Congruences and exponential sums with the sum of aliquot divisors function

SANKA BALASURIYA
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
sanka@ics.mq.edu.au

WILLIAM D. BANKS
Department of Mathematics
University of Missouri
Columbia, MO 65211 USA
bbanks@math.missouri.edu

IGOR E. SHPARLINSKI
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
Abstract

We give bounds on the number of integers $1 \leq n \leq N$ such that $p \mid s(n)$, where p is a prime and $s(n)$ is the sum of aliquot divisors function given by $s(n) = \sigma(n) - n$, where $\sigma(n)$ is the sum of divisors function. Using this result we obtain nontrivial bounds in certain ranges for rational exponential sums of the form

$$S_p(a, N) = \sum_{n \leq N} \exp(2\pi i a s(n)/p), \quad \gcd(a, p) = 1.$$

Keywords: divisors, congruences, exponential sums

2000 Mathematics Subject Classification: 11A07, 11L07, 11N60

1 Introduction

For every positive integer n, let $s(n)$ be the sum of the aliquot divisors of n:

$$s(n) = \sum_{d \mid n; \; d \neq n} d = \sigma(n) - n,$$

where $\sigma(n)$ is the sum of divisors function. In this paper we consider arithmetic properties of the aliquot sequence $(s(n))_{n \geq 1}$. In particular, for a fixed prime p we obtain nontrivial upper bounds in certain ranges for exponential sums of the form:

$$S_p(a, N) = \sum_{n=1}^{N} e_p(2\pi i a s(n)/p), \quad (a \in \mathbb{Z}, \; N \geq 1),$$

where

$$e_p(x) = \exp(2\pi i x/p) \quad (x \in \mathbb{R}).$$

Our results for the sums $S_p(a, N)$ rely on upper bounds for the cardinalities $\#T_p(N)$ of the sets

$$T_p(N) = \{1 \leq n \leq N \mid s(n) \equiv 0 \pmod{p} \} \quad (N \geq 1).$$

We remark that analogous results for the Euler function $\varphi(n)$ have been obtained in [1, 2, 3], and we apply similar methods in the present paper. Various modifications are needed, however, since $s(n)$ is not a multiplicative function.
Theorem 1. For \(v = (\log N)/(\log p) \to \infty \), the following bound holds:

\[
\#T_p(N) \ll Nv^{-u/2+o(v)} + \frac{Nv}{p}.
\]

Using this result we show:

Theorem 2. The following bound holds:

\[
\max_{\gcd(a,p)=1} |S_p(a,N)| \ll N \left(\frac{\log^4 N}{p^{1/2}} + \frac{\log p \log \log N}{\log \log \log N} \right).
\]

In the statements above and throughout the paper, any implied constants in the symbols \(\ll, \gg \) and \(O \) are absolute unless indicated otherwise. We recall that for positive functions \(F \) and \(G \) the notations \(F = O(G) \), \(F \ll G \) and \(G \gg F \) are all equivalent to the assertion that the inequality \(F \leq cG \) holds for some constant \(c > 0 \).

Throughout the paper, the letters \(p, q \) are used to denote prime numbers, and \(m, n \) are positive integers.

2 Preliminaries

Let \(P(n) \) be the largest prime factor of an integer \(n \geq 2 \), and put \(P(1) = 1 \). An integer \(n \geq 1 \) is said to be \(y \)-smooth if \(P(n) \leq y \). As usual, we define

\[\psi(x, y) = \# \{ n \leq x : n \text{ is } y\text{-smooth} \} \quad (x \geq y > 1). \]

The following bound is a relaxed and simplified version of [7, Corollary 1.3] (see also [4]):

Lemma 3. For \(u = (\log x)/(\log y) \to \infty \) with \(u \leq y^{1/2} \), we have

\[\psi(x, y) \ll xu^{-u+o(u)}. \]

The next statement is a simplified form of the Brun-Titchmarsh theorem; see, for example, [5, Section 2.3.1, Theorem 1] or [6, Chapter 3, Theorem 3.7].

Lemma 4. Let \(\pi(x; k, a) \) be the number of primes \(p \leq x \) such that \(p \equiv a \pmod k \). Then, for any \(x > k \) we have

\[\pi(x; k, a) \ll \frac{x}{\varphi(k) \log(2x/k)}. \]
Finally, our principal tool is the following bound for exponential sums with prime numbers, which follows immediately from Theorem 2 of [8].

Lemma 5. For any prime p and real number $x \geq 2$, the following bound holds:

$$\max_{\gcd(a,p)=1} \left| \sum_{q \leq x} e_p(aq) \right| \ll (p^{-1/2} + x^{-1/4} p^{1/8} + x^{-1/2} p^{1/2}) x \log^3 x.$$

3 Proof of Theorem 1

We can assume that $v \leq p$ since the result is trivial otherwise. Thus, taking

$$u = \frac{v}{2} = \frac{\log N}{2 \log p},$$

we see that

$$2u \log u \leq v \log p = \log N.$$

Defining the smoothness bound $K = N^{1/u} = p^2$, it follows that $u \leq K^{1/2}$. In particular, if \mathcal{E}_1 is the set of integers $n \leq N$ such that n is K-smooth, then we can apply Lemma 3 to derive the bound

$$\# \mathcal{E}_1 = \psi(N, K) \ll Nu^{-u+o(u)} = N v^{-v/2+o(v)}.$$

Next, let \mathcal{E}_2 be the set of integers $n \leq N$ such that $q^2 \mid n$ for some prime $q > K$. Then,

$$\# \mathcal{E}_2 \leq \sum_{q > K} \sum_{n \leq N \atop q^2 \mid n} 1 \leq \sum_{q > K} N/q^2 \ll N/K \leq N/p^2.$$

Finally, let \mathcal{E}_3 be the set of integers $n \leq N$ which are multiples of p. Then,

$$\# \mathcal{E}_3 = \lfloor N/p \rfloor \leq N/p.$$

Now let $\mathcal{N} = \{1, \ldots, N\} \setminus (\mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3)$. Using the bounds established above, it follows that

$$\# \mathcal{T}_p(N) \ll N v^{-v/2+o(v)} + N/p + \# (\mathcal{T}_p(N) \cap \mathcal{N}). \quad \text{(1)}$$
For any \(n \in \mathcal{T}_p(N) \cap \mathcal{N} \), we write \(n = mq \), where \(q = P(n) > P(m) \). Since \(s(n) = \sigma(n) - n \), and \(\sigma(n) \) is multiplicative, the condition \(s(n) \equiv 0 \pmod{p} \) implies
\[
mq \equiv \sigma(mq) \equiv \sigma(m)(q + 1) \pmod{p}.
\]
Then \(\sigma(m) \not\equiv 0 \pmod{p} \) since \(p \nmid n \), hence the same relation also implies that \(\sigma(m) \not\equiv m \pmod{p} \); consequently, \(q \equiv a_m \pmod{p} \) for any integer \(a_m \equiv \sigma(m)(m - \sigma(m))^{-1} \pmod{p} \). Since \(q > K \) we see that
\[
\#(\mathcal{T}_p(N) \cap \mathcal{N}) \leq \sum_{\sigma(m) \not\equiv m \pmod{p}} \sum_{q \equiv a_m \pmod{p}} 1.
\]
For the inner sum, we have by Lemma 4:
\[
\sum_{K < q \leq N/m \atop q \equiv a_m \pmod{p}} 1 \leq \frac{N}{mp \log(2N/mp)} \leq \frac{N}{mp \log(2K/p)} \leq \frac{N}{mp \log K},
\]
where we have used the inequality \(p \leq K^{1/2} \) in the last step. Therefore,
\[
\#(\mathcal{T}_p(N) \cap \mathcal{N}) \ll \frac{N}{p \log K} \sum_{m \leq N/K} \frac{1}{m} \ll \frac{N \log(N/K)}{p \log K} \ll \frac{Nu}{p} \ll \frac{Nv}{p}.
\]
Inserting this bound into (1), we obtain the desired result.

4 Proof of Theorem 2

We can assume that \(p \geq \log^8 N \) and that \(v = (\log N)/(\log p) \to \infty \) as \(N \to \infty \) since the result is trivial otherwise.

Let \(u, K \) and the sets \(\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3 \) be defined as in the proof of Theorem 1. Then,
\[
\#(\mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3) \ll Nv^{-v/2+o(v)} + N/p.
\]
Also, put \(M = N^{1/w} \), where \(w \geq 2 \) is a parameter to be specified later, and let \(\mathcal{E}_4 \) be the set of integers \(n \leq N \) for which \(P(n) \geq n/M \). Every integer \(n \in \mathcal{E}_4 \) can factored as \(n = mq \), where
\[
P(m) \leq P(n) = q \leq N/m \quad \text{and} \quad m \leq M.
\]
Therefore,
\[
\#E_4 \leq \sum_{m \leq M} \sum_{q \leq N/m} 1 \ll \sum_{m \leq M} \frac{N/m}{\log(N/m)} \ll \frac{N}{\log N} \sum_{m \leq M} \frac{1}{m} \ll \frac{N \log M}{\log N} = \frac{N}{w}.
\]

Now let \(N = \{1, \ldots, N\} \setminus (E_1 \cup E_2 \cup E_3 \cup E_4) \). From the bounds above it follows that
\[
S_p(a, N) = \sum_{n \in N} e_p(as(n)) + O(N(v^{-v/2+o(v)} + p^{-1} + w^{-1})). \tag{2}
\]

Every integer \(n \in N \) can be uniquely represented in the form \(n = mq \), where \(M < m < N/K \) and \(\max\{K, P(m)\} < q \leq N/m \).

Conversely, if the numbers \(m, q \) satisfy these inequalities, then \(n = mq \) lies in \(N \). Observing that \(s(mq) = s(m)q + \sigma(m) \), we have
\[
\sum_{n \in N} e_p(as(n)) = \sum_{M < m < N/K} \sum_{L_m < q \leq N/m} e_p(as(mq)) = \Sigma_1 + \Sigma_2, \tag{3}
\]
where \(L_m = \max\{K, P(m)\} \), and
\[
\Sigma_1 = \sum_{M < m < N/K} e_p(a\sigma(m)) \sum_{p \nmid s(m)} e_p(as(m)q),
\]
\[
\Sigma_2 = \sum_{M < m < N/K} e_p(a\sigma(m)) \sum_{L_m < q \leq N/m} 1.
\]

Write
\[
\sum_{L_m < q \leq N/m} e_p(as(m)q) = \sum_{q \leq N/m} e_p(as(m)q) - \sum_{q < L_m} e_p(as(m)q),
\]
and observe that the right side of the bound in Lemma 5 is a monotonically increasing function of \(x \); thus, if \(p \nmid s(m) \) we have
\[
\sum_{L_m < q \leq N/m} e_p(as(m)q) \ll (p^{-1/2} + (N/m)^{-1/4}p^{1/8} + (N/m)^{-1/2}p^{1/2}) \frac{N \log^3 N}{m}.
\]
For \(m < N/K = N/p^2 \) the first term inside the parentheses dominates the other two; therefore,

\[
\Sigma_1 \ll \frac{N \log^3 N}{p^{1/2}} \sum_{M < m < N/K \atop p | s(m)} \frac{1}{m} \ll \frac{N \log^4 N}{p^{1/2}}.
\]

(4)

Next, we turn our attention to the problem of bounding \(\Sigma_2 \). Writing

\[I = \lfloor \log M \rfloor + 1 \quad \text{and} \quad J = \lfloor \log(N/K) \rfloor + 1, \]

we have trivially:

\[
\Sigma_2 \ll N \sum_{M < m < N/K \atop p | s(m)} \frac{1}{m} \ll N \sum_{j=1}^{J} \sum_{m \leq e^j \atop p | s(m)} \frac{1}{m} \ll N \sum_{j=1}^{J} e^{-j} \sum_{m \leq e^j \atop p | s(m)} 1 = N \sum_{j=1}^{J} e^{-j} \# \pi_p(e^j).
\]

Define

\[
v_j = \frac{j}{\log p} \quad (I \leq j \leq J),
\]

and note that

\[
\frac{v}{w} = \frac{\log M}{\log p} < v_j = \frac{j}{\log p} \leq \frac{\log N + 1}{\log p} \ll w \quad (I \leq j \leq J).
\]

Thus if

\[
v/w \to \infty
\]

then Theorem 1 implies that

\[
e^{-j} \# \pi_p(e^j) \ll v_j^{-v_j/2+o(v_j)} + \frac{v_j}{p}.
\]

Hence,

\[
\Sigma_2 \ll N \sum_{j=1}^{J} \left(v_j^{-v_j/2+o(v_j)} + \frac{v_j}{p} \right) \ll N \left((v/w)^{-v/(2w)+o(v/w)} + \frac{w}{p} \right) \log N.
\]
Now, combining the previous bound with (2), (3) and (4), and dropping terms which are clearly dominated by other terms, it follows that

$$\frac{S_p(a,N)}{N} \ll \frac{\log^4 N}{p^{1/2}} + w^{-1} + (v/w)^{-v/(2w)+o(v/w)} \log N + \frac{w \log N}{p}. \quad (6)$$

Note that the last term in this bound can also be dropped. Indeed, we can assume that $w \leq v$, for otherwise the bound is trivial, and thus

$$\frac{w \log N}{p} \leq \frac{v \log N}{p} = \frac{\log^2 N}{p \log p} \leq \frac{\log^4 N}{p^{1/2}}.$$

We now choose

$$w = \frac{v \log \log \log N}{6 \log \log N}$$

to (essentially) balance the middle two terms in (6). We also note that the condition (5) is satisfied. With this choice of w, it is easily seen that

$$(v/w)^{-v/(2w)+o(v/w)} \log N = (\log N)^{-2+o(1)} \ll (\log N)^{-3/2},$$

whereas for $p \geq \log^8 N$ we have

$$w^{-1} = \frac{6 \log p}{\log N \log \log \log N} \gg (\log N)^{-3/2}.$$

Therefore, the third term in (6) can be dropped, and the result follows.

References

