Math 426 Homework 3

C. Chicone

September 23, 2003

1. Exercise 1.34 p. 26 of the book. Consider a Newtonian particle of mass \(m \) moving under the influence of the potential \(U \). If the position coordinate is denoted by

\[
q = (q_1, \ldots, q_n),
\]

then the equation of motion \((F = ma)\) is given by

\[
m\ddot{q} = -\nabla U(q).
\]

If \(q_0 \) is a strict local minimum of the potential, show that the equilibrium \((\dot{q}, q) = (0, q_0)\) is Lyapunov stable. Hint: Consider the total energy of the particle.

2. Determine the stability of the rest points of the following systems. Formulate properties of the unspecified scalar function \(g \) so that the system has a rest point at the origin which is respectively stable, asymptotically stable, and unstable.

1. \[
\begin{align*}
\dot{x} &= 2xy - x^3, \\
\dot{y} &= -x^2 - y^5.
\end{align*}
\]

2. \[
\begin{align*}
\dot{x} &= y + xy^2 - x^3 + 2xz^4, \\
\dot{y} &= -x - y^3 - 3x^2y + 3yz^4, \\
\dot{z} &= -\frac{5}{2}y^2z^3 - 2x^2z^3 - \frac{1}{2}z^7.
\end{align*}
\]

3. Exercise 1.13 p. 13. Determine the flow of the first order system

\[
\begin{align*}
\dot{x} &= y^2 - x^2, \\
\dot{y} &= -2xy.
\end{align*}
\]
Show that (almost) every orbit lies on a circle. Note that the flow gives rational parameterizations for the circular orbits. Hint: Define $z := x + iy$.