STUDY SHEET FOR EXAM 1: PSYCH 2210

FORMAT:
- 45 Multiple Choice and True/False Questions (3 pts each)
- Exam is during class time

TEXT MATERIAL:
Historical Background: Chap 1
Basic Anatomy: Chap 2: p 21-23; p29-30; Chapter 3: p 49-61

Signaling: Chap 2: p 24-29

LECTURE MATERIAL:
Weeks 1 & 2
Myths about Brain

Historical Roots
Aristotle
Galen
Hippocrates
DaVinci
Descartes
Dualism/Monism
Thomas Willis
Franz Gall; Phrenology
Localization of Function
Paul Broca; Broca’s Area

Experimental Design in Neuroscience
Somatic Intervention
Behavioral Intervention
Independent Variable
Dependent Variable
Within-Subject Design
Between-subject Design
Control Group
Correlation
Positive correlation
Negative Correlation
Reductionism
Levels of Analysis
Neuroplasticity vs. Neurogenesis
Nature vs. nurture: genetics

Week Two: Anatomy: know definition/function of regions below
I. Gross Anatomy
Gray matter
White Matter
Corpus Callosum
Ventricles & CSF
Meninges; 3 layers; meningitis

II. Frames of Reference
Anterior
Posterior
dorsal
ventral
Lateral
Medial
Coronal Section
Sagittal Section
Horizontal Section

III. Cortex
Gyri
Sulci
Ways of Dividing the Cortex:
1. Landmarks: Pattern of Gyri & Sulci: Lateral fissure; precentral gyrus;
central sulcus; postcentral gyrus; s. temporal gyrus; occipital gyrus
2. Cortical Layers: Evolutionary Development
 Neocortex
 Mesocortex
 Allocortex
3. Cytoarchitecture: Brodmann’s areas

Neurons:
- Neuron Doctrine
- 4 Zones (input; integration; conduction; output)
Be able list functions and location in appropriate zone for
- Dendrites
- Soma or Cell Body
- Axon
- Nodes of Ranvier
- Axon Terminal (Terminal Button)
- Myelin Sheath
- Axon Hillock

2. Glia: know functions for
- astrocytes
- microglia
- oligodendrocyte
- Schwann cells
Know Lobes & Corresponding Functions: Association vs. Primary sensory/motor functions for each:
- Frontal
- Parietal
- Temporal
- Occipital
“What” vs. “Where” pathways

Subcortical Structures
- Limbic System: function in memory; emotion; learning
- Basal Ganglia: role in Huntington's; Parkinson's; OCD
- Diencephalon: Thalamus; hypothalamus

Week Three: Cells in the Brain/Electrical & Chemical Signaling

Resting Potential (RMP)
- Definition of RMP
- How it is measured: i.e., Hodgekin & Huxley expt
- Ion
- Polarization
- Location of Na+ ions; K+ ions
- Forces maintaining RMP & generating potential energy
 - Selective Permeability: gated vs. non-gated channels
 - Diffusion
 - Electrostatic Force
 - Sodium-Potassium Pump

Action Potential:
- Excitatory vs. Inhibitory inputs
- Depolarization vs. hyperpolarization
- Threshold
- Trigger zone on axon
- Distinction from graded potential
- Ionic events at threshold (i.e., what happens to Na+ ions; K+ ions)
- Electrical & Ionic changes during various phases of Action Potential
- Properties: All-or-none; Rate Law
- Propagation: Conduction down axon; direction of travel; what happens at nodes of Ranvier; saltatory conduction; myelin and multiple sclerosis

Chemical Signaling: between neurons
- Vesicles- location and function
- Exocytosis; role of Ca++
- Steps in Synaptic Transmission
- Parts of the synapse: pre-synaptic terminal; synaptic cleft; post-synaptic membrane
- Neurotransmitter Effects on Receptors
- Post-synaptic potentials: IPSP vs EPSP (definitions, ions responsible)
-Reuptake (transporters) vs. Enzymatic Deactivation
-Loewi Experiment: identification of Acetylcholine

Week Four: Neuropharmacology
Mechanisms of Action of Drugs
Agonist vs. antagonist effects

Secrets of the Mind Video- know symptoms and brain mechanisms associated with each case study
Phantom Limb
Blindsight
Neglect Syndrome
Capgras Delusion
Temporal Lobe Epilepsy