Math 426 Homework 2

C. Chicone

September 4, 2003

1. Construct infinitely many different solutions of the initial value problem

\[\dot{x} = x^{1/3}, \quad x(0) = 0. \]

Why does the Existence and Uniqueness Theorem for differential equations fail to apply in this case?

2. Prove that every solution of the differential equation \(\dot{x} = \sin^2(x) \) exists for all time; that is for every \(t \in (-\infty, \infty) \). What about solutions of \(\dot{x} = x^4/(x^2 + 1) \)?

3. There is a famous story about someone who wrote a thesis about the nice properties of Hölder functions with Hölder constants larger than one. A function \(f \) such that \(|f(x) - f(y)| \leq L|x - y|^\alpha \) for all \(x \) and \(y \), where \(L \geq 0 \) and \(0 \leq \alpha \leq 1 \) are constants, is called a Hölder function with Hölder constant \(\alpha \). Such a function is called Lipschitz (as we know) in case \(\alpha = 1 \). What did the student learn (the hard way) at his thesis defense? That is, why is the class of “Hölder functions” with Hölder constants \(\alpha > 1 \) uninteresting?

4. (1) Suppose that \(\eta : \mathbb{R}^n \to \mathbb{R}^n \) is a Lipschitz function with Lipschitz constant \(\alpha \) and \(0 \leq \alpha < 1 \). Prove that the function \(F : \mathbb{R}^n \to \mathbb{R}^n \) given by \(F(x) = x + \eta(x) \) is bijective. Hint: Use a contraction argument.
(2) Prove that \(F \) is a homeomorphism; that is, \(F \) has a continuous inverse. Hint: Here are some possible approaches. The more abstract approaches are more difficult to execute, but they might teach you something. (a) By quoting a famous theorem, you can conclude that \(F \) has a continuous inverse. What theorem is it? (b) First prove that
F is proper; that is, the inverse image under F of each compact subset of \mathbb{R}^n is compact. Then prove that a continuous bijective proper map on \mathbb{R}^n has a continuous inverse. (c) Prove that the inverse of F, which exists because F is bijective, is Lipschitz and therefore continuous.