Turn in on Wed. Feb. 24.

Please read through this assignment to make sure you understand which problems you need to turn in. If in doubt, ask!

Part 0.

Do not turn in:
p. 83, # 3

Do not turn in, but do think about: how many different (but equivalent) ways can you think of (that we’ve seen) to define a (complex) analytic function on an open set G? I’ll get you started: $f : G \to \mathbb{C}$ is analytic if for every $z \in G$, $\lim_{h \to 0} \frac{f(z+h)-f(z)}{h} = f'(z)$ exists and $f'(z)$ is continuous. (As I’m typing this, I can think of two other ways we’ve already seen, and a fourth we should see before you turn in this assignment. Maybe you can think of one I’ve missed.)

Part 1. Selected problems from here will be graded.

p. 83 # 4
p. 87 # 7, 8
p. 96 # 5, 11
p. 100, # 4

A) (adapted from Marsden) i) Let $f : \mathbb{C} \to \mathbb{C}$ be continuous, and analytic on $\mathbb{C} \setminus \mathbb{R}$. Is f entire? (prove or give counterexample)
ii) Let $f : \mathbb{C} \to \mathbb{C}$ be analytic on $\mathbb{C} \setminus \mathbb{R}$. Is f entire? (prove or give counterexample)

B) (adapted from Marsden) Let A be a region, and $u : A \to \mathbb{R}$ be harmonic and nonconstant. Show that u is an open mapping.

** Math culture ***************

A function $f : (\alpha, \beta) \to \mathbb{R}$ is **real analytic** if for every $a \in (\alpha, \beta)$ there is an $\epsilon > 0$ so that for some $\{a_n\}$, $f(x) = \sum_0^\infty a_n (x-a)^n$ for all $x \in (a-\epsilon, a+\epsilon)$ (and the series converges for these values of x). A real analytic function is C^∞. It is NOT true that a C^∞ function must be real analytic. Here’s a classic, and important, example:

$$f(x) = \begin{cases} 0 & x \leq 0 \\ e^{-1/x} & x > 0 \end{cases}$$

(The problem is at 0.)