Character sums with Beatty sequences on Burgess-type intervals

WILLIAM D. BANKS
Department of Mathematics
University of Missouri
Columbia, MO 65211 USA
bbanks@math.missouri.edu

IGOR E. SHPARLINSKI
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au

September 6, 2011

Abstract

We estimate multiplicative character sums taken on the values of a non-homogeneous Beatty sequence \{⌊αn + β⌋ : n = 1, 2, \ldots \}, where \(α, β \in \mathbb{R}\), and \(α\) is irrational. Our bounds are nontrivial over the same short intervals for which the classical character sum estimates of Burgess have been established.

2000 Mathematics Subject Classification: 11B50, 11L40, 11T24
1 Introduction

For fixed $\alpha, \beta \in \mathbb{R}$, the corresponding non-homogeneous Beatty sequence is the sequence of integers defined by

$$B_{\alpha, \beta} = ([\alpha n + \beta])_{n=1}^\infty,$$

where $[x]$ denotes the greatest integer $\leq x$ for every $x \in \mathbb{R}$. Beatty sequences arise in a variety of apparently unrelated mathematical settings, and because of their versatility, the arithmetic properties of these sequences have been extensively explored in the literature; see, for example, [1, 6, 15, 16, 19, 22] and the references contained therein.

In this paper, we study character sums of the form

$$S_k(\alpha, \beta, \chi; N) = \sum_{n \leq N} \chi([\alpha n + \beta]),$$

where α is irrational, and χ is a non-principal character modulo k. In the special case that $k = p$ is a prime number, the sums $S_p(\alpha, \beta, \chi; N)$ have been previously studied and estimated nontrivially for $N \geq p^{1/3+\varepsilon}$, where $\varepsilon > 0$; see [2, 3].

Here, we show that the approach of [1] (see also [6, 18]), combined with a bound on sums of the form

$$U_k(t, \chi; M_0, M) = \sum_{M_0 < m \leq M} \chi(m) e(tm) \quad (t \in \mathbb{R}),$$

(1)

where $e(x) = \exp(2\pi ix)$ for all $x \in \mathbb{R}$, yields a nontrivial bound on the sums $S_k(\alpha, \beta, \chi; N)$ for all sufficiently large N (see Theorem 4.1 below for a precise statement). In particular, in the case that $k = p$ is prime, we obtain a nontrivial bound for all $N \geq p^{1/4+\varepsilon}$, which extends the results found in [2, 3].

It has recently been shown in [5] that for a prime p the least positive quadratic non-residue modulo p among the terms of a Beatty sequence is of size at most $p^{1/(4e^{1/2})+o(1)}$, a result which is complementary to ours. However, the underlying approach of [5] is very different and cannot be used to bound the sums $S_k(\alpha, \beta, \chi; N)$.

We remark that one can obtain similar results to ours by using bounds for double character sums, such as those given in [13]. The approach of this paper, however, which dates back to [1], seems to be more general and can...
be used to estimate similar sums with many other arithmetic functions $f(m)$ provided that appropriate upper bounds for the sums
\[
V(t, f; M_0, M) = \sum_{M_0 < m \leq M} f(m) e(t m) \quad (t \in \mathbb{R})
\]
are known. Such estimates have been obtained for the characteristic functions of primes and of smooth numbers (see [11] and [12], respectively), as well as for many other functions. Thus, in principle one can obtain asymptotic formulas for the number of primes or smooth numbers in a segment of a Beatty sequence (in the case of smooth numbers, this has been done in [4] by a different method).

Acknowledgements. The authors would like to thank Moubariz Garaev for several fruitful discussions. This work began during a pleasant visit by W. B. to Macquarie University; the support and hospitality of this institution are gratefully acknowledged. During the preparation of this paper, I. S. was supported in part by ARC grant DP0556431.

2 Notation

Throughout the paper, the implied constants in the symbols O and \ll may depend on α and ε but are absolute otherwise. We recall that the notations $U = O(V)$ and $U \ll V$ are equivalent to the assertion that the inequality $|U| \leq c V$ holds for some constant $c > 0$.

We also use the symbol $o(1)$ to denote a function that tends to 0 and depends only on α and ε. It is important to note that our bounds are uniform with respect all of the involved parameters other than α and ε; in particular, our bounds are uniform with respect to β. In particular, the latter means that our bounds also apply to the shifted sums of the form
\[
\sum_{M+1 \leq n \leq M+N} \chi([\alpha n + \beta]) = \sum_{n \leq N} \chi([\alpha n + \alpha M + \beta]),
\]
and these bounds are uniform for all integers M.

In what follows, the letters m and n always denote non-negative integers unless indicated otherwise.

We use $[x]$ and $\{x\}$ to denote the greatest integer $\leq x$ and the fractional part of x, respectively.
Finally, recall that the discrepancy $D(M)$ of a sequence of (not necessarily distinct) real numbers $a_1, \ldots, a_M \in [0, 1)$ is defined by

$$D(M) = \sup_{I \subseteq (0, 1)} \left| \frac{V(I, M)}{M} - |I| \right|, \quad (2)$$

where the supremum is taken all subintervals $I = (c, d)$ of the interval $[0, 1)$, $V(I, M)$ is the number of positive integers $m \leq M$ such that $a_m \in I$, and $|I| = d - c$ is the length of I.

3 Preliminaries

It is well known that for every irrational number α, the sequence of fractional parts $\{\alpha\}, \{2\alpha\}, \{3\alpha\}, \ldots$, is uniformly distributed modulo 1 (for instance, see [17, Example 2.1, Chapter 1]). More precisely, let $D_{\alpha, \beta}(M)$ denote the discrepancy of the sequence $(a_m)_{m=1}^M$, where

$$a_m = \{\alpha m + \beta\} \quad (m = 1, 2, \ldots, M).$$

Then, we have:

Lemma 3.1. Let α be a fixed irrational number. Then, for all $\beta \in \mathbb{R}$ we have

$$D_{\alpha, \beta}(M) \leq 2D_{\alpha, 0}(M) = o(1) \quad (M \to \infty),$$

where the function implied by $o(1)$ depends only on α.

When more information about α is available, the bound of Lemma 3.1 can be made more explicit. For this, we need to recall some familiar notions from the theory of Diophantine approximations.

For an irrational number α, we define its type τ by the relation

$$\tau = \sup\left\{ \vartheta \in \mathbb{R} : \liminf_{q \to \infty, q \in \mathbb{Z}^+} q^\vartheta \|q\alpha\| = 0 \right\}.$$

Using Dirichlet’s approximation theorem, it is easy to see that $\tau \geq 1$ for every irrational number α. The celebrated theorems of Khinchin [14] and of Roth [20] assert that $\tau = 1$ for almost all real numbers α (with respect to Lebesgue measure) and all algebraic irrational numbers α, respectively; see also [7, 21].

The following result is taken from [17, Theorem 3.2, Chapter 2]:
Lemma 3.2. Let α be a fixed irrational number of type $\tau < \infty$. Then, for all $\beta \in \mathbb{R}$ we have

$$D_{\alpha, \beta}(M) \leq M^{-1/\tau + o(1)} \quad (M \to \infty),$$

where the function implied by $o(1)$ depends only on α.

Next, we record the following property of type:

Lemma 3.3. If α is an irrational number of type $\tau < \infty$ then so are α^{-1} and $a\alpha$ for any integer $a \geq 1$.

Finally, we need the following elementary result, which describes the set of values taken by the Beatty sequence $B_{\alpha, \beta}$ in the case that $\alpha > 1$:

Lemma 3.4. Let $\alpha > 1$. An integer m has the form $m = \lfloor \alpha n + \beta \rfloor$ for some integer n if and only if

$$0 < \{\alpha^{-1}(m - \beta + 1)\} \leq \alpha^{-1}. $$

The value of n is determined uniquely by m.

Proof. It is easy to see that an integer m has the form $m = \lfloor \alpha n + \beta \rfloor$ for some integer n if and only if the inequalities

$$\frac{m - \beta}{\alpha} \leq n < \frac{m - \beta + 1}{\alpha}$$

hold, and since $\alpha > 1$ the value of n is determined uniquely. \qed

4 Character Sums

For every real number $\varepsilon > 0$ and integer $k \geq 1$, we put

$$B_\varepsilon(k) = \begin{cases} \frac{k^{1+\varepsilon}}{4} & \text{if } k \text{ is prime;} \\ \frac{k^{1+\varepsilon}}{3} & \text{if } k \text{ is a prime power;} \\ \frac{k^{3/8+\varepsilon}}{8} & \text{otherwise.} \end{cases}$$

(3)

Theorem 4.1. Let $\alpha > 0$ be a fixed irrational number, and let $\varepsilon > 0$ be fixed. Then, uniformly for all $\beta \in \mathbb{R}$, all non-principal multiplicative characters χ modulo k, and all integers $N \geq B_\varepsilon(k)$, we have

$$S_k(\alpha, \beta, \chi; N) = o(N) \quad (k \to \infty),$$

where the function implied by $o(N)$ depends only on α and ε. 5
Proof. We can assume that $\varepsilon < 1/10$, and this implies that $B_\varepsilon(k) \leq k^{2/5}$ in all cases. Observe that it suffices to prove the result in the case that $B_\varepsilon(k) \leq N \leq k^{1/2}$. Indeed, assuming this has been done, for any $N > k^{1/2}$ we put $N_0 = \lfloor k^{9/20} \rfloor$ and $t = \lfloor N/N_0 \rfloor$; then, since $B_\varepsilon(k) \leq N_0 \leq k^{1/2}$ we have

$$S_k(\alpha, \beta, \chi; N) = \sum_{j=0}^{t-1} \sum_{n \leq N_0} \chi([\alpha(n + jN_0) + \beta]) + \sum_{tN_0 < n \leq N} \chi([\alpha n + \beta])$$

$$= \sum_{j=0}^{t-1} S_k(\alpha, \beta + \alpha jN_0, \chi; N_0) + O(N_0)$$

$$= o(tN_0) + O(Nk^{-1/20}) = o(N) \quad (k \to \infty)$$

using the fact that our bounds are uniform with respect to β.

We first treat the case that $\alpha > 1$. Put $\gamma = \alpha^{-1}$, $\delta = \alpha^{-1}(1 - \beta)$, $M_0 = \lfloor \alpha + \beta - 1 \rfloor$, and $M = \lfloor \alpha N + \beta \rfloor$. From Lemma 3.4 we see that

$$S_k(\alpha, \beta, \chi; N) = \sum_{\substack{M_0 < m \leq M \\ 0 < \gamma m + \delta \leq \gamma}} \chi(m) = \sum_{\substack{M_0 < m \leq M \\ \gamma m + \delta \leq \gamma}} \chi(m) \psi(\gamma m + \delta), \quad (4)$$

where $\psi(x)$ is the periodic function with period one for which

$$\psi(x) = \begin{cases} 1 & \text{if } 0 < x \leq \gamma; \\ 0 & \text{if } \gamma < x \leq 1. \end{cases}$$

By a classical result of Vinogradov (see [23, Chapter I, Lemma 12]) it is known that for any Δ such that

$$0 < \Delta < \frac{1}{8} \quad \text{and} \quad \Delta \leq \frac{1}{2} \min\{\gamma, 1 - \gamma\},$$

there is a real-valued function $\psi_\Delta(x)$ with the following properties:

- $\psi_\Delta(x)$ is periodic with period one;
- $0 \leq \psi_\Delta(x) \leq 1$ for all $x \in \mathbb{R}$;
- $\psi_\Delta(x) = \psi(x)$ if $\Delta \leq x \leq \gamma - \Delta$ or $\gamma + \Delta \leq x \leq 1 - \Delta;
• $\psi_\Delta(x)$ can be represented as a Fourier series

$$\psi_\Delta(x) = \gamma + \sum_{j=1}^{\infty} (g_j e(jx) + h_j e(-jx)),$$

where the coefficients g_j, h_j satisfy the uniform bound

$$\max\{|g_j|, |h_j|\} \ll \min\{j^{-1}, j^{-2}\Delta^{-1}\} \quad (j \geq 1).$$

Therefore, from (4) we derive that

$$S_k(\alpha, \beta, \chi; N) = \sum_{M_0 < m \leq M} \chi(m)\psi_\Delta(\gamma m + \delta) + O(V(\mathcal{I}, M_0, M)), \quad (5)$$

where $V(\mathcal{I}, M_0, M)$ denotes the number of integers $M_0 < m \leq M$ such that

$$\{\gamma m + \delta\} \in \mathcal{I} = [0, \Delta) \cup (\gamma - \Delta, \gamma + \Delta) \cup (1 - \Delta, 1).$$

Since $|\mathcal{I}| \ll \Delta$, it follows from Lemma 3.1 and the definition (2) that

$$V(\mathcal{I}, M_0, M) \ll \Delta N + o(N), \quad (6)$$

where the implied function $o(N)$ depends only on α.

To estimate the sum in (5), we insert the Fourier expansion for $\psi_\Delta(\gamma m + \delta)$ and change the order of summation, obtaining

$$\sum_{M_0 < m \leq M} \chi(m)\psi_\Delta(\gamma m + \delta) = \gamma U_k(0, \chi; M_0, M)$$

$$+ \sum_{j=1}^{\infty} g_j e(\delta j) U_k(\gamma j, \chi; M_0, M) + \sum_{j=1}^{\infty} h_j e(-\delta j) U_k(-\gamma j, \chi; M_0, M),$$

where the sums $U_k(t, \chi; M_0, M)$ are defined by (1).

Since $M - M_0 \ll N$, using the well known results of Burgess [8, 9, 10] on bounds for partial Gauss sums, it follows that for any fixed $\varepsilon > 0$ there exists $\eta > 0$ such that

$$U_k(a/k, \chi; M_0, M) \ll N^{1-\eta} \quad (7)$$

holds uniformly for all $N \geq B_\varepsilon(k)$ and all integers a; clearly, we can assume that $\eta \leq 1/10$.

7
Put $r = \lfloor \gamma k \rfloor$. Then, for any integer n, we have
\[e(\gamma n) - e(rn/k) \ll |\gamma n - rn/k| \ll |n|k^{-1}, \]
which implies that
\[U_k(\gamma j, \chi; M_0, M) = U_k(rj/k, \chi; M_0, M) + O(N^2k^{-1}|j|). \]
Using (7) in the case that $|j| \leq kN^{-1-\eta}$ we derive that
\[U_k(\gamma j, \chi; M_0, M) \ll N^{1-\eta}, \]
and for $|j| > kN^{-1-\eta}$ we use the trivial bound
\[|U_k(\gamma j, \chi; M_0, M)| \ll N. \]
Consequently,
\[\sum_{M_0 < m \leq M} \chi(m)\psi_\Delta(\gamma m + \delta) \ll N^{1-\eta} \sum_{j \leq kN^{-1-\eta}} (|g_j| + |h_j|) + N \sum_{j > kN^{-1-\eta}} (|g_j| + |h_j|) \]
\[\ll N^{1-\eta} \sum_{j \leq kN^{-1-\eta}} j^{-1} + N\Delta^{-1} \sum_{j > kN^{-1-\eta}} j^{-2} \]
\[\ll N^{1-\eta} \log k + N^{2+\eta}\Delta^{-1}k^{-1}. \]
Since $N^2 \leq k \leq N^4$, we see that
\[\sum_{M_0 < m \leq M} \chi(m)\psi_\Delta(\gamma m - \delta) \ll N^{1-\eta} \log N + N^\eta\Delta^{-1}. \] \hspace{1cm} (8)

Inserting the bounds (6) and (8) into (5), choosing $\Delta = N^{(\eta-1)/2}$, and taking into account that $0 < \eta \leq 1/10$, we complete the proof in the case that $\alpha > 1$.

If $\alpha < 1$, put $a = \lceil \alpha^{-1} \rceil$ and write
\[S_k(\alpha, \beta, \chi; N) = \sum_{n \leq N} \chi([\alpha n + \beta]) \]
\[= \sum_{j=0}^{a-1} \sum_{m \leq (N-j)/a} \chi([aam + \alpha j + \beta]) \]
\[= \sum_{j=0}^{a-1} S_k(\alpha a, \alpha j + \beta, \chi; (N-j)/a). \]
Applying the preceding argument with the irrational number $\alpha > 1$, we conclude the proof.

For an irrational number α of type $\tau < \infty$, we proceed as in the proof of Theorem 4.1, using Lemma 3.2 instead of Lemma 3.1, and also applying Lemma 3.3; this yields the following statement:

Theorem 4.2. Let $\alpha > 0$ be a fixed irrational number of type $\tau < \infty$. For every fixed $\varepsilon > 0$ there exists $\rho > 0$, which depends only on ε and τ, such that for all $\beta \in \mathbb{R}$, all non-principal multiplicative characters χ modulo k, and all integers $N \geq B_{\varepsilon}(k)$, we have

$$S_k(\alpha, \beta, \chi; N) \ll Nk^{-\rho}.$$

References

