(L)$ and $C = M_\beta^{\beta'}(I)$, so that $B = C^{-1}AC$. Then

$$p_{M_\beta^{\beta'}(L)}(t) = \det(tI_n - B) = \det(tI_n - C^{-1}AC) = \det(C^{-1}(tI_n - A)C) = \det(C)^{-1}\det(tI_n - A)\det(C) = \det(tI_n - A) = p_{M_\beta^\beta(L)}(t).$$

\qed
Definition 10.3. Suppose that V is an n-dimensional vector space over a field F, and $L : V \to V$ is a linear map. Let β be a basis of V. Define the characteristic polynomial $p_L(t)$ of L to be

$$p_L(t) = p_{M_\beta(L)}(t).$$

Lemma 10.2 shows that the definition of characteristic polynomial of L is well defined; it is independent of choice of basis of V.

Theorem 10.4. Suppose that V is an n-dimensional vector space over a field F, and $L : V \to V$ is a linear map. Then the eigenvalues of L are the roots of $p_L(t) = 0$ which are in F. In particular, L has at most n distinct eigenvalues.

Proof. Let β be a basis of V, and suppose that $\lambda \in F$. Then the following are equivalent:

1. λ is an eigenvalue of L.
2. There exists a nonzero vector $v \in V$ such that $Lv = \lambda v$.
3. $\text{the Kernel of } \lambda I - L : V \to V$ is nonzero.
4. The solution space to $M_\beta(\lambda I - L)y = 0$ is non zero.
5. The solution space to $(\lambda I_n - M_\beta(L))y = 0$ is non zero.
6. $\text{Det}(\lambda I_n - M_\beta(L)) = 0$
7. $p_L(\lambda) = 0$.

\square

Definition 10.5. Suppose that V is an n-dimensional vector space over a field F, and $L : V \to V$ is a linear map. L is diagonalizable if there exists a basis β of V such that $M_\beta(L)$ is a diagonal matrix.

Theorem 10.6. Suppose that V is an n-dimensional vector space over a field F, and $L : V \to V$ is a linear map. Then the following are equivalent:

1. L is diagonalizable.
2. There exists a basis of V consisting of eigenvectors of L.
3. Let $\lambda_1, \ldots, \lambda_r$ be the distinct eigenvalues of L. Then $\dim E(\lambda_1) + \cdots + \dim E(\lambda_r) = n$.

Lemma 10.7. Suppose that $A \in M_{n,n}(F)$ is a matrix. Then L_A is diagonalizable if and only if A is similar to a diagonal matrix (there exists an invertible matrix $B \in M_{n,n}(F)$ and a diagonal matrix $D \in M_{n,n}(F)$ such that $B^{-1}AB = D$).

11. Triangulation

Let V be a finite dimensional vector space over a field F, of positive dimension $n \geq 1$. Suppose that $L : V \to V$ is a linear map. A subspace W of V is L-invariant if $L(W) \subseteq W$.

A fan $\{V_1, \ldots, V_n\}$ of L in V is a finite sequence of L-invariant subspaces

$$V_1 \subset V_2 \subset \cdots \subset V_n = V$$

such that $\dim V_i = i$ for $1 \leq i \leq n$.

A fan basis (of the fan $\{V_1, \ldots, V_n\}$) for L is a basis $\{v_1, \ldots, v_n\}$ of V such that $\{v_1, \ldots, v_i\}$ is a basis of V_i for $1 \leq i \leq n$. Given a fan, a fan basis always exists.

Theorem 11.1. Let $\beta = \{v_1, \ldots, v_n\}$ be a fan basis for L. Then the matrix $M_\beta(L)$ of L with respect to the basis β is an upper triangular matrix.
Proof. Let \(\{ V_1, \ldots, V_n \} \) be the fan corresponding to the fan basis. \(L(V_i) \subset V_i \) for all \(i \) implies there exist \(a_{ij} \in F \) such that

\[
\begin{align*}
L(v_1) & = a_{11}v_1 \\
L(v_2) & = a_{21}v_1 + a_{22}v_2 \\
& \vdots \\
L(v_n) & = a_{n1}v_1 + \cdots + a_{nn}v_n.
\end{align*}
\]

Thus

\[
M_\beta^L(L) = (L(v_1)_\beta, L(v_2)_\beta, \ldots, L(v_n)_\beta) = (a_{ij})
\]

is upper triangular. \(\square \)

Definition 11.2. A linear map \(L : V \to V \) is triangular if there exists a basis \(\beta \) of \(V \) such that \(M_\beta^L(L) \) is upper triangular. A matrix \(A \in M_{nn}(F) \) is triangulizable if there exists an invertible matrix \(B \in M_{nn}(F) \) such that \(B^{-1}AB \) is upper triangular.

A matrix \(A \) is triangulizable if and only if the linear map \(L_A : F^n \to F^n \) is triangulizable; if \(\beta \) is a fan basis for \(L_A \), then

\[
M_\beta^L(L_A) = M_{st}^I(M_{st}^L(L_A))M_\beta^I = B^{-1}AB
\]

where \(I : V \to V \) is the identity map and \(st \) denotes the standard basis of \(F^n \), and \(B = M_{st}^I(I) \).

Suppose that \(V \) is a vector space, and \(W_1, W_2 \) are subspaces such that \(V = W_1 \bigoplus W_2 \). Then every element \(v \in V \) has a unique expression \(v = w_1 + w_2 \) with \(w_1 \in W_1 \) and \(w_2 \in W_2 \). We may thus define a projection \(\pi_1 : V \to W_1 \) by \(\pi_1(v) = w_1 \) if \(v = w_1 + w_2 \) with \(w_1 \in W_1 \) and \(w_2 \in W_2 \), and define a projection \(\pi_2 : V \to W_1 \) by \(\pi_1(v) = w_2 \) for \(v = w_1 + w_2 \in V \). These projections are linear maps, which depend on both \(W_1 \) and \(W_2 \). Composing with the inclusion \(W_1 \subset V \), we can view \(\pi_1 \) as a map from \(V \) to \(V \). Composing with the inclusion \(W_2 \subset V \), we can view \(\pi_2 \) as a map from \(V \) to \(V \). Then \(\pi_1 + \pi_2 = I_V \).

Theorem 11.3. Let \(V \) be a non zero finite dimensional vector space over a field \(F \), and let \(L : V \to V \) be a linear map. Suppose that the characteristic polynomial \(p_L(t) \) factors into linear factors in \(F[t] \) (this will always happen if \(F \) is algebraically closed). Then there exists a fan of \(L \) in \(V \), so that \(L \) is triangulizable.

Proof. We prove the theorem by induction on \(n = \dim V \). If \(n = 1 \), then any basis of \(V \) is a fan basis for \(V \). Assume that the theorem is true for linear maps of vector spaces \(W \) over \(F \) of dimension less than \(n = \dim V \). Since \(p_L(t) \) splits into linear factors in \(F[t] \), and \(p_L(t) \) has degree \(n > 0 \), \(p_L(t) \) has a root \(\lambda_1 \) in \(F \), which is thus an eigenvalue of \(L \). Let \(v_1 \in V \) be an eigenvector of \(L \) with the eigenvalue \(\lambda_1 \). Let \(V_1 \) be the one dimensional subspace of \(V \) generated by \(\{ v_1 \} \). Extend \(\{ v_1 \} \) to a basis \(\beta = \{ v_1, v_2, \ldots, v_n \} \) of \(V \). Let \(W = \text{Span}\{ v_2, \ldots, v_n \} \). \(\beta' = \{ v_2, \ldots, v_n \} \) is a basis of \(W \). \(V \) is the direct sum \(V = V_1 \bigoplus W \). Let \(\pi_1 : V \to V_1 \) and \(\pi_2 : V \to W \) be the projections. The composed linear map is \(\pi_2L : W \to W \). From

\[
M_\beta^L(L) = \begin{pmatrix}
\lambda_1 & * \\
0 & M_{\beta'}^L(\pi_2L)
\end{pmatrix},
\]

we calculate \(p_L(t) = (t - \lambda_1)p_{\pi_2L}(t) \). Since \(p_L(t) \) factors into linear factors in \(F[t] \), \(p_{\pi_2L}(t) \) also factors into linear factors in \(F[t] \).
By induction, there exists a fan of $\pi_2 L$ in W, say $\{W_1, \ldots, W_{n-1}\}$. Let $V_i = V_1 + W_{i-1}$ for $2 \leq i \leq n$. The subspaces V_i form a chain

$$V_1 \subset V_2 \subset \cdots \subset V_n = V.$$

Let $\{u_1, \ldots, u_{n-1}\}$ be a fan basis for $\pi_2 L$, so that $\{u_1, \ldots, u_j\}$ is a basis of W_j for $1 \leq j \leq n-1$. Then $\{v_1, u_1, \ldots, u_{n-1}\}$ is a basis of V_i. We will show that $\{V_1, \ldots, V_n\}$ is a fan of L in V, with fan basis $\{v_1, u_1, \ldots, u_{n-1}\}$.

We have that $L = IL = (\pi_1 + \pi_2) L = \pi_1 L + \pi_2 L$. Let $v \in V_i$. We have an expression $v = cv_1 + w_{i-1}$ with $c \in F$ and $w_{i-1} \in W_{i-1}$. $\pi_1 L(v) = \pi_1 (L(v)) \in V_1 \subset V_i$. $\pi_2 L(v) = \pi_2 L(cv_1) + \pi_2 L(w_{i-1})$. Now $\pi_2 L(cv_1) = c\pi_2 (v_1) = c\pi_2 (\lambda_1 v_1) = 0$ and $\pi_2 L(w_{i-1}) \in W_{i-1}$ since $\{w_1, \ldots, w_{n-1}\}$ is a fan basis for $\pi_2 L$. Thus $\pi_2 L(v) \in W_{i-1}$ and so $L(v) \in V_i$. Thus V_i is L-invariant, and we have shown that $\{V_1, \ldots, V_n\}$ is a fan of L in V.

12. The minimal polynomial of a linear operator

Suppose that $L : V \rightarrow V$ is a linear map, where V is a finite dimensional vector space over a field F. Let $\mathcal{L}_F(V, V)$ be the F-vector space of linear maps from V to V. $\mathcal{L}_F(V, V)$ is a ring with multiplication given by composition of maps. Let $I : V \rightarrow V$ be the identity map, which is the multiplicative identity of the ring $\mathcal{L}_F(V, V)$. There is a natural inclusion of the field F as a subring (and subvector space) of $\mathcal{L}_F(V, V)$, obtained by mapping $\lambda \in F$ to $\lambda I \in \mathcal{L}_F(V, V)$. Let $F[L]$ be the subring of $\mathcal{L}_F(V, V)$ generated by F and L.

$$F[L] = \{a_0 I + a_1 L + \cdots + a_r L^r \mid r \in \mathbb{N} \text{ and } a_0, \ldots, a_r \in F\}.$$

$F[L]$ is a commutative ring. By the universal property of polynomial rings, there is a surjective ring homomorphism φ from the polynomial ring $F[t]$ onto $F[L]$, obtained by mapping $f(t) \in F[t]$ to $f(L)$. φ is also a vector space homomorphism. Since $F[L]$ is a subspace of $\mathcal{L}_F(V, V)$, which is an F-vector space of dimension n^2, $F[L]$ is a finite dimensional vector space. Thus the kernel of φ is nonzero. Let $m_L(t)$ be the monic generator of the kernel of φ. We have an isomorphism

$$F[L] \cong F[t]/(m_L(t)).$$

$m_L(t)$ is the minimal polynomial of L.

We point out here that if $g(t), h(t) \in F[t]$ are polynomials, then since $F[L]$ is a commutative ring, we have equality of composition of operators

$$g(L) \circ h(L) = h(L) \circ g(L).$$

We generally write $g(L)h(L) = h(L)g(L)$ to denote the composition of operators. If $v \in V$, we will also write Lv for $L(v)$ and $f(L)v$ for $f(L)(v)$.

The above theory also works for matrices. The $n \times n$ matrices $M_{n,n}(F)$ is a vector space over F, and is also a ring with matrix multiplication. F is embedded as a subring by the map $\lambda \rightarrow \lambda I_n$, where I_n denotes the $n \times n$ identity matrix. Given $A \in M_{n,n}(F)$, $F[A]$ is a commutative subring, and there is a natural surjective ring homomorphism $F[t] \rightarrow F[A]$. The kernel is generated by a monic polynomial $m_A(t)$ which is the minimal polynomial of A.

Now suppose that V is a finite dimensional vector space over F, and β is a basis of V. Then the map $\mathcal{L}_F(V, V) \rightarrow M_{n,n}(F)$ defined by $\varphi \rightarrow M^{\beta}_{\beta}(\varphi)$ for $\varphi \in \mathcal{L}_F(V, V)$ is a vector space isomorphism, and a ring isomorphism.

Suppose that $L : V \rightarrow V$ is a linear map, and let $A = M^{\beta}_{\beta}(L)$. Then we have an induced isomorphism of $F[L]$ with $F[A]$. For a polynomial $f(x) \in F[x]$, we have that the image of
\(f(L) \) in \(F[A] \) is

\[
M_\beta^2(f(L)) = f(M_\beta^2(L)) = f(A).
\]

Thus we have that \(m_A(t) = m_L(t) \).

Lemma 12.1. Suppose that \(A \) is an \(n \times n \) matrix with coefficients in a field \(F \), and \(K \) is an extension field of \(F \). Let \(f(x) \) be the minimal polynomial of \(A \) over \(F \), and let \(g(x) \) be the minimal polynomial of \(A \) over \(K \). Then \(f(x) = g(x) \).

Proof. Let \(a_1, a_2, \ldots, a_r \in K \) be elements of \(K \) which are linearly independent over \(F \). We will use the following observation. Suppose that \(A_1, \ldots, A_r \in M_{nn}(F) \) and \(a_1A_1 + \cdots + a_rA_r = 0 \) in \(M_{nn}(K) \). Then since each coefficient of \(a_1A_1 + \cdots + a_rA_r \) is zero, we have that \(A_1 = A_2 = \cdots = A_r = 0 \).

Write \(g(x) = x^r + b_{r-1}x^{r-1} + \cdots + b_0 \) with \(b_i \in K \). Let \(\{a_1 = 1, \ldots, a_r\} \) be a basis of the subspace of \(K \) (recall that \(K \) is a vector space over \(F \)) spanned by \(\{1, b_{r-1}, \ldots, b_0\} \). Expand \(b_i = \sum_{j=1}^r c_{ij}a_j \) with \(c_{ij} \in F \). Let \(f_1(x) = x^r + c_{r-1,1}x^{r-1} + \cdots + c_{0,1} \) and \(f_j(x) = c_{r-1,j}x^{r-1} + \cdots + c_{0,j} \) for \(j \geq 2 \). \(f_i(x) \in F[x] \) for all \(i \), and \(g(x) = \sum_{j=1}^r a_j f_j(x) \).

We have that \(0 = g(A) = \sum_{i=1}^r a_i f_i(A) \), which implies that \(f_i(A) = 0 \) for all \(i \), as observed above. Thus \(f(x) \) divides \(f_i(x) \) in \(F[x] \) for all \(i \), and then \(f(x) \) divides \(g(x) \) in \(K[x] \). Since \(f(A) = 0, g(x) \) divides \(f(x) \) in \(K[x] \) so \(f \) and \(g \) generate the same ideal, so \(f = g \) is the unique monic generator.

\[
\square
\]

13. THEOREM OF HAMILTON-CAYLEY

Theorem 13.1. Let \(V \) be a non zero finite dimensional vector space, over an algebraically closed field \(F \), and let \(L : V \rightarrow V \) be a linear map. Let \(p_L(t) \) be its characteristic polynomial. Then \(p_L(L) = 0 \).

Here “\(p_L(L) = 0 \)” means that \(p_L(L) \) is the zero map on \(V \).

Proof. There exists a fan \(\{V_1, \ldots, V_n\} \) of \(L \) in \(V \), with associated fan basis \(\beta = \{v_1, \ldots, v_n\} \).

The matrix \(M_\beta(L) \in M_{n,n}(F) \) is upper triangular. Write \(M_\beta(L) = (a_{ij}) \). Then

\[
p_L(t) = \text{Det}(tI_n - M_\beta(L)) = (t - a_{11})(t - a_{22}) \cdots (t - a_{nn}).
\]

We shall prove by induction on \(i \) that

\[
(L - a_{11}I) \cdots (L - a_{ii}I)v = 0
\]

for all \(v \in V_i \).

We first prove this in the case \(i = 1 \). Then \((L - a_{11}I)v = Lv - a_{11}v = 0 \) for \(v \in V_1 \), since \(V_1 \) is in the eigenspace for the eigenvalue \(a_{11} \).

Now assume that \(i > 1 \), and that

\[
(L - a_{11}I) \cdots (L - a_{i-1,i-1}I)v = 0
\]

for all \(v \in V_{i-1} \). Suppose that \(v \in V_i \). Then \(v = v' + cv_i \) for some \(v' \in V_{i-1} \) and \(c \in F \).

Let \(z = (L - a_{ii}I)v' \). \(z \in V_{i-1} \) because \(L(V_{i-1}) \subseteq V_{i-1} \) and \(a_{ii}v' \in V_{i-1} \). By induction,

\[
(L - a_{11}I) \cdots (L - a_{i-1,i-1}I)(L - a_{ii}I)v' = (L - a_{11}I) \cdots (L - a_{i-1,i-1}I)z = 0.
\]

We have \((L - a_{ii}I)cv_i \in V_{i-1} \), since \(L(v_i) = a_{ii}v_i + a_{i2}v_2 + \cdots + a_{i1}v_1 \). Thus

\[
(L - a_{11}I) \cdots (L - a_{i-1,i-1}I)(L - a_{ii}I)cv_i = 0,
\]

and thus

\[
(L - a_{11}I) \cdots (L - a_{ii}I)v = 0.
\]

19
Corollary 13.2. Let F be an algebraically closed field and suppose that $A \in M_{n,n}(F)$. Let $p_A(t)$ be its characteristic polynomial. Then $p_A(A) = 0$.

Here “$p_A(A) = 0$” means that $p_A(A)$ is the zero matrix.

Proof. Let $L = L_A : F^n \to F^n$. Then $0 = p_L(L)$. Let β be the standard basis of F^n. Since $A = M^\beta_\beta(L)$, we have that $p_L(t) = p_A(t) \in F[t]$. Now
\[p_A(A) = p_L(M^\beta_\beta(L)) = M^\beta_\beta(p_L(L)) = M^\beta_\beta(0) = 0 \]
where the right most zero in the above equation denotes the $n \times n$ zero matrix. \hfill \square

Corollary 13.3. Suppose that F is a field, and $A \in M_{n,n}(F)$. Then $p_A(A) = 0$.

Proof. Let K be an algebraically closed field containing F. From the natural inclusion $M_{n,n}(F) \subset M_{n,n}(K)$ we may regard A as an element of $M_{n,n}(K)$. The computation $p_A(t) = \text{Det}(I_n - A)$ does not depend on the field F or K. By Corollary 13.2, $p_A(A) = 0$. \hfill \square

Theorem 13.4. (Hamilton-Cayley) Suppose that V is a non zero finite dimensional vector space over a field F and $L : V \to V$ is a linear map. Then $p_L(L) = 0$.

Proof. Let β be a basis of V, and let $A = M^\beta_\beta(L) \in M_{n,n}(F)$. We have $p_L(t) = p_A(t)$. By Corollary 13.3, $p_A(A) = 0$. Now
\[M^\beta_\beta(p_L(L)) = p_L(M^\beta_\beta(L)) = p_A(A) = 0. \]
Thus $p_L(L) = 0$. \hfill \square

Corollary 13.5. Suppose that V is a non zero finite dimensional vector space over a field F and $L : V \to V$ is a linear map. Then the minimal polynomial $m_L(t)$ divides the characteristic polynomial $p_L(t)$ in $F[t]$.

Proof. By the Hamilton-Cayley Theorem, $p_L(t)$ is in the kernel of the homomorphism $F[t] \to F[L]$ which takes t to L and is the identity on F. Since $m_L(t)$ is a generator for this ideal, $m_L(t)$ divides $p_L(t)$. \hfill \square

14. Invariant Subspaces

Suppose that V is a finite dimensional vector space over a field F, and $L : V \to V$ is a linear map. Suppose that W_1, \ldots, W_r are L-invariant subspaces of V such that $V = W_1 \oplus \cdots \oplus W_r$. Let $\beta_i = \{v_{i,1}, \ldots, v_{i,\sigma(i)}\}$ be bases of W_i, and let
\[\beta = \{v_{1,1}, \ldots, v_{1,\sigma(1)}, v_{2,1}, \ldots, v_{r,\sigma(r)}\} \]
which is a basis of V. Since the W_i are L-invariant, the matrix of L with respect to β is a block matrix
\[M^\beta_\beta(L) = \begin{pmatrix} A_1 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_r \end{pmatrix} \]
where $A_i = M^\beta_{\beta_i}(L|W_i)$ are $\sigma(i) \times \sigma(i)$ matrices.
Lemma 14.1. Suppose that V is a vector space over a field F and $L : V \to V$ is a linear map. Suppose that $f(t) \in F[t]$ and let W be the kernel of $f(L) : V \to V$. Then W is an L-invariant subspace of V.

Proof. Let $x \in W$. Then $f(L)Ix = Lf(I)x = L0 = 0$. Thus $Lx \in W$. □

Theorem 14.2. Let $f(t) \in F[t]$. Suppose that $f = f_1f_2$ with $f_1, f_2 \in F[t]$ and $\deg f_1 \geq 1$, $\deg f_2 \geq 1$ and $\gcd(f_1, f_2) = 1$. Suppose that V is a vector space over a field F, $L : V \to V$ is a linear map and $f(L) = 0$. Let $W_1 = \ker f_1(L)$ and $W_2 = \ker f_2(L)$. Then $V = W_1 \oplus W_2$.

Proof. Since $\gcd(f_1, f_2) = 1$, there exist $g_1, g_2 \in F[t]$ such that $1 = g_1(t)f_1(t) + g_2(t)f_2(t)$, so that
\begin{equation}
1 = g_1(L)f_1(L) + g_2(L)f_2(L) = I
\end{equation}
is the identity map of V. Let $x \in V$.
\[x = g_1(L)f_1(L)x + g_2(L)f_2(L)x.\]

Then $g_1(L)f_1(L)x \in W_2$ since
\[f_2(L)g_1(L)f_1(L)x = g_1(L)f_1(L)f_2(L)x = g_1(L)f(L)x = g_1(L)0 = 0.
\]
Similarly, $g_2(L)f_2(L)x \in W_1$. Thus $V = W_1 + W_2$. To show that the sum is direct, we must show that an expression $x = w_1 + w_2$ with $w_1 \in W_1$ and $w_2 \in W_2$ is uniquely determined by x. Apply $g_1(L)f_1(L)$ to this expression to get
\[g_1(L)f_1(L)x = g_1(L)f_1(L)w_1 + g_1(L)f_1(L)w_2 = 0 + g_1(L)f_1(L)w_2.
\]
Now apply (10) to w_2, to get
\[w_2 = g_1(L)f_1(L)w_2 \in W_2 = g_1(L)f_1(L)w_2 + 0,
\]
which implies that $w_2 = g_1(L)f_1(L)x$ is uniquely determined by x. Similarly, $w_1 = g_2(L)f_2(L)x$ is uniquely determined by x. □

Theorem 14.3. Let V be a vector space over a field F, and let $L : V \to V$ be a linear map. Suppose $f(t) \in F[t]$ satisfies $f(L) = 0$. Suppose that $f(t) = f_1(t)f_2(t)\cdots f_r(t)$ where $f_i(t) \in F[t]$ and $\gcd(f_i, f_j) = 1$ if $i \neq j$. Let $W_i = \ker f_i(L)$ for $1 \leq i \leq r$. Then $V = W_1 \oplus W_2 \oplus \cdots \oplus W_r$.

Proof. We prove the theorem by induction on r, the case $r = 1$ being trivial. We have that $\gcd((f_1, \cdots, f_r)) = 1$ since $\gcd((f_1, f_i)) = 1$ for $2 \leq i \leq r$. Theorem 14.2 thus implies $V = W_1 \oplus W$, where $W = \ker f_2(L)f_3(L)\cdots f_r(L)$. $f_j(L) : W \to W$ for $2 \leq j \leq r$. By induction on r, we have that $W = U_2 \oplus \cdots \oplus U_r$, where for $j \geq 2$, U_j is the kernel of $f_j(L) : W \to W$. Thus $V = W_1 \oplus U_2 \oplus \cdots \oplus U_r$.

We will prove that $W_j = U_j$ for $j \geq 2$, which will establish the theorem. We have that $U_j \subset W_j$. Let $v \in W_j$, with $j \geq 2$. Then $v \in W_j \cap W = U_j$. □

Corollary 14.4. Suppose V is a vector space over a field F. Let $L : V \to V$ be a linear map. Suppose that a monic polynomial $f(t) \in F[t]$ satisfies $f(L) = 0$, and $f(t)$ splits into linear factors in $F[t]$ as
\[f(t) = (t - \alpha_1)^{m_1}\cdots(t - \alpha_r)^{m_r}\]
where $\alpha_1, \ldots, \alpha_r \in F$ are distinct. Let $W_i = \ker (L - \alpha_i)^{m_i}$. Then
\[V = W_1 \oplus W_2 \oplus \cdots \oplus W_r.\]
As an application of this Corollary, we consider the following example
Let $A(C)$ be the set of analytic functions on C, and $D = \frac{d}{dz}$. Suppose that $n \in \mathbb{N}$ and $a_0, a_1, \ldots, a_{n-1} \in C$. Let
$$V = \{ f \in A(C) \mid D^n f + a_{n-1}D^{n-1} f + \cdots + a_0 f = 0 \}.$$
Then V is a complex vector space. Let
$$p(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0 \in \mathbb{C}[t].$$
Suppose that $p(t)$ factors as
$$p(t) = (t - \alpha_1)^{m_1} \cdots (t - \alpha_r)^{m_r}$$
with $\alpha_1, \ldots, \alpha_r \in C$ distinct. Then by Corollary 14.4, we have that
$$V = \bigoplus_{i=1}^{r} W_i$$
where
$$W_i = \{ f \in A(C) \mid (D - \alpha_i I)^{m_i} f = 0 \}.$$
Now from the following Lemma, we are able to construct a basis of V. In fact, we see that
$$\{ e^{\alpha_1 x}, xe^{\alpha_1 x}, \ldots, x^{m_1-1}e^{\alpha_1 x}, e^{\alpha_2 x}, xe^{\alpha_2 x}, \ldots, x^{m_r-1}e^{\alpha_r x} \}$$
is a basis of V.

Lemma 14.5. Let $\alpha \in C$, and $m \in \mathbb{N}$. Let
$$W = \{ f \in A(C) \mid (D - \alpha I)^m f = 0 \}.$$
Then
$$\{ e^{\alpha x}, xe^{\alpha x}, \ldots, x^{m-1}e^{\alpha x} \}$$
is a basis of W.

Proof. It can be verified by induction on m that
$$(D - \alpha I)^m f = e^{\alpha x}D^m(e^{-\alpha x} f)$$
for $f \in A(C)$. Thus $f \in W$ if and only if $D^m(e^{-\alpha x} f) = 0$. The functions whose m-th derivatives are zero are the polynomials of degree $\leq m-1$. Hence the space of solutions to $(D - \alpha I^m) f = 0$ is the space generated by $\{ e^{\alpha x}, xe^{\alpha x}, \ldots, x^{m-1}e^{\alpha x} \}$. It remains to verify that these functions are linearly independent. Suppose that there exist $c_i \in \mathbb{C}$ such that
$$c_0e^{\alpha s} + c_1se^{\alpha s} + \cdots + c_{m-1}s^{m-1}e^{\alpha s} = 0$$
for all $s \in \mathbb{C}$. Let
$$q(t) = c_0 + c_1t + \cdots + c_{m-1}t^{m-1} \in \mathbb{C}[t].$$
We have $q(s)e^{\alpha s} = 0$ for all $s \in \mathbb{C}$. But $e^{\alpha s} \neq 0$ for all $s \in \mathbb{C}$, so $q(s) = 0$ for all $s \in \mathbb{C}$. Since \mathbb{C} is infinite, and the equation $q(t) = 0$ has at most a finite number of roots if $q(t) \neq 0$, we must have $q(t) = 0$. Thus $c_i = 0$ for $0 \leq i \leq m - 1$. \hfill \Box
15. Cyclic Vectors

Definition 15.1. Let V be a finite dimensional vector space over a field F, and let $L : V \to V$ be a linear map. V is called L-cyclic if there exists $v \in V$ such that

$$V = F[L]v = \{ f(L)v \mid f(t) \in F[t] \}.$$

We will say that the vector v is L-cyclic.

Lemma 15.2. Let V be a finite dimensional vector space over a field F, and let $L : V \to V$ be a linear map. Suppose that V is L-cyclic and $v \in V$ is an L-cyclic vector. Let d be the degree of the minimal polynomial $m_L(t) \in F[t]$ of L. Then $\{ v, Lv, \ldots, L^{d-1}v \}$ is a basis of V.

Proof. Suppose $w \in V$. Then $w = f(L)v$ for some $f(t) \in F[t]$. We have $f(t) = p(t)m_L(t) + r(t)$ with $p(t), r(t) \in F[t]$ and $\deg r(t) < d$. Thus $w = f(L)v = r(L)v \in \text{Span}\{v, Lv, \ldots, L^{d-1}v\}$. This shows that $V = \text{Span}\{v, L v, \ldots, L^{d-1}v\}$. Suppose that there is a dependence relation

$$c_0v + c_1Lv + \cdots + c_sL^s v = 0$$

where $0 \leq s \leq d - 1$, all $c_i \in F$ and $c_s \neq 0$. Let $f(t) = c_0 + c_1t + \cdots + c_st^s \in F[t]$. Let $w \in V$. Then there exist $g(t) \in F[t]$ such that $w = g(L)v$.

$$f(L)w = f(L)g(L)v = g(L)f(L)v = g(L)0 = 0.$$

Thus the operator $f(L) = 0$, which implies that $m_L(t)$ divides $f(t)$, which is impossible since $f(t)$ is nonzero and has degree less than d. Thus $\{ v, L v, \ldots, L^{d-1}v \}$ are linearly independent, and a basis of V. □

With the hypotheses of Lemma 15.2, express $m_L(t) = a_0 + a_1t + \cdots + a_{d-1}t^{d-1} + t^d$ with the $a_i \in F$. Let $\beta = \{ v, L v, \ldots, L^{d-1}v \}$, a basis of V. Then

$$M_\beta^\beta(L) = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & -a_1 \\ 0 & 1 & 0 & 0 & -a_2 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & -a_{d-2} \\ 0 & 0 & 0 & 1 & -a_{d-1} \end{pmatrix}.$$

16. Nilpotent Operators

Suppose that V is a vector space, and $L : V \to V$ is a linear map. We will say that L is nilpotent if there exists a positive integer r such that $L^r = 0$. If r is the smallest positive integer such that $L^r = 0$, then $m_L(t) = t^r$.

Theorem 16.1. Let V be a finite dimensional vector space over a field F, and let $L : V \to V$ be a nilpotent linear map. Then V is a direct sum of L-invariant L-cyclic subspaces.

Proof. We prove the theorem by induction on $\dim V$. If V has dimension 1, then V is L-cyclic. Assume that the theorem is true for vector spaces of dimension less than $s = \dim V$.

Let r be the smallest integer such that $L^r = 0$, so that the minimal polynomial of L is $m_L(t) = t^r$. Since $L^{r-1} \neq 0$, there exists $w \in V$ such that $L^{r-1}w \neq 0$. Let $v = L^{r-1}w$. $Lv = 0$ so Kernel $L \neq 0$.

$$\dim L(V) + \dim \text{Kernel } L = \dim V$$
implies $\dim L(V) < \dim V$.

By induction on $s = \dim V$, $L(V)$ is a direct sum of L-invariant subspaces which are L-cyclic, say

$$L(V) = W_1 \bigoplus \cdots \bigoplus W_m.$$

Let $w_i \in W_i$ be an $L|W_i$-cyclic vector, so that if r_i is the degree of the minimal polynomial $p_{L_i}(t)$, then W_i has a basis $\{w_i, Lw_i, \ldots, L^{r_i-1}w_i\}$ by Lemma 15.2. Since $L|W_i$ is nilpotent, $m_{L_i|W_i}(t) = t^{r_i}$. Let $v_i \in V$ be such that $Lv_i = w_i$.

Let V_i be the cyclic subspace $F[L]v_i$ of V. $L^{r_i+1}v_i = L^{r_i}w_i = 0$ implies that $\{v_i, Lv_i, \ldots, L^{r_i}v_i\}$ spans V_i. Suppose that

$$d_0v_i + d_1Lv_i + \cdots + d_{r_i}L^{r_i}v_i = 0$$

with $d_0, \ldots, d_{r_i} \in F$. Then

$$0 = L(0) = L(d_0v_i + d_1Lv_i + \cdots + d_{r_i}L^{r_i}v_i) = d_0Lv_i + \cdots + d_{r_i-1}L^{r_i-1}v_i+ d_{r_i}L^{r_i}v_i = d_0w_i + \cdots + d_{r_i-1}L^{r_i-1}w_i.$$

Thus $d_0 = \cdots = d_{r_i-1} = 0$, since $\{w_i, \ldots, L^{r_i-1}w_i\}$ is a basis of W_i. Now since $L^{r_i}v_i = L^{r_i-1}w_i \neq 0$, we have $d_{r_i} = 0$. Thus $\{v_i, Lv_i, \ldots, L^{r_i}v_i\}$ are linearly independent, and are thus a basis of V_i.

We will prove that the subspace $V' = V_1 + \cdots + V_m$ of V is a direct sum. We have to prove that if

$$(11) \quad 0 = u_1 + \cdots + u_m$$

with $u_i \in V_i$, then $u_i = 0$ for all i. Since $u_i \in V_i$, we have an expression $u_i = f_i(L)v_i$ where $f_i(t) \in F[t]$ is a polynomial. Thus (11) becomes

$$(12) \quad f_1(L)v_1 + \cdots + f_m(L)v_m = 0.$$

Apply L to (12), and recall that $Lf_i(L) = f_i(L)L$, to get

$$f_1(L)w_1 + \cdots + f_m(L)w_m = 0.$$

Now $W_1 + \cdots + W_m$ is a direct sum decomposition of $L(V)$ by L-invariant subspaces, so $f_i(L)w_i = 0$ (for all i with $1 \leq i \leq m$) which implies that $f_i(L)|(W_i) = 0$, since W_i is w_i-cyclic. Thus $m_{L_i|W_i}(t) = t^{r_i}$ divides $f_i(t)$. In particular, t divides $f_i(t)$ in $F[t]$. Write $f_i(t) = g_i(t)t$ for some polynomial $g_i(t)$. Then $f_i(L) = g_i(L)L$. (12) implies

$$g_1(L)w_1 + \cdots + g_m(L)w_m = 0.$$

Thus $g_i(L)w_i = 0$ for all i, since $L(V)$ is the direct sum of the W_i. This implies that t^{r_i} divides $g_i(t)$ in $F[t]$ so that t^{r_i+1} divides $f_i(t)$ which implies that $u_i = f_i(L)v_i = 0$. Thus V' is the direct sum $V' = V_1 \bigoplus \cdots \bigoplus V_m$.

An element of $L(V)$ is of the form

$$f_1(L)w_1 + \cdots + f_m(L)w_m = f_1(L)Lv_1 + \cdots + f_m(L)Lv_m = L(f_1(L)v_1 + \cdots + f_m(L)v_m)$$

for some polynomials $f_i(t) \in F[t]$. Thus $L(V') = L(V)$. Now let $v, v' \in V$. $Lv = Lv'$ for some $v' \in V'$. Then $L(v - v') = 0$. Thus $v = v' + (v - v') \in V' + \text{Kernel } L$. We conclude that $V = V' + \text{kernel } L$ (which may not be a direct sum).

Let $\beta' = \{L^iv_1 \mid 1 \leq i \leq m, 1 \leq j \leq r_i\}$ be the basis we have constructed of V'. We extend β' to a basis of V by using elements of kernel L, to get a basis $\beta = \{\beta', z_1, \ldots, z_e\}$ of V where $z_1, \ldots, z_e \in \text{kernel } L$. Each z_j satisfies $Lz_j = 0$, so z_j is an eigenvector for L.

and the one dimensional space generated by \(z_j \) is \(L \)-invariant and cyclic. Let this subspace be \(Z_j \). We have

\[
V = V' \bigoplus Z_1 \cdots \bigoplus Z_e = V_1 \bigoplus \cdots \bigoplus V_m \bigoplus Z_1 \cdots \bigoplus Z_e
\]

expressing \(V \) as a direct sum of \(L \)-cyclic subspaces.

\[
\square
\]

17. JORDAN FORM

Definition 17.1. Suppose that \(V \) is a finite dimensional vector space over a field \(F \), and \(L : V \to V \) is a linear map. A basis \(\beta \) of \(V \) is a Jordan basis for \(L \) if the matrix \(M^\beta_\beta(L) \) is a block matrix

\[
J = M^\beta_\beta(L) = \begin{pmatrix}
J_1 & 0 & \cdots & 0 \\
0 & J_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J_m
\end{pmatrix},
\]

where each \(J_i \) is a Jordan block; that is a matrix of the form

\[
J_i = \begin{pmatrix}
\alpha_i & 1 & 0 & \cdots & 0 & 0 \\
0 & \alpha_i & 1 & \cdots & 0 & 0 \\
0 & 0 & \alpha_i & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \alpha_i & 1 \\
0 & 0 & 0 & \cdots & 0 & \alpha_i
\end{pmatrix}
\]

for some \(\alpha_i \in F \).

A matrix of the form \(J \) is called a Jordan form.

Theorem 17.2. Suppose that \(V \) is a finite dimensional vector space over a field \(F \), and \(L : V \to V \) is a linear map. Suppose that the minimal polynomial \(m_L(t) \) splits into linear factors in \(F[t] \). Then \(V \) has a Jordan basis for \(L \).

Proof. By assumption, we have a factorization \(m_L(t) = (t - \alpha_1)^{a_1} \cdots (t - \alpha_s)^{a_s} \) with \(\alpha_1, \ldots, \alpha_s \in F \) distinct. Let

\[
V_i = \{ v \in V \mid (L - \alpha_iI)^{a_i}v = 0 \}
\]

for \(1 \leq i \leq s \). We proved in Lemma 14.1 and Corollary 14.4 that \(V_i \) are \(L \)-invariant subspaces of \(V \) and \(V = V_1 \bigoplus \cdots \bigoplus V_s \). It thus suffices to prove the theorem in the case that there exists \(\alpha \in F \) and \(r \in \mathbb{N} \) such that \((L - \alpha I)^r = 0 \). In this case we apply Theorem 16.1 to the nilpotent operator \(T = L - \alpha I \), to show that \(V \) is a direct sum of \(T \)-cyclic subspaces. Since a \(T \)-invariant subspace is \(L \)-invariant, it suffices to prove the theorem in the case that \(T \) is nilpotent, and \(V \) is \(T \)-cyclic. Let \(v \) be a \(T \)-cyclic vector. There exists a positive integer \(r \) such that the minimal polynomial of \(T \) is \(m_T(t) = t^r \), and by Lemma 15.2, \(\{ T^{-1}v, \ldots, T^rv, v \} \) is a basis of \(V \). Recalling that \(T = L - \alpha I \), we have

\[
L(L - \alpha I)^{r-1}v = \alpha(L - \alpha I)^{r-1}v \\
L(L - \alpha I)^{r-2}v = (L - \alpha I)^{r-1}v + \alpha(L - \alpha I)^{r-2}v \\
\vdots \\
L^r v = (L - \alpha)^r v + \alpha v.
\]
Thus the matrix of L with respect to the basis β is the Jordan block

$$M_\beta^\beta(L) = \begin{pmatrix} \alpha & 1 & 0 & \cdots & 0 & 0 \\ 0 & \alpha & 1 & \cdots & 0 & 0 \\ 0 & 0 & \alpha & \cdots & 0 & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 1 \\ 0 & 0 & 0 & \cdots & 0 & \alpha \end{pmatrix}.$$

□

The proof of the following theorem reduces the calculation of the Jordan form of an operator L to a straightforward calculation, if we are able to determine the eigenvalues (roots of the characteristic equation) of L.

Theorem 17.3. Suppose that V is a finite dimensional vector space over a field F, and $L : V \to V$ is a linear map. Suppose that the minimal polynomial $m_L(t)$ splits into linear factors in $F[t]$. For $\alpha \in F$ and $i \in \mathbb{N}$, define

$$s_i(\alpha) = \dim \text{Kernel} \left(L - \alpha I \right)^i.$$

Then the Jordan form of L is uniquely determined, up to permutation of Jordan blocks, by the $s_i(\alpha)$.

In particular, the Jordan Form of L is uniquely determined up to permutation of Jordan blocks.

Proof. Suppose that $\alpha \in F$. Let $s_i = s_i(\alpha)$ for $1 \leq i \leq n = \dim V$. Suppose that β is a Jordan basis of V. Let

$$A = M_\beta^\beta(L) = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_s \end{pmatrix}$$

where the

$$J_i = \begin{pmatrix} \alpha_i & 1 & 0 & \cdots & 0 \\ 0 & \alpha_i & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_i \end{pmatrix}$$

are Jordan blocks. Suppose that J_i has size n_i for $1 \leq i \leq s$. We have that

$$\dim \text{Kernel} \left(L - \alpha I \right)^i = \dim \text{Kernel} \left(L M_\beta^\beta(L - \alpha I)^i \right) = \dim \text{Kernel} \left(L (A - \alpha I_n)^i \right)$$

where I_n is the $n \times n$ identity matrix and $L M_\beta^\beta(L - \alpha I)^i$ is the associated linear map from F^n to F^n. We have that

$$(A - \alpha I_n)^i = \begin{pmatrix} (J_1 - \alpha I_{n_1})^i & 0 & \cdots & 0 \\ 0 & (J_2 - \alpha I_{n_2})^i & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & (J_s - \alpha I_{n_s})^i \end{pmatrix}.$$
Now if \(\alpha_j \neq \alpha \), then
\[
(J_j - \alpha I_{n_j})^i = \begin{pmatrix}
(\alpha_j - \alpha)^i & * & \cdots & * \\
0 & (\alpha_j - \alpha)^i & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
0 & 0 & 0 & (\alpha_j - \alpha)^i
\end{pmatrix},
\]
and
\[
(J_j - \alpha_j I_{n_j})^i = \begin{pmatrix}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
for \(1 \leq i \leq n_j - 1 \), where the 1 in the first row occurs in the \(i + 1 \)-st column. We also have that \((J_j - \alpha_j I_{n_j})^n_j = 0\). We have
\[
\dim \text{ Kernel } L((J_j - \alpha I_{n_j})^i) = \begin{cases}
0 & \text{if } \alpha_j \neq \alpha \\
\min\{i, n_j\} & \text{if } \alpha_j = \alpha.
\end{cases}
\]
Let \(r_j \) be the number of Jordan blocks \(J_j \) of size \(n_j = i \) and with \(\alpha_j = \alpha \). Let
\[
\begin{align*}
s_1 &= r_1 + \cdots + r_n \\
&\vdots \\
s_i &= r_1 + 2r_2 + 3r_3 + \cdots + i(r_i + \cdots + r_n) \\
&\vdots \\
s_n &= r_1 + 2r_2 + 3r_3 + \cdots + nr_n.
\end{align*}
\]
From the above system we obtain \(r_1 = 2s_1 - s_2, r_i = 2s_i - s_{i+1} - s_{i-1} \) for \(2 \leq i \leq n - 1 \) and \(r_n = s_n - s_{n-1} \). Since the Jordan form of \(L \) is determined up to permutation of the Jordan blocks by the knowledge of the \(r_i = r_i(\alpha) \) for \(\alpha \in F \), and the \(s_i = s_i(\alpha) \) are completely determined by \(L \), the Jordan form of \(L \) is completely determined up to permutation of Jordan blocks.

18. Exercises

Suppose that \(V \) is a finite dimensional vector space over an algebraically closed field \(F \), and \(L : V \to V \) is a linear map.

1. If \(L \) is nilpotent and not the zero map, show that \(L \) is not diagonalizable.
2. Show that \(L \) can be written in the form \(L = D + N \) where \(D : V \to V \) is diagonalizable, \(N : V \to V \) is nilpotent, and \(DN = ND \).
3. Give a formula for the minimal polynomial of \(L \), in terms of its Jordan form.
4. Let \(p_L(t) \) be the characteristic polynomial of \(L \), and suppose that it has a factorization
\[
p_L(t) = \prod_{i=1}^{r} (t - \alpha_i)^{m_i}
\]
where \(\alpha_1, \ldots, \alpha_r \) are distinct. Let \(f(t) \) be a polynomial. Express the characteristic polynomial \(p_{f(t)}(t) \) as a product of factors of degree 1.
19. Inner Products

Let \(\overline{z} \) denote complex conjugation, for \(z \in \mathbb{C} \). \(z \in \mathbb{R} \) if and only if \(\overline{z} = z \).

Suppose that \(V \) is a vector space over \(F \), where \(F = \mathbb{R} \) or \(F = \mathbb{C} \). An inner product on \(V \) is a (respectively, real or complex) valued function on \(V \times V \) such that for \(v_1, v_2, w \in V \) and \(\alpha_1 \in F \)

1. \(< v_1 + v_2, w > = < v_1, w > + < v_2, w > \),
2. \(< \alpha_1 v_1, w > = \alpha_1 < v_1, w_1 > \),
3. \(< v, w > = \overline{< w, v >} \),
4. \(< w, w > \geq 0 \) and \(< w, w > = 0 \) if and only if \(w = 0 \).

An inner product space is a vector space with an inner product. A complex inner product is often called an Hermitian product.

A real inner product is a positive definite, symmetric bilinear form. However, an Hermitian inner product is not even a bilinear form. In spite of this difference, the theory for real and complex inner products is very similar.

From now on in this section, suppose that \(V \) is an inner product space, with an inner product \(< , > \).

For \(v \in V \), we define the norm of \(v \) by
\[
||v|| = \sqrt{< v, v >}.
\]

From the definition of an inner product, we obtain the polarization identities. If \(V \) is a real inner product space, then for \(v, w \in V \), we have
\[
< v, w > = \frac{1}{4} ||v + w||^2 - \frac{1}{4} ||v - w||^2.
\]
If \(V \) is an Hermitian inner product space, then for \(v, w \in V \), we have
\[
< v, w > = \frac{1}{4} ||v + w||^2 - \frac{1}{4} ||v - w||^2 + i \frac{1}{4} ||v + iw||^2 - i \frac{1}{4} ||v - iw||^2.
\]

A property of inner products that we will use repeatedly is the fact that if \(x, y \in V \) and \(< v, x > = < v, y > \) for all \(v \in V \), then \(x = y \).

We say that vectors \(v, w \in V \) are orthogonal or perpendicular if \(< v, w > = 0 \). Suppose that \(S \subset V \) is a subset. Define
\[
S^\perp = \{ v \in V | < v, w > = 0 \text{ for all } w \in S \}.
\]

Lemma 19.1. Suppose that \(S \) is a subset of \(V \). Then
1. \(S^\perp \) is a subspace of \(V \).
2. If \(U \) is the subspace \(\text{Span}(S) \) of \(V \), then \(U^\perp = S^\perp \).

A set of nonzero vectors \(\{v_1, \ldots, v_r\} \) in \(V \) are called orthogonal if \(< v_i, v_j > = 0 \) whenever \(i \neq j \).

Lemma 19.2. Suppose that \(\{v_1, \ldots, v_r\} \) are nonzero orthogonal vectors in \(V \). Then \(v_1, \ldots, v_r \) are linearly independent.

A set of vectors \(\{u_1, \ldots, u_r\} \) in \(V \) are called orthonormal if \(< u_i, u_j > = 0 \) if \(i \neq j \) and \(||u_i|| = 1 \) for all \(i \).

Lemma 19.3. Suppose that \(\{u_1, \ldots, u_r\} \) are orthonormal vectors in \(V \). Then \(u_1, \ldots, u_r \) are linearly independent.

A basis of \(V \) consisting of orthonormal vectors is called an orthonormal basis.
Lemma 19.4. Let \(\{v_1, \ldots, v_s\} \) be a set of nonzero orthogonal vectors in \(V \), and \(v \in V \). Let
\[
c_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}.
\]
1. We have that
\[
v - \sum_{i=1}^{s} c_i v_i \in \text{Span}\{v_1, \ldots, v_s\}^\perp.
\]
2. Let \(a_1, \ldots, a_s \in F \). Then
\[
\|v - \sum_{i=1}^{s} c_i v_i\| \leq \|v - \sum_{i=1}^{s} a_i v_i\|
\]
with equality if and only if \(a_i = c_i \) for all \(i \). Thus \(c_1 v_1 + \cdots + c_s v_s \) gives the best approximation to \(v \) as a linear combination of \(v_1, \ldots, v_s \).

Proof. We first prove 1. For \(1 \leq j \leq s \), we have
\[
\langle v - \sum_{i=1}^{s} c_i v_i, v_j \rangle = \langle v, v_j \rangle - \sum_{i=1}^{s} c_i \langle v_i, v_j \rangle = \langle v, v_j \rangle - c_j \langle v_j, v_j \rangle = 0.
\]
We now prove 2. We have that
\[
\|v - \sum_{i=1}^{s} a_i v_i\|^2 = \|v - \sum_{i=1}^{s} c_i v_i + \sum_{i=1}^{s} (c_i - a_i) v_i\|^2 = \|v - \sum_{i=1}^{s} c_i v_i\|^2 + \|\sum_{i=1}^{s} (c_i - a_i) v_i\|^2
\]
since \(v - \sum_{i=1}^{s} c_i v_i \in \text{Span}\{v_1, \ldots, v_s\}^\perp \).

Theorem 19.5. (Gram Schmidt) Suppose that \(V \) is a finite dimensional inner product space. Suppose that \(\{u_1, \ldots, u_r\} \) is a set of orthonormal vectors in \(V \). Then \(\{u_1, \ldots, u_r\} \) can be extended to an orthonormal basis \(\{u_1, \ldots, u_r, u_{r+1}, \ldots, u_n\} \) of \(V \).

Proof. First extend \(u_1, \ldots, u_r \) to a basis \(\{u_1, \ldots, u_r, v_{r+1}, \ldots, v_n\} \) of \(V \). Inductively define
\[
w_i = v_i - \sum_{j=0}^{i-1} \langle v_i, u_j \rangle u_j
\]
and
\[
u_i = \frac{1}{\|w_i\|} w_i
\]
for \(r + 1 \leq i \leq n \).

Let \(V_r = \text{Span}\{u_1, \ldots, u_r\} \) and \(V_i = \text{Span}\{u_1, \ldots, u_r, v_{r+1}, \ldots, v_i\} \) for \(r + 1 \leq i \leq n \). Then \(V_i = \text{Span}\{u_1, \ldots, u_i\} \) for \(r + 1 \leq i \leq n \). By Lemma 19.4, we have that \(u_i \in (V^{i-1})^\perp \) for \(r + 1 \leq i \leq n \). Thus \(\{u_1, \ldots, u_n\} \) are an orthonormal set of vectors which form a basis of \(V \).

Corollary 19.6. Suppose that \(W \) is a subspace of \(V \). Then \(V = W \oplus W^\perp \).

Proof. First construct, using Gram Schmidt, an orthonormal basis \(\{w_1, \ldots, w_s\} \) of \(W \). Now apply Gram Schmidt again to extend this to an orthonormal basis \(\{w_1, \ldots, w_s, u_1, \ldots, u_r\} \) of \(V \). Let \(U = \text{Span}\{u_1, \ldots, u_r\} \). We have that \(V = W \oplus U \). It remains to show that \(U = W^\perp \). Let \(x \in U \). Then \(x = \sum_{i=1}^{r} c_i u_i \) for some \(c_i \in F \). For all \(j \),
\[
\langle x, w_j \rangle = \sum_{i=1}^{r} c_i \langle u_i, w_j \rangle = 0.
\]
Thus $x \in W^\perp$ and $U \subset W^\perp$.

Suppose $x \in W^\perp$. Expand $x = \sum_{i=1}^r c_i u_i + \sum_{j=1}^s d_j w_j$ for some $c_i, d_j \in F$. For all k,

$$0 = <x, w_k> = \sum_{i=1}^r c_i <u_i, w_k> + \sum_{j=1}^s d_j <w_j, w_k> = d_k.$$

Thus $x \in U$ and $W^\perp \subset U$. □

We now can give another proof of Theorem 7.5, when $F = \mathbb{R}$.

Corollary 19.7. Suppose that $A \in M_{m,n}(\mathbb{R})$. Then the row rank of A is equal to the column rank of A.

Suppose that V, W are inner product spaces (both over \mathbb{R} or over \mathbb{C}), with inner products $<,>$ and $[,]$ respectively. We will say that a linear map $\varphi : V \to W$ is a map of inner product spaces if $<v, w> = [\varphi(v), \varphi(w)]$ for all $v, w \in V$.

Corollary 19.8. Suppose that V is a real inner product space of dimension n. Consider \mathbb{R}^n as an inner product space with the dot product. Then there is an isomorphism $\varphi : V \to \mathbb{R}^n$ of inner product spaces.

Corollary 19.9. Suppose that V is an Hermitian inner product space of dimension n. Consider \mathbb{C}^n as an inner product space with the standard Hermitian product, $[v, w] = v^\dagger w$ for $v, w \in V$. Then there is an isomorphism $\varphi : V \to \mathbb{C}^n$ of inner product spaces.

Proof. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of V. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{C}^n. We can thus define a linear map $\varphi : V \to \mathbb{C}^n$ by $\varphi(v) = a_1 e_1 + \cdots + a_n e_n$ if $v = a_1 v_1 + \cdots + a_n v_n$ with $a_1, \ldots, a_n \in \mathbb{C}$. Since $\{e_1, \ldots, e_n\}$ is a basis of \mathbb{C}^n, φ is an isomorphism. We have $<v_i, v_j> = \delta_{ij}$ and $[\varphi(v_i), \varphi(v_j)] = [e_i, e_j] = \delta_{ij}$ for $1 \leq i, j \leq n$.

Suppose that $v = a_1 v_1 + \cdots + a_n v_n \in V$ and $w = b_1 v_1 + \cdots + b_n v_n \in V$. Then

$$<v, w> = \sum_{i,j=1}^n a_i b_j \delta_{ij} = \sum_{i=1}^n a_i b_i.$$

We also calculate

$$[\varphi(v), \varphi(w)] = \left[\sum_{i=1}^n a_i e_i, \sum_{j=1}^n b_j e_j \right] = \sum_{i,j=1}^n a_i b_j \delta_{ij} = \sum_{i=1}^n a_i b_i.$$

Thus $<v, w> = [\varphi(v), \varphi(w)]$ for all $v, w \in V$. □

20. Symmetric, Hermitian, Orthogonal and Unitary Operators

Throughout this section, assume that V is a finite dimensional inner product space. Let $<,>$ be the inner product. Suppose that $L : V \to V$ is a linear map.

Recall that the dual space of V is the vector space $V^* = L_F(V, K)$, and $\dim V^* = \dim V$.

Lemma 20.1. Suppose that $z \in V$. Then the map $\varphi_z : V \to F$ defined by $\varphi_z(v) = <v, z>$ is a linear map. Suppose that $\psi \in V^*$. Then there exists a unique $z \in V$ such that $\psi = \varphi_z$.

Proof. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of V with dual basis $\{v_1^*, \ldots, v_n^*\}$. Suppose that $\psi \in V^*$. Then there exist (unique) $c_1, \ldots, c_n \in F$ such that $\psi = c_1 v_1^* + \cdots + c_n v_n^*$. Let $z = c_1 v_1 + \cdots + c_n v_n \in V$. We have that $\psi(v_i) = c_i$ for $1 \leq i \leq n$.

$$\varphi_z(v_i) = <v_i, z> = c_1 <v_1, v_1> + \cdots + c_n <v_n, v_n> = c_i = \psi(v_i)$$
for $1 \leq i \leq n$. Since $\{v_1, \ldots, v_n\}$ is a basis of V, we have that $\psi = \varphi$. Suppose that $w \in V$ and $\varphi_w = \psi$. Expand $v = d_1v_1 + \cdots + d_nv_n$. We have that
\[c_i = \varphi_w(v_i) = \bar{d}_i \]
for $1 \leq i \leq n$. Thus $d_i = c_i$ for $1 \leq i \leq n$, and $w = z$. \hfill \Box

Theorem 20.2. There exists a unique linear map $L^* : V \rightarrow V$ such that $<Lv, w> = <v, L^*w>$ for all $v, w \in V$.

Proof. For fixed $w \in V$, the map $\psi_w : V \rightarrow F$ defined by $\psi_w(v) = <L(v), w>$ is a linear map. Hence $\psi_w \in V^*$. By Lemma 20.1, there exists a unique vector $z_w \in V$ such that $\psi_w = \varphi_{z_w}$ (where $\varphi_{z_w}(v) = <v, z_w>$ for $v \in V$). Thus we have a function $L^* : V \rightarrow V$ defined by $L^*(w) = z_w$ for $w \in V$.

We will now verify that L^* is linear. Suppose $w_1, w_2 \in V$. For $v \in V$,
\[<v, L^*(w_1 + w_2)\times\langle v, L^*(w_1) + L^*(w_2) \rangle. \]

Since this identity holds for all $v \in V$, we have that $L^*(w_1 + w_2) = L^*(w_1) + L^*(w_2)$.

Suppose $w \in V$ and $c \in F$.
\[<v, L^*(cw)\times\langle v, cL^*(w) \rangle. \]

Since this identity holds for all $v \in V$, we have that $L^*(cw) = cL^*(w)$. Thus L^* is linear.

Now we prove uniqueness. Suppose that $T : V \rightarrow V$ is a linear map such that $<L(v), w> = <v, T(w)>$ for all $v, w \in V$. Then for any $w \in W$, $<v, T(w) > = <v, L^*(w) >$ for all $v \in V$. Thus $T(w) = L^*(w)$, and L^* is unique. \hfill \Box

L^* is called the adjoint of L.

Definition 20.3. L is called self adjoint if $L^* = L$.

If V is a real inner product space, a self adjoint operator is called symmetric, and we sometimes write $L^* = L^t$. If V is an Hermitian inner product space, a self adjoint operator is called Hermitian.

Lemma 20.4. Let $V = \mathbb{R}^n$ with the standard inner product. Suppose that $L = L_A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ for some $A \in M_{nn}(\mathbb{R})$. Then $L^* = L_{A^t}$.

Lemma 20.5. Let $V = \mathbb{C}^n$ with the standard Hermitian inner product. Suppose that $L = L_A : \mathbb{C}^n \rightarrow \mathbb{C}^n$ for some $A \in M_{nn}(\mathbb{C})$. Then $L^* = L_{A^t}^\dagger$.

Proof. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{C}^n. Let $B \in M_{n,n}(\mathbb{C})$ be the unique matrix such that $L^* = L_B$. Write $A = (a_{ij})$ and $B = (b_{ij})$. We have that $e_i^tBe_j = b_{ij}$. For $1 \leq i, j \leq n$, we have
\[<Le_i, e_j> = <e_i, L^*e_j> = <e_i, Be_j> = e_i^t\overline{Be_j} = e_i\overline{B}e_j = \overline{b}_{ij}. \]

We also calculate
\[<Le_i, e_j> = <Ae_i, e_j> = (Ae_i)^t\tau_j = e_i^tA^t\tau_j = \overline{a}_{ji}. \]

Thus $b_{ij} = \overline{a}_{ji}$, and $B = A^\dagger$. \hfill \Box

Lemma 20.6. The following are equivalent:
1. $LL^* = I$.
2. $||Lv|| = ||v||$ for all $v \in V$.
3. $<Lv, Lw> = <v, w>$ for all $v, w \in V$
Proof. Suppose that 1. holds, so that $LL^* = I$. Then L^* is a right inverse of L so that L is invertible with inverse L^*. Thus $L^*L = I$. Suppose that $v \in V$. Then
\[||Lv||^2 = <Lv, Lv> = <v, L^*Lv> = <v, v> = ||v||^2, \]
and thus 2. holds.

Now suppose that 2. holds. Then 3. holds by the appropriate polarization identity (13) or (14).

Finally suppose that 3. holds. For fixed $w \in V$, we have $<v, w> = <Lv, Lw> = <v, L^*Lw>$ for all $v \in V$. Thus $w = L^*Lw$. Since this holds for all $w \in W$, $L^*L = I$, so that L is an isomorphism with $LL^* = I$, and 1. holds. \square

The above Lemma motivates the following definition.

Definition 20.7. $L : V \to V$ is an isometry if $LL^* = I$, where I is the identity map of V.

If V is a real inner product space, then an isometry is called an orthogonal transformation (or real unitary). If V is an Hermitian inner product space, then an isometry is called a unitary transformation.

Lemma 20.8. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of V. Then L is an isometry if and only if $\{Lv_1, \ldots, Lv_n\}$ is an orthonormal basis of V.

Theorem 20.9. If W is an L-invariant subspace of V and $L = L^*$, then W^\perp is an L-invariant subspace of V.

Proof. Let $v \in W^\perp$. For all $w \in W$ we have $<Lv, w> = <v, L^*w> = <v, Lw> = 0$, since $Lw \in W$. Hence $Lv \in W^\perp$. \square

Lemma 20.10. Suppose that V is an Hermitian inner product space and L is Hermitian. Suppose that $v \in V$. Then $<Lv, v> \in \mathbb{R}$.

Proof. We have $<Lv, v> = <v, L^*v> = <v, Lv> = \overline{<Lv, v>}$. Thus $<Lv, v> \in \mathbb{R}$. \square

21. The Spectral Theorem

Lemma 21.1. Let $A \in M_{nn}(\mathbb{R})$ be symmetric. Then A has a real eigenvalue.

Proof. Regarding A as a matrix in $M_{nn}(\mathbb{C})$, we have that A is Hermitian. Now A has a complex eigenvalue λ, with an eigenvector $v \in \mathbb{C}^n$. Let $<,>$ be the standard Hermitian product on \mathbb{C}^n. We have that $A = A^* = \overline{A}$, so $L_A : \mathbb{C}^n \to \mathbb{C}^n$ is Hermitian, by Lemma 20.5. By Lemma 20.10, we then have that $<Av, v> = \lambda <v, v>$ is real. Since $<v, v>$ is real we have that λ is real. \square

Theorem 21.2. Suppose that V is a finite dimensional real vector space with an inner product. Suppose that $L : V \to V$ is a symmetric linear map. Then L has an eigenvector.

Proof. Let $\beta = \{v_1, \ldots, v_n\}$ be an orthonormal basis of V. We have an isomorphism $\Phi : V \to \mathbb{R}^n$ defined by $\Phi(v) = (v)_{\beta}$ for $v \in V$. Let $[\cdot, \cdot]$ be the dot product on \mathbb{R}^n. Let $A = M^\beta(L) \in M_{nn}(\mathbb{R})$. We have
\[<v, w> = [(v)_{\beta}, (w)_{\beta}] \]
for $v, w \in V$. For $v, w \in V$, we calculate
\[<L(v), w> = [(L(v))_{\beta}, (w)_{\beta}] = [A(v)_{\beta}, (w)_{\beta}] = [(v)_{\beta}, A^t(w)_{\beta}] \]
and
\[< L(v), w > = < v, L(w) > = [(v)_\beta, A(w)_\beta]. \]

Since \([(v)_\beta, A^t(w)_\beta] = [(v)_\beta, A(w)_\beta] \) for all \(v, w \in V\), we have that \(A = A^t\). Thus \(A\) has a real eigenvalue \(\lambda\) which necessarily has a real eigenvector \(v\) by Lemma 21.1. Let \(y = \Phi^{-1}(x) \in V\).

\[(L(y))_\beta = A(y)_\beta = Ax = \lambda x = (\lambda y)_\beta.\]

Thus \(L(y) = \lambda y\). Since \(y\) is nonzero, as \(x\) is nonzero, we have that \(y\) is an eigenvector of \(L\). \(\square\)

Theorem 21.3. Suppose that \(V\) is a finite dimensional real vector space with an inner product. Suppose that \(L : V \rightarrow V\) is a symmetric linear map. Then \(V\) has an orthonormal basis consisting of eigenvectors of \(L\).

Proof. We prove the theorem by induction on \(n = \dim V\). By Theorem 21.2 there exists an eigenvector \(v \in V\) for \(L\). Let \(W\) be the one dimensional subspace of \(V\) generated by \(v\). \(W\) is \(L\)-invariant. By Theorem 20.9, \(W^\perp\) is also \(L\)-invariant. We have that \(V \cong W \bigoplus W^\perp\), so \(\dim W^\perp = \dim V - 1\). The restriction of \(L\) to \(W^\perp\) is a symmetric linear map of \(W^\perp\) to itself. By induction on \(n\), there exists an orthonormal basis \(\{u_2, \ldots, u_n\}\) of \(W^\perp\) consisting of eigenvectors of \(L\). Thus \(\{u_1 = \frac{1}{\|v\|}v, u_2, \ldots, u_n\}\) is an orthonormal basis of \(V\) consisting of eigenvectors of \(L\). \(\square\)

Corollary 21.4. Let \(A \in M_{nn}(\mathbb{R})\) be symmetric. Then there exists an orthogonal matrix \(P \in M_{n,n}(\mathbb{R})\) such that \(P^tAP = P^{-1}AP\) is a diagonal matrix.

Proof. \(\mathbb{R}^n\) has an orthonormal basis \(\beta = \{u_1, \ldots, u_n\}\) of eigenvectors of \(L_A : \mathbb{R}^n \rightarrow \mathbb{R}^n\) by Lemma 20.4 and Theorem 21.3. Let \(\lambda_1, \ldots, \lambda_n\) be the respective eigenvalues. Then \(M^\beta(L_A)\) is the diagonal matrix \(D\) with \(\lambda_1, \lambda_2, \ldots, \lambda_n\) as diagonal elements. Let \(\beta^t = \{e_1, \ldots, e_n\}\) be the standard basis of \(\mathbb{R}^n\). Let \(P = M^\beta(I) = (u_1, \ldots, u_n)\). \(P^{-1} = M^{\beta^t}(I)\). \(L_P\) is an isometry by Lemma 20.8, since \(Pe_i = u_i\) for \(1 \leq i \leq n\). Thus \(P\) is orthogonal and \(P^{-1} = P^t\) by Lemmas 20.4 and 20.6.

\[D = M^\beta(L_A) = M^{\beta^t}(I)M^\beta(I)L_AM^\beta(I) = P^{-1}AP = P^tAP. \]

\(\square\)

The proof of Theorem 21.3 also proves the following theorem.

Theorem 21.5. Suppose that \(V\) is a finite dimensional complex vector space with an Hermitian inner product. Suppose that \(L : V \rightarrow V\) is a Hermitian linear map. Then \(V\) has an orthonormal basis consisting of eigenvectors of \(L\). All eigenvalues of \(L\) are real.

Corollary 21.6. Let \(A \in M_{nn}(\mathbb{C})\) be Hermitian \((A = A^t)\). Then there exists a unitary matrix \(U \in M_{n,n}(\mathbb{C})\) such that \(U^tAU = U^{-1}AU\) is a real diagonal matrix.