
1

Incident-Supporting Visual Cloud Computing
Utilizing Software-Defined Networking

R. Gargees† *, B. Morago†*, R. Pelapur†*, D. Chemodanov†*,
P. Calyam‡*, Z. Oraibi*, Y. Duan*, G. Seetharaman§ and K. Palaniappan*

Abstract—In the event of natural or man-made disasters,
providing rapid situational awareness through video/image data
collected at salient incident scenes is often critical to first re-
sponders. However, computer vision techniques that can process
the media-rich and data-intensive content obtained from civilian
smartphones or surveillance cameras require large amounts of
computational resources or ancillary data sources that may not
be available at the geographical location of the incident. In this
paper, we propose an incident-supporting visual cloud computing
solution by defining a collection, computation and consumption
(3C) architecture supporting fog computing at the network-
edge close to the collection/consumption sites, which is coupled
with cloud offloading to a core computation, utilizing software-
defined networking (SDN). We evaluate our 3C architecture
and algorithms using realistic virtual environment testbeds. We
also describe our insights in preparing the cloud provisioning
and thin-client desktop fogs to handle the elasticity and user
mobility demands in a theater-scale application. In addition, we
demonstrate the use of SDN for on-demand compute offload
with congestion-avoiding traffic steering to enhance remote user
Quality of Experience (QoE) in a regional-scale application. The
optimization between fog computing at the network-edge with
core cloud computing for managing visual analytics reduces
latency, congestion and increases throughput.

Index Terms—Visual Cloud Computing, User QoE, Adaptive
Resource Management, Software-Defined Networking

I. INTRODUCTION

IN the event of natural or man-made disasters, videos and
photographs from numerous incident scenes are collected

by security cameras, civilian smart phones, and from aerial
platforms. This abundance of media-rich video/image data
can be extremely helpful for emergency management officials
or first responders to provide situational awareness for law
enforcement officials, and to inform critical decisions for al-
locating scarce relief resources (e.g., medical staff/ambulances
or search-and-rescue teams). Using computer vision methods
to build dynamic 3-dimensional (3D) reconstructions of salient
structures in the incident region by fusing crowd-sources and
surveillance imagery can increase situational awareness in a
theater-scale setting of the incident scene [45]. Further, objects
of interest can be tracked in aerial video at the regional-scale

‡Corresponding and primary author (calyamp@missouri.edu).
†These authors contributed equally to this work.
*Department of Computer Science, University of Missouri, USA.
§Advanced Computing Concepts/ITD, Naval Research Laboratory, USA.
This work was supported by the National Science Foundation under awards:

ACI-1440582, NSF OCI-1245795, CMMI-1039433 and CNS-1429294, the
U.S. Air Force Research Laboratory grant FA8750-14-2-0072 and FA8750-
14-C-0044, and the U.S. National Academies Jefferson Science Fellowship.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors’ and do not necessarily reflect the views
of the U.S. Government or any agency thereof.

Fig. 1. Overview of the visual collection, computation and consumption (3C)
system linking the fog at the network-edge with core cloud computing utilizing
SDN which is shown on the links.

of incident scenes to provide analytics for planning wide-area
relief and law enforcement activities [24].

However, the computer vision techniques needed to pro-
cess this media-rich and data-intensive content require large
amounts of computational resources that are usually intermit-
tently available, damaged or unavailable within the geographic
location of the incident scenes. Emerging techniques in the
field of mobile visual cloud computing are well suited for
scalable processing of media-rich visual data [2]. Private cloud
‘fogs’, as well as overlay network paths that are dynamically
constructed using software-defined networking (SDN) [33],
[46] rely on non-traditional network protocols such as Open-
Flow [1]. These can be valuable in the case of damaged or
congested network infrastructure within the geographical area
of incidents. Fog computing extends cloud computing closer
to the network-edge locations of users and data sources (see
Figure 1). Coupled with SDN, fog computing at the edge can
rapidly compute and organize small instance processes locally
and move relevant data from the incident geographical location
to core cloud platforms such as Amazon Web Services or NSF
Global Environment for Network Innovations (GENI) [4] for
on-demand processing. Moreover, the overlay network paths
can also be useful for moving cloud-processed data closer
to the locations of first responders for content caching at
fogs to enable low-latency access via thin-client desktops.
Such on-demand computation and integration of thin-clients
for visualization can enable large data processing within the
cloud and deliver high user Quality of Experience (QoE).

In this paper, we address the incident-supporting visual
cloud computing and SDN-based data movement challenges
by combining the latest advances in the fields of computer
vision, cloud computing, and high-speed networking. Specif-
ically, we define a collection, computation and consumption
(3C) architecture shown in Figure 1. Our architecture assumes

2

incident videos/images are collected and pre-processed at
a fog near the disaster scene and are transferred utilizing
SDN to cloud servers where visual analytics such as 3D
geometry, object recognition and tracking can be performed.
The 3D visual environment, object and tracking results are
subsequently transferred from the core cloud servers to a fog
near first responder mobile devices or thin-client desktops for
crucial visual data consumption. Based on this 3C architecture,
we propose novel computation placement, and SDN control
algorithms designed to enable fog computing closer to the
collection/consumption sites, which is coupled with cloud
offloading to a public cloud. Our algorithms assume the
fogs are capable of handling small instance visual processing
functions, and are integrated with a public cloud infrastructure
for handling large instance visual processing functions by
utilizing SDN. We describe how the 3C provisioning and
placement algorithms for fog-cloud compute location selection
and small/large instance visual processing can be parame-
terized in the contexts of: (i) a ‘theater-scale’ application
for reconstructing dynamic visualizations from 3D LIDAR
(Light Detection and Ranging) scans, and (ii) a ‘regional-scale’
application for tracking objects of interest in wide-area motion
imagery (WAMI) from airborne platforms. We distinguish
between theater-scale and regional-scale applications based on
the geographical coverage of the incident and its distributed
nature - with theater-scale being small regions distributed
across multiple sites, and regional-scale being large regions.

The theater-scale application that we have developed [14],
[35] builds 3D models of the environment by registering a
set of 2D videos and 3D LIDAR scans to process large
collections of videos available from civilian smart phones and
surveillance cameras at an incident scene. LIDAR scans, and
3D visualizations have been shown to be useful for assessing
damage at disaster sites since highly accurate scans can be
obtained quickly to provide awareness of relative locations of
activities across multiple viewpoints [28], [45]. This eases the
cumbersome task of watching and analyzing numerous videos
which are traditionally viewed on a grid of 2D displays. 3D
LIDAR scanners that use a laser ranging device to determine
distances to surfaces can be used to reconstruct a scene and
provide a more intuitive venue for studying video sets. Ad-
vancing technology and decreasing costs during recent decades
have led to LIDAR data being routinely incorporated for
reconstructing, viewing, and understanding real-world scenes
with convenience [35], [53]. Commonly used LIDAR data can
be large in size (characterized for a typical resolution of about
1 cm for data collected at a range of up to 300m with 6
mm accuracy), and computationally expensive to process in
cases of large-scale collection at incident scenes. Moreover,
elastic resources must be available to take advantage of
this rich source of information because every stage of the
processing pipeline requires considerable but variable amounts
of resources.

Our regional-scale application uses LOFT (Likelihood of
Features Tracking) technology we have developed [38], [41],
[42] to track and recognize objects of interest in aerial motion
imagery. Such technology has become a vital part of intelligent
search and rescue activities in recent years, and also has been
proven to be essential in city-wide surveillance during event
gatherings where the attendance is large enough to warrant a

hawk-eye view in the interest of public safety. With the advent
of newer sensor technology, it is now possible to capture high
spatial resolution imagery that is data-intensive for wide-area
surveillance with resolutions ranging between 10 cm to 1
m. The wide-area motion imagery processed by our LOFT
framework is typically high spatial resolution of 25 cm GSD
(Ground Sampling Distance), and low temporal resolution of
about one to four frames per second [39]. Tracking in such
imagery is computationally challenging because the objects of
interest are small and have relative large motion displacement
due to low frame rate sampling. WAMI data is challenging
for automated analytics due to several reasons including:
oblique camera viewing angles, occlusions from tall structures,
tracking through shadows, variations in illumination, blurring
and stabilization artifacts due to inaccurate sensors and atmo-
spheric conditions.

Through detailed experiments in realistic virtual environ-
ment testbeds, we implement and evaluate our novel 3C
architecture and compute/network resource control algorithms
for the theater-scale and regional-scale applications. In our
first set of experiments, we explore insights in preparing the
cloud provisioning and thin-client desktop delivery within our
VMLab platform [6] to handle the elasticity and user mobility
demands in the theater-scale application contexts. We study
handling LIDAR models and sets of videos in a disaster
situation where many videos will be collected remotely, sent to
the server for registration, and viewed on a mobile device in
real time. We run our theater-scale application system over
a regular wireless network and an high-bandwidth overlay
network utilizing SDN to identify the network requirements
for processing and viewing 3D video and delivering sat-
isfactory user QoE. In the second set of experiments, we
demonstrate the use of SDN for on-demand compute offload
with congestion-avoiding traffic steering for the regional-scale
application configured in the GENI platform [4]. We first
consider multiple video resolutions corresponding to different
mobile devices and emulate disaster network degradation
conditions systematically to characterize the resultant impact
on the compute offloading to the cloud. Next, we show user
QoE improvements in data throughput and tracking time when
remotely analyzing WAMI data, utilizing SDN and by dividing
the application into small and large instance processing.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III describes the theater-
scale and regional-scale computer vision based applications.
In Section IV, we present details of our 3C architecture. The
compute/network resource control algorithms are presented
in Section V. Section VI details our experimental setup and
performance analysis. Section VII concludes our paper.

II. LITERATURE REVIEW

This section describes the novelty of our approach for
incident-supporting visual cloud computing by combining
synergies from the fields of computer vision, cloud computing
and high-speed networking.

A. Visual Cloud Computing
Computer vision commonly deals with the processing of

large data sets, and a typical system in this field usually com-
prises of several data processing stages such as: (a) acquisition,

3

(b) pre-processing, (c) analysis, and (d) post-processing. Data
requirements change depending on the application in question,
and the acquisition step itself usually requires an enormous
amount of storage apart from the bandwidth requirements for
processing. Separating storage and bandwidth requirements
could greatly benefit overall processing time required for a
data set. However, the processing time of applications can
also have some restrictions based on the location at which
they are hosted. In most cases, it is scalable to have data sent
over to a cloud-hosted application host have it processed and
have the analysis results sent back to the origin. Large-scale
visualization and analysis such as NVIDIA’s Grid Computing
[21] have gained traction in the consumer market. Our work
fosters the trend where multimedia cloud computing discussed
in [22], [58], [55], [59] can provide high flexibility and mo-
bility to the end user. Demonstrations of similar systems exist
in literature and have been shown to work in an environment
where hardware resources at data origin are limited [29], [30].

B. Disaster Management
3D representations of a disaster scenario can be transferred

over wired/wireless networks to remote locations for better
scene understanding than what a set of disjointed videos and
photographs would provide. Several groups have investigated
ways in which wireless networks can be set up and uti-
lized for communication in the event of an emergency [27].
Authors in [10] have studied using wireless mesh networks
to transfer medical information throughout disaster zones in
situations where wired networks are damaged. In addition,
authors in [56] set up overlay networks that allow humans to
communicate with robots being used to explore the aftermath
of a disaster. As these types of studies have become more
popular, the speed of message delivery over the on-the-fly
networks has been prioritized and explored in works such
as [43]. Research on how to set up mobile cloud and overlay
wired/wireless networks networks in a disaster scenario, and
on how to create 3D models and simulations using LIDAR
data have provided strong foundations for accomplishing this,
but to the best of our knowledge, our work uniquely studies
these topics in a combined manner.

C. 2D-3D Registration
Registering imagery with LIDAR scans has been studied a

great deal in the computer vision field. The fact that 2D-3D
data fusion allows large scale, photorealistic 3D models to be
created very quickly and easily with a high degree of accuracy
motivates much of this work. Many groups have focused on
performing registration on urban data which generally has
an abundance of regularized features that can be matched
across dimensions [48]. These include line segments, arcs, and
rectangles that can be easily identified. Mutual information
can also be used for direct 2D-3D registration. 2D images
can be constructed from a LIDAR scan that visualize various
properties of the scan such as the reflectivity of the laser [40]
or the relative height throughout of a point cloud [32]. The en-
tropy between these types of images and regular photographs
is minimized to uncover the relationship between the two.
Several groups have explored using LIDAR scanners with
built-in cameras that provide an initial set of registered photos

to guide registration [16]. Keypoint features can be matched
in 2D to obtain an initial camera pose estimate and then 3D
information such as normals and edges in the point cloud
can guide a refinement stage [35], [57]. Machine learning
techniques can be incorporated to obtain helpful information
to guide 2D-3D registration as done by authors in [54]. They
use learning methods to determine what contours and shapes
in the edge data constitute a building outline and match the
contours of “regions of interest” across dimensions in aerial
views of urban scenes.

D. Object Tracking

Object tracking in standard, full-motion video, and recently,
in WAMI is of extreme interest to the computer vision
community as a lot of tasks depend on reliable tracking.
A host of higher-level tasks such as event analysis and 3D
reconstruction depend on object or point feature tracking.
Arguably, most of the recent advances have focused on in-
novative ways of modeling appearance in the case of single
target trackers. Multi-target trackers that employ a motion-only
approach have also progressed by considering efficient ways
of information fusion which typically fall into the category of
detect before track approach [44]. Single object trackers such
as our LOFT [41], [42] (Likelihood of Features Tracker) focus
on effective appearance modeling along with filtering and
dynamics. The community has been focused on generalizing
the performance of such trackers on a wide range of data
sets instead of being restricted or biased to a particular set
of scenarios depending on the scale of difficulty. The efforts
of which can be seen in some key works that are very
comprehensive in terms of performance and evaluation such as
the Amsterdam Library of Ordinary Videos [47] (ALOV++) or
the Video Object Tracking challenge [26] (VOT). The work in
this paper leverages the 3C architecture and demonstrates fog-
cloud resource placement algorithms utilizing SDN for LOFT-
Lite, which belongs to the class of single object trackers that
follows a track-before-detect paradigm and has shown to be
robust for several classes of video data [41].

E. Fog Computing

Many distributed computing applications benefit by lever-
aging fog computing in terms of reduced service latency and
operational efficiency. For instance, authors in [23] benefited
from the paradigm of fog computing in their efforts to optimize
web page performance by caching information at various fog
nodes, versus using the traditional content-delivery network
platforms. Fog resource management solutions are proposed
in [34] to handle resource allocation and pricing based on user
application profiles. Interestingly, SDN has been leveraged in
context of fog computing recently by authors in [50], where
they studied benefits of fog computing in application scenarios
such as Smart Grid, and smart traffic lights in vehicular
networks. Another notable recent work that leveraged SDN
integrated with fog computing is [51], where benefits were
shown in the context of vehicular adhoc network cases to
enhance resources utilization and decrease service latency.
Our work leverages fog computing paradigm in the context
of mobile cloud configuration with SDN for disaster incident

4

response scenarios, and shows benefits when handling media-
rich and data-intensive visual computing applications for sit-
uational awareness of first responders.

F. SDN Management
Several studies have been done in prior works on SDN and

cloud computing for overlay network provisioning. Authors
in [9] propose a new method to manage Quality of Service
(QoS) requirements of applications over SDN-enabled net-
works based on multi-path routing. Their multi-path routing
assumes intermediate hosts to run agents that support their
approach to allocate resources effectively by increasing the
search space for the idle resources. In the context of mul-
timedia delivery over large-scale SDN paths, the authors in
[11] proposed a distributed OpenFlow-based QoS architecture
involving co-ordination of multiple controllers. Another re-
lated work can be found in [52], where an adaptive routing
approach is described to handle QoS requirements of video
streaming utilizing SDN. They divide the QoS flows into two
levels (base layer packets and enhancement layer packets), and
provide highest priority to the base layer to reroute via feasible
path in case of the congestion in the shortest path. Lastly,
another exemplar related work on using SDN for video flow
handling can be seen in [15], where a QoS Controller (Q-Ctrl)
system is used to control and allocate bandwidth for the virtual
machines supporting video streaming in a cloud infrastructure.
This work builds on our earlier methodology [8] on wide-area
experimental testbeds such as GENI [4] and extends it for
the WAMI data visualization context with OpenFlow based
SDN controller implementations for path computation and
flow steering to improve user QoE.

III. VISUAL 3C APPLICATIONS

We use our visual cloud computing approach to support
two-different application types in order to determine the
requirements and desired capabilities of a realistic system.
Our first application registers ground-level videos with 3D
LIDAR range scans obtained on a theater-scale so that sets
of videos can be viewed in a single, intuitive, 3D virtual
environment. Our second application focuses more on the
regional-scale and identifies and tracks objects of interest in
wide-area imagery, allowing officials to study the behaviors
of particular vehicles. Table I lists examples of the size of
data used by these applications and their runtimes. Data sizes
may vary dependent on the resolutions of collected images and
videos and the length of video streams. Computation times
will vary as well, dependent on the hardware used. Ideally,
we assume our environment has the resources to allow user
to receive final processed data in real-time. More details on
varying data sizes and available resources and how they effect
computation and consumption rates are given in Section VI-A.

TABLE I
APPLICATION DETAILS

App Scale Expected Collection Data size Expected Computation Time Expected Consumption Rate
Theater 750 MB 4000 ms per frame 25 KB per second

Regional 70 GB 350 ms per frame 100 MB per second

A. Theater-Scale Application
In order to register a video with the LIDAR range scan, we

must calculate the camera poses for video frames in relation to

the 3D point cloud. This process which is outlined in Figure 2
entails matching a video frame to LIDAR photographs whose
3D correspondences are known, solving for the camera’s pro-
jection matrix, and identifying and modeling moving objects
in the 3D space.

Match Video Frame to
Registered Images

Identify 3D Locations of
Keypoint Matches

Calculate Projection
Matrix

Run Motion
Segmentation on Video

Get 3D Locations for
Dynamic Objects

Map 3D Scan to 2D
Photographs

Fig. 2. Overview of method for registering videos with LIDAR scan and
modeling moving objects in 3D space.

Based on the computational needs of the steps required
for constructing a dynamic 3D virtualization, we can divide
our image processing and computer vision stages into the
following classes:

• Small instance processing: Camera metadata data pro-
cessing, static background registration, 3D rendering

• Large instance processing: Video camera pose compu-
tation, motion segmentation, dynamic object positioning

Our small instance processing functions can optionally be
handled in the fogs, where as the large instance functions can
benefit from being processed in the cloud.

To initially estimate the 2D-3D relationship between the
LIDAR photographs and the LIDAR scan, we have a pre-
processing stage during which we map 2D pixels to 3D points.
The mapping between the camera and the scan is known from
a metadata file by the scanner giving the camera’s focal length
in pixels and extrinsic parameters (rotation and translation).
Using this information during pre-processing, each 3D range
scan point is projected onto each image plane to find its corre-
sponding 2D point using standard computer vision techniques
described in [20]. The entire point cloud is projected onto
each image once and the 2D-3D correspondences are saved
on a cloud-hosted server.

Once we have this information, we perform matching
between video frames and LIDAR photographs using the
technique outlined in [36] and obtain a set of 2D-3D keypoint
matches between the video frame and the LIDAR scan. Our
2D-3D matching combines locally defined keypoint matching
with contextual regional information to align images of the
same scene with different visual properties. These visual
discrepancies can be presented by registering images taken
with different camera sensors and internal parameters (LIDAR
camera vs. video camera) in addition to temporal changes
between the sets of videos and LIDAR photographs as an
incident unfolds and the scene content begins changing.

Our set of 2D-3D correspondences is finally used to calcu-
late the projection matrix of the camera. We use the six-point
algorithm with Direct Linear Transform [20] and Random
Sample Consensus [13] to find the set of matches that calculate
the most accurate projection matrix P and refine it using
Levenberg-Marquardt refinement [31]. The projection matrix
maps 3D points (X,Y,Z) to 2D image points (x,y) giving us
the information needed to register the video frame with the
scan. The color assigned to each 3D point is the color of the
pixel it is closest to when projected onto the image plane.

5

The registration process described so far allows us to register
the static background of a video with the 3D point cloud.
However, we need one more stage to model the motion of
moving people captured on video in 3D. When an object that
was not scanned is present in a video, such as a person walking
around, it will be projected onto an incorrect location in the
3D space because there is no structure that corresponds to
it. Though the visual result of an image’s registration may
look fine when the scene is viewed from the camera location,
these errors are very apparent when the user starts changing
perspectives as is demonstrated in Figure 3, Bottom Left. To
handle such situations, we segment out the motion in videos
and add 3D planes to the virtual environment to “catch” the
projection of these new entities.

Fig. 3. Creating 3D planes for dynamic objects. Top Left: 2D video frame.
Bottom Left: Video frame projected onto range scan without using our method
for modeling moving objects. Right: 3D planes constructed for moving objects
identified in video using our modeling method.

In order to identify moving objects in the video stream,
we use the Mixture of Gaussians (MOG) algorithm [49]. This
yields a binary image with the motion segmented from the
background. The connected components algorithm is applied
to the MOG image to create cohesive segments. We scan
this image starting from the bottom row of pixels to find the
lowest point in each moving segment. We then identify the
3D point in the range scan that matches this point when the
video frame is registered with the range scan. Assuming that
the moving object is touching the ground, this 3D point is
the correct location for the bottom of the segmented object.
New 3D points with the same depth as the bottom point
and varying heights are created and projected onto the MOG
image. If they fall within the segmented portion of the image,
they correspond to a moving object that was not scanned
and are added into the 3D space with the corresponding
color information from the original video frame. The result
of performing these steps is shown in Figure 3, Right.

B. Regional-Scale Application
LOFT (Likelihood of Features Tracking) [38], [41], [42] is

an appearance based single object tracker that uses a set of
image based features such as gradient orientation information
using histogram of oriented gradients, gradient magnitude,
intensity maps, median binary patterns [18] and shape indices
based on eigenvalues of the Hessian matrix. LOFT robustly
tracks vehicles in WAMI video which is airborne imagery
characterized by large spatial coverage, high resolution of
about 25 cm GSD (Ground Sampling Distance) and low frame
rate. WAMI is also known by several other terms including
wide-area aerial surveillance (WAAS), wide-area persistent

surveillance (WAPS), Large Volume Streaming Data (LVSD)
and wide-area large format (WAMI) [38], [39], [19], [5].
LOFT performs feature fusion by comparing a target appear-
ance model within a search region using feature likelihood
maps which estimate the likelihood of each pixel with the
search window belonging to part of the target [42].

Tracking in WAMI involves several pre-processing steps
that have been tested on large-scale aerial data [3], [17] as
shown in Figure 4. These steps can be divided into two main
classes according to functionality such as:

• Small instance processing: Compression, storage, meta-
data processing, geoprojection, stabilization and tiling

• Large instance processing: Initialize objects of interest,
detection, tracking and event analysis

Small instance processing classes mainly focus on pure pixel
level information. Large instance processing classes however,
focus on pixel as well as object level information. Most of the
large instance functions are dependent on the pre-processing
stages in order to work effectively. As an example, most
trackers need the imagery to be stabilized in order to produce
the best results and hence registration becomes a key pre-
processing step.

 Metadata Processing
and Correction

Geoprojection,
Stabilization, and Tiling

Initialize Targets of
Interest Detect and Track Post Processing and

Event Analysis

Data Acquisition

Fig. 4. Functional block diagram showing pre-processing and post processing
steps in a typical WAMI analysis pipeline.

LOFT-Lite is a version of LOFT [38], [41], which is a
software framework for appearance based tracking. It includes
all the components of LOFT-Appearance tracking with re-
factored functionality and an easy plugin based C++ interface
that includes several optional modules such as motion dynam-
ics and a tiled image reader. A track-before-detect approach is
employed which greatly reduces the search space and is handy
especially in large WAMI imagery where objects look similar
and have a very small support map. Constraining the search
region also results in faster image read throughputs as only
multi-threaded partial tiles are read in memory. LOFT-Lite can
achieve processing rates of 300 milliseconds per frame (wall-
clock time) per target. Large single camera WAMI frames
JPEG compressed occupy anywhere near 25-28 Megabits and
at 5 frames a second, the minimum throughput required is high
enough to consider a large bandwidth streaming pipeline.

LOFT-Lite accepts targets as input in the form of bounding
boxes (see Figure 5). For each target, a search window is
determined based on prediction and filtering dynamics as
described in [41]. A set of features are computed both on the
template and the search window, and the resulting likelihood
maps are fused using a variance ratio based scheme. Several
constraints such as the orientation of the vehicle in space and
the prediction are taken into account before reporting a valid
match. For details of these algorithms, readers can refer [42].

IV. ARCHITECTURE FOR VISUAL CLOUD COMPUTING

In this section, we will first describe the fog-cloud system
architecture we use for placing small instance and large

6

Fig. 5. Illustrative example of data ecosystem: Tiled TIFF aerial image with
a resolution of 7800x10600 pixels and ⇡80 MB size. The zoomed up insets
show the location of the objects that were tracked (right inset) in relation to
the Bank of Albuquerque towers (left inset) with zoomed up views.

instance image processing functions for the theater-scale and
regional-scale applications. Following this, we will describe
the various cloud and SDN technology components that inte-
grate the different application modules.

A. Cloud/Fog System Architecture

Figure 6 shows our architecture, which consists of three
layers: Mobile User Layer, Fog Computation Layer, and Cloud
Management Layer. The Mobile User Layer is comprised
of services that handle both the collection and consumption
activities for our system. Incident scene images and video data
is collected using security cameras, civilian smart phones, and
aerial perspectives and imported into the system for transfer to
the Fog Computation Layer. The processed visual information
can be accessed at the consumption sites of users via thin-
clients such as web browsers with interfaces to explore the
outputs, or application client software that downloads the
data for local exploration, or appliances that use protocols
such as VNC, RDP or PCoIP to access virtual desktops with
the exploration software. The consumption fogs could also
host caching services to bring the processed data closer to
the user thin-clients and reduce the need to have round-trip
requests to the cloud. It is possible that the consumption
phase involving an expert analyst may result in active use
of the caching services that leads to repost of data to the
Fog Computation Layer for further processing as part of deep
exploration activities.

In the Fog Computation Layer, one service manages the
small instance processing in conjunction with directives from
the Unified Resource Broker (URB) in the Cloud Management
Layer, and another service acts as the gateway to move data
from the fog to the cloud via a high-performance network
overlay setup with SDN. Thus, the Fog Computation Layer
transforms the public cloud infrastructure into a ‘mobile
cloud infrastructure’ and allows the management services
in the public cloud to seamlessly operate close to the user
collection/consumption sites for end-to-end orchestration and
dynamic control of data processing locations. At the Cloud
Management Layer, the scalable computing services as well
as the URB orchestrate the computation placement either in
the fog or in the cloud infrastructure. The URB serves as the
“brain of the cloud”, and manages the dynamic distribution of
the application processing workload to meet application QoS
and user QoE requirements.

Fig. 6. Illustration of the 3C system showing the relationships between mobile
user, fog computation, and cloud management layers. The URB (Unified
Resources Broker) controls how resources are provisioned and how data flows
are routed with SDN between fogs and the public cloud. The small and large
instance processing in the fogs and cloud for theater-scale and regional-scale
applications is also shown.

B. Relevance of Cloud and SDN Technologies

In this section, we explain the role of the URB and
SDN controller components and how they interface with
application modules in the 3C system architecture. Figure 7,
which shows our logical architecture with system protocols,
demonstrates how the integration of fog-cloud computing with
SDN transforms the traditional theater-scale and regional-
scale applications. The URB manages the cloud services
by coupling the Mobile User, Fog Computation and Cloud
Management layers with the application modules using REST
(Representational State Transfer) web services [7] that allow
services to communicate in a “stateless manner” (i.e., protocols
are easily maintainable, lightweight and scalable). The SDN
adds the programmable networking ability through use of
the OpenFlow protocol by a controller in the URB to create
overlay network paths among the collection, computation, and
consumption sites. Consequently, SDN enhances the tradi-
tional systems that relied only on HTTP and TCP/IP between a
remotely-hosted application and user sites. With the REST and

7

OpenFlow protocols integration, HTTP and TCP/IP are still
used to transfer requests between the user interface (UI) and
remotely-hosted application, but a control plane is introduced
that is orchestrated by the URB for essential services for: data
import, computation provisioning and placement, network path
provisioning and cache management. Details of the URB’s
core algorithms for 3C compute provisioning and placement,
as well as network path provisioning are presented in subsec-
tions V-A and V-B, respectively.

SDNApplication TCP/IP

URBUI REST

HTTP OpenFlow

Fig. 7. The logical architecture showing system protocols which integrate the
cloud and fog computation with SDN to transform the traditional theater-scale
and regional-scale applications.

To understand how we have implemented the REST and
OpenFlow protocols interfacing with the application modules
and URB controller services, let us consider the illustration in
Figure 8. We can see how a RESTful web services schema is
used for a POST Request to allocate new links to allow access
to the application, and to monitor status of the network path
resource allocation. Our implementation of the various cloud
services uses web technologies such as HTML, Bootstrap for
CSS, JavaScript libraries jQuery and D3.js. We use PHP to
handle AJAX requests from user side and mediate the cURL
requests to the controller to request information and channel
them to the user side.

App Proxy Controller

AJAX POST
Request

REST POST
Request via cURL

Link DataLink Data

proxy.php
Data:

"request=user_request_link&source=10.0.0.3&
destination=10.0.0.4&bandwidth=5"

52.4.58.144:8080/wm/nm/VL/user1
Data:

[{"source":"10.0.0.3","destination":"10.0.0.4",
"bandwidth":"5","status":"PENDING"}]

[{"source":"10.0.0.3","destination":"10.0.0.4","bandwidth":"5.0","status":"ALLOCATED"}]

Fig. 8. Web services schema for a POST Request to allocate new links and
monitor status of the allocation.

V. 3C CONTROL ALGORITHMS

In this section, we present algorithms for the optimal
resource allocation of the visual cloud computing infrastruc-
ture for the theater-scale and regional-scale applications. The
algorithms handle the orthogonal requirements of applications
demanding minimum service time (i.e., the time taken to
transfer and process application workload at a cloud/fog site,
and receive visual results back at the consumption user side),
and the need of the cloud service provider to minimize
expensive resource over provisioning. We first describe the
3C Provisioning and Placement Algorithm (CPP) that decides
on a computation location to find the minimum service time

that is less than a specified constraint of the application
process in order to deliver satisfactory user QoE. Following
this, we describe the Network Path Provisioning Algorithm
(NPP) that finds the optimal path in the programmable network
supporting SDN. We assume that the optimal path is the short-
est possible path that satisfies application QoS constraints,
since it has been proved that shorter routing paths result
in higher overall throughput, and which in turn increases
the overall network utilization [37]. The CPP runs in the
Compute Provisioning Service, and the NPP runs in the Path
Provisioning Service that are part of the URB in Figure 6.

A. 3C Provisioning and Placement (CPP) Algorithm
Algorithm 1 outlines the CPP workflow that assumes ap-

plication context to be of two types based on the tempo-
ral sensitivity contexts of the application image processing
functions: (i) real-time application RT , and (ii) non real-time
application NRT . If the application processing falls under RT
context, then besides computational resources requirements
and demands in bandwidth, QoS requirements will be sen-
sitive to the propagation delay. We consider only propagation
delay because the end-to-end delay for service time is a
function of both network bandwidth and propagation delay.
The inputs for the CPP algorithm are: the set of available
resources {R1, R2, R3, ..., Rn} for each fog and the cloud;
ps process of application Appi to be placed, process specific
resources requirement Rps, process service time (ST) upper
bound STub

ps , lower bound of bandwidth for process BWps,
and process upper bound of propagation delay Dps (1 for
NRT application type). The output of the CPP algorithm is
the computation location Cl for specified process ps in the
application Appi.

1) Search for computation location candidates: First, the
algorithm finds the computation location candidates, i.e., the
fogs that have enough resources for ps (Algorithm 1, line 5),
as well as both fogs and cloud that have the optimal paths
between them and ps (Algorithm 1, lines 5 and 10). We find
the optimal path by using Algorithm 2 (Algorithm 1, lines 4
and 9).

2) Estimation of Service Time (ST) for all candidates: In
the second step, we estimate for each candidate (fog or cloud)
its service time (ST) based on Equation 1 (Algorithm 1, line
14):

ST = TR(NPD) + TR(PD) + CT, (1)

where TR is the transfer time for NPD (non-processed or raw
data) and PD (processed data), and CT is the computation
time. Note how the time for transfer of NPD from the
application to the visual computing cloud differs from the time
for transfer of the PD from the visual computing cloud back
to the application. The computation time can vary for the same
process in the different fogs and in the cloud depending on
the resource availability (e.g., number of CPUs), as well as
transfer time varies due to a different size of data and different
propagation delays.

3) Finding the best candidate to allocate resources: Fi-
nally, we find the best candidate with the minimum ST
(Algorithm 1, line 16). Then we check if the candidate ST
is less than the specified ST upper bound for the current

8

Algorithm 1: 3C Provisioning and Placement (CPP)
Input: {R1, R2, R3, ..., Rn

}:= set of fogs and cloud resources, ps:=
process of App

i

, R
ps

:= resources constraint, STub

ps

:= ST
constraint, BW

ps

:= bandwidth constraint, D
ps

:= propagation
delay constraint (1 for NRT)

Output: Cl:= computation location, Rnew:= new resources of Cl
1 begin

/

*

Computation location candidates search

*

/

2 Initialize a list of the fogs

3 foreach fog

i

2 fogs do
/

*

Find the optimal path to the fog

i

*

/

4 Path
fogi
 NPP (location(ps), fog

i

, BW
ps

, D
ps

)
5 if R

ps

 R
fogi

and Path
fogi

exist then
6 Add fog

i

to the candidate set
7 end
8 end

/

*

Find the optimal path to the cloud
*

/

9 Path
cloud

 NPP (location(ps), cloud,BW
ps

, D
ps

)
10 if Path

cloud

exist then
11 Add cloud to the candidate set
12 end

/

*

Estimate ST for all candidates

*

/

13 foreach candidate do
14 ST

candidatei
 estimate ST (ps)

15 end
/

*

Find the best candidate to allocate

resources

*

/

16 ST best = min
i=1,N

(ST
candidate1 , . . . , STcandidateN

)

17 if ST best

 STub

ps

then
18 Allocate the resources at Cl
19 Allocate Pathbest to selected candidate with ST best

20 Push ps to the resources scheduler
/

*

Update the resources at the selected

location

*

/

21 Rnew

Cl

= Rold

Cl

�R
ps

22 else
23 STub

ps

cannot be satisfied.
24 end
25 end

process ps (Algorithm 1, line 17). If so, we allocate resources
(Algorithm 1, lines 18-20), update the remaining available
resources Rnew (Algorithm 1, lines 21) and finally terminate
the algorithm. Otherwise, we have to terminate algorithm
without ps placement as there is no candidate fog or cloud
which can satisfy its ST upper bound (Algorithm 1, line 23).

4) Simple example of a CPP run: For the sake of illus-
tration of the CPP algorithm, we assume that there are four
fogs, one cloud, and four processes from different applications
(either RT or NRT nature) as shown in Figure 9. Table II
shows the flow of our example. The algorithm decides the
location of each of those processes according to the ST for
this process in that location, where each process has different
ST in each fog and cloud. For example, the ST for process
1 (ps1) is: 10ms at fog1, 20ms at fog2, 6ms at fog3, 9ms at
fog4, and 17ms at cloud. According to that, the best location
to execute the ps1 is at fog3, which has the minimum ST .
Similarly, the best computation location for the process (ps2) is
the fog3, for the process (ps3) is the cloud, and for the process
(ps4) is the fog4. On the other hand, the fog1 and fog2 do
not have enough resources for the ps2 and ps3, respectively.
This dynamic allocation of the resources in various locations
ensures suitable distribution of the workload between number
of fogs and the cloud to deliver the best user QoE, and ensures
application usage of the network resources with necessary
QoS.

(a) (b)

Fig. 9. Illustrative example of a CPP run: (a) CPP calculates Service Time
(ST) for the each process based on estimated time for process to be serviced
in the each fog or in the cloud; (b) based on estimated ST , the CPP places
ps1 and ps2 process to be serviced in the fog3, ps3 to be serviced in the
cloud and ps4 to be serviced in the fog4.

B. Network Path Provisioning (NPP) Algorithm
The Network Path Provisioning Algorithm (NPP) finds the

optimal path, which we assume is the Restricted Shortest Path
(RSP), i.e., the shortest possible path which satisfies QoS
constraints (bandwidth BW and delay D). The RSP problem
is known to be NP-complete [25]. To make its solving feasible
(in polynomial time) for the 3C visual computing cloud, we
use notion of “neighborhoods” NHs in NPP, i.e, a set of
nodes that can be reached from the source node with the same
number of hops, with each “neighborhood” NH set containing
only unique elements. That allows us to estimate the length
of the optimal path before its finding, and hence we are able
to provide a path solution in polynomial time.

Algorithm 2 shows the main workflow of NPP, whereas
Algorithms 3 and 4 detail intermediate steps. Algorithm 2
accepts source node X , destination node Y , bandwidth BW
and delay D constraints as an input and outputs the optimal
path. We perform two main steps: build neighborhoods NHs
by using Algorithm 3 to estimate the length of the optimal
path (Algorithm 2, line 2) and do backward pass by using
Algorithm 4 to find this optimal path solution (Algorithm 2,
line 4).

Algorithm 2: Network Path Provisioning (NPP)
Input: X:= src Y := dest, BW := bandwidth constraint, D:= delay

constraint
Output: Shortest path between X and Y satisfying BW and D

1 begin
/

*

Build NHs with BW and D from X to Y
*

/

2 NHs Build Neighborhoods(X,Y,BW,D)
/

*

Remove last NH
*

/

3 NHs.remove(NHs.size)
/

*

Backward Pass to find path between X and Y
satisfying BW and D

*

/

4 path Backward Pass(Y,NHs,BW)
5 end

1) Neighborhoods Building: Algorithm 3 describes the
neighborhood building step. The neighborhoods data structure
NHs contains not only information about nodes but also the
minimum path metric mp for each node, e.g., (Algorithm 3,
line 2). Note how we save information about delay to estimate
D constraint in line with the length of the solution. Further,
we exclude all neighbors that do not satisfy the constraints, or
the neighborhood NH already contains the same node with a

9

TABLE II
CPP ILLUSTRATIVE EXAMPLE FLOW.

Process Type fog1 ST fog2 ST fog3 ST fog4 ST cloud ST Selected Computation Location
ps1 RT 10 20 6 9 17 fog3
ps2 NRT X 31 4 18 26 fog3
ps3 RT 13 X 13 7 3 cloud
ps4 RT 5 7 30 3 4 fog4

D metric mD less than a new one mnew
D (Algorithm 3, line

9). A new minimum D metric mnew
D for neighbor nh can

be calculated as sum of the D metric mD for predecessor
node n and a weight wD of a link between node n and nh
(Algorithm 3, line 8), i.e., wD is a delay of this link. Note how
some of the nodes may now appear in several neighborhoods.
In this case, the first step ends as soon as the destination node
Y appears in the current neighborhood cNH (Algorithm 3,
line 4). If the new neighborhood NH is empty or a number
of neighborhoods NHs is higher or equal than to the nodes
number (Algorithm 3, line 14), we terminate the algorithm
concluding that the node Y is unreachable.

Algorithm 3: Build Neighborhoods
/

*

Returns neighborhoods list NHs from X to Y
if reachable

*

/

Input: X:= src, Y := dest, BW := bandwidth constraint, D:= delay
constraint

Output: NHs from X to Y
1 begin

/

*

Initialize NHs and put therein the current

neighborhood cNH with X and 0 as D metric

*

/

2 cNH (X, 0)
3 NHs NHs [cNH
4 while Y /2 cNH do
5 NH ;
6 foreach Node n 2 cNH do
7 foreach Neighbor nh 2 n do
8 mnew

D

(nh) = m
D

(n) + w
D

(n, nh)
9 if link between n and nh satisfies BW and

mnew

D

(nh)  D and mnew

D

(nh) < m
D

(nh) then
10 NH � NH [(nh,mnew

D

(nh))
11 end
12 end
13 end
14 if NH /2 ; and NHs.size  number of nodes then
15 NHs NHs [NH
16 cNH NH
17 else
18 Y is unreachable
19 end
20 end
21 end

2) Backward Pass: Algorithm 4 describes the second step
of NPP. In this case, we need to ensure the satisfaction of the
BW constraint on the backward pass, and find a path with
the minimum D metric mD. To do so, we subtract a weight
wD of a link between node n and its neighbor nh from the
path D metric mD for n and select a node in the previous
neighborhood NH whose path D metric mprev

D matches this
difference (Algorithm 4, line 9). Because at least one solution
will be found, we do not need to build all the possible paths
(Algorithm 4, line 13). The second step ends as soon as we
hit the zero neighborhood NHs[0] (Algorithm 4, line 5).

3) Simple example of a NPP run: To illustrate how our
NPP algorithm works, consider an example network consisting
of 4 nodes X , Y , A and B (Figure 10(a)). Each link has

Algorithm 4: Perform Backward Pass
/

*

Input list of neighborhoods NHs does not

contain the last NH
*

/

Input: Y := dest, NHs - list of the sets of nodes, BW := bandwidth
constraint

Output: The shortest path between X and Y which satisfies BW and
D

1 begin
/

*

Place Y in the path
*

/

2 path � Y
3 k � 1

/

*

take previous neighborhood NH for Y
*

/

4 NH � NHs[size� k]
5 while NH 6= NHs[0] do
6 Node n � path[1]
7 foreach Node nh 2 neighbors of n \NH do
8 mprev

D

(nh) = m
D

(n)� w
D

(nh, n)
9 if link between n and nh satisfies BW and

mprev

D

(nh) = m
D

(nh) then
10 path � neighbor [path
11 k � k + 1
12 NH � NHs[size� k]
13 break
14 end
15 end
16 end
17 end

(a) (b) (c)

Fig. 10. Illustrative example of a NPP run: (a) simple network configuration
with [bandwidth, delay] constraints for each link; (b) forward pass finds the
best length and the minimum delay to Y; (c) backward pass identifies the valid
path X, B, A, Y (shown with the ellipses and line annotation) by matching
the subtraction result (shown below neighborhoods) for each previous node
among the path.

two metrics: bandwidth BW and propagation delay D. Our
aim is to find a path from X to Y which satisfies two
constraints: BW � 5 and D  5. Figure 10(b) shows the
forward pass, where each neighborhood now contains pairs
of nodes and their minimum D metrics. During this step,
we exclude all invalid neighbors, i.e., those whose links do
not satisfy the BW constraint, as well as those violating the
D constraint. Note that during this step the same nodes may
appear in several neighborhoods and could be part of multiple
valid paths. Figure 10(c) illustrates the backward pass: in this
case, Y cannot appear in the second neighborhood due to the
violation of either the D constraint (through node A) or the
BW constraint (through node B). However, Y now appears in
the third neighborhood. Owing to the successful backward pass
subtraction, we find a solution with the minimum D metric for
this length. Finally, NPP returns X ! B ! A ! Y solution
which satisfies BW and D constraints.

10

VI. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Theater-Scale Evaluation
1) Experimental Setup: Our testbed setup consists of clients

connected to a wireless overlay network that represents a
standardly available campus enterprise network and a compute
manager VMware Horizon View c� connected over a higher-
speed campus research network managed with SDN. We
emulate a network made available in a disaster scenario in
which, these two networks can be used in parallel for public
safety purposes during disaster incident response. The campus
research network (with fiber connections between buildings to
support data-intensive science application traffic) becomes the
disaster overlay network, and the wireless overlay network
(typically used for enterprise traffic such as e-mail and web
browsing) can be used for QoS priorities to support disaster-
supporting cloud services. By pooling resources in disaster-
supporting cloud services, the 3C (collection, computation, and
consumption) steps can be employed more effectively with
our algorithms for first responders to gain visual situational
awareness to potentially save lives. Our wireless overlay
network has a bandwidth of ⇡10 Mbps upload/download
and our disaster overlay network has a bandwidth of ⇡600
Mbps upload/download. We have a virtual server setup with
6 virtual CPUs (12GHz) and 16 GB of memory. Our physical
server has 2 processors Intel Xeon Processor E5-2640 v2
with 8 cores each for a total of 16 cores. The clients have a
Windows 7 Enterprise 64 bits operating system installed and
the server uses Windows 2008R2 64 bits. Our clients are able
to stream data to the server by using cURL functionality that
is authenticated by the FTP server in the virtual server.

To obtain a 3D model for our location of interest, we use
a Leica C10 HDS LIDAR scanner. This scanner provides a
high-resolution point cloud of a scene and 2D images of the
scanned subject using a built-in camera. The output data from
the scanner also consists of files containing the internal and
external camera parameters for each image. We also capture
multiple video streams of people walking around the university
campus with HD video cameras. This video data needs to
be transferred in real-time to the server over the high-speed
campus research network to conduct visual data processing.

2) Design of Experiments: We perform tests on our uni-
versity campus after obtaining the LIDAR scan and several
HD videos. We separately evaluate the performance for the
three stages of our system shown in Figure 1, i.e. collection
and transferring the 3D scan and video files over the network,
computing the 2D-3D data fusion, and consumption by the
user to receive 3D scenes and multiple videos for virtual
navigation and video analysis. The goal is to obtain real-time
(or near real-time) responses for all of these tasks. We also
experiment with scaling up the amount of data transferred to
see how many videos we can handle and how large the 3D
model data can be, depending on the hardware used.

To simulate the collecting and transferring of any number
of real-time video streams, we first obtain several HD videos
on campus. These videos are stored on a laptop and a varying
number of duplicates are sent over the network simultaneously
to tax the system. Our goal is to observe what happens to the
system when we have either one or many videos available that
need to be viewed. Individual video frames are transferred
sequentially to mimic real-time video capture. The 2D-3D

registration and video motion analysis stages are performed
on the server. The final rendering of the 3D environment with
dynamic objects is transferred to a mobile device (e.g., laptop,
tablet, smart phone) in a remote location where it is viewed
and manipulated with a thin-client protocol.

For the final consumption stage, the large 3D model only
needs to be transferred over the network to the remote device
one time when it is first requested. If the user wishes to view
a different location, a new model will need to be sent to the
mobile device. The 3D data corresponding to dynamic objects
will need to be continuously computed on the server as new
video frames arrive, and also updated by sending to the user’s
device, therefore we test how long it takes to transfer data for
varying numbers of dynamic objects to the remote location.
Depending on how many people and vehicles are present in
the scene and captured on video, this number can change
drastically. Through a series of experiments, we find out how
many dynamic objects our system and networks can handle,
and thus informs a cloud/fog infrastructure design.

3) Study Results: We studied the collection, computation,
and consumption sections of our pipeline individually. All of
our tests were performed three times, and in this section we
report the averages of these tests as our final results.

Our collection transfer test consisted of streaming files to
the server from a client connected to the wireless overlay
network and from a client connected to the disaster overlay
network. We tested sending varying file sizes over the server
(52, 105, 210, and 316 MB) to account for situations where
low-resolution, black and white security camera footage may
be utilized compared to high definition video captured by
a smartphone or hand held camera. We experimented with
transferring between one and five videos simultaneously over
both the wireless overlay and disaster overlay networks. The
transfer times in seconds for these tests are shown in Figure 11.
The maximum number of videos we tested sending at once is
five because our server has six cores and cannot process more
than that number of videos at once. Sending more videos to
the server together will not improve our overall computation
time. Despite the fact that these are relatively small-scale tests,
we still get a good sense from the charts how communication
time will increase as the number of videos rises. These tests
also show that the disaster overlay network is able to transfer
data about 10 times faster than our wireless overlay network
and would be extremely beneficial in a disaster scenario where
timely information sharing is key.

For the computation stage of our system, we performed tests
on a virtual server. We modified the virtual CPU capacity with
2, 4, 8 and 12 GHz, testing the processing times in seconds for
videos containing 1-28 moving objects. Each dynamic object
in every video needs to be identified, segmented from the static
background, and modeled in 3D so we are interested in what
happens to our overall performance as more and more objects
are recorded. We stopped at 28 objects because this seems to
be a reasonable limit on the maximum number of people that
will be captured in a typical video camera’s field of view and
be able to be separately identified (without people overlapping
in the video) and modeled as individual objects in 3D. We
also tested the system’s performance when processing 1 to
4 videos simultaneously and looked at the CPU percentage
utilization. The video files used in this test are all 185 MB

11

1 2 3 4 5
0
30
60
90
120
150

Number of VideosTr
an

sf
er

Ti
m

e
in

Se
co

nd
s

Collection - Wireless Overlay Network

53 MB 105 MB 210 MB 316 MB

1 2 3 4 5
0
3
6
9
12
15

Number of VideosTr
an

sf
er

Ti
m

e
in

Se
co

nd
s

Collection - Disaster Overlay Network

53 MB 105 MB 210 MB 316 MB

Fig. 11. Collection stage transfer times for varying video sizes. Left: Transfer times for the wireless overlay network. Right: Transfer times for the disaster
overlay network.

1 7 14 21 28
300

400

500

600

Number of objects per video

Ti
m

e
in

Se
co

nd
s

Computation Time

12 GHz 8 GHz 4 GHz 2 GHz
1 2 3 4

0
20
40
60
80
100

Number of videos
%

Computation - CPU Utilization

2 GHz 4 GHz 8 GHz 12 GHz

Fig. 12. Performance during the computation stage. Left: Time required to compute 3D pose for increasing number of dynamic objects in videos on different
server configurations. Right: CPU utilization on server during computation stage for different configurations.

and have the same content. These results are all shown in
Figure 12. We observe here that the system becomes saturated
when processing four videos and can see what will happen as
more and more videos are added to the system. We gain the
greatest boost in performance when increasing from two to
four videos.

During the consumption stage, the clients need to download
the files containing 3D information for dynamic virtual objects
from the server. In the case that a client is connected to
the server via the wireless overlay network, this process is
time consuming compared with a virtual desktop accessed
from a thin client (hardware) or from Horizon View Client
(software). For both cases, Teradici PCoIP protocol c� was
used. A comparison of file transfer times in seconds between
a physical client connected to the wireless overlay network
and using a virtual deskop setup on a server connected to the
disaster overlay network is shown in Figure 13. We tested
transferring 3D data files for 377-3,496 individual moving
objects simultaneously to really tax the system and to find out
how much information can be processed in a timely manner
if the disaster site is very congested with people and cameras.
We can see that using the disaster overlay network, thousands
of moving objects can be transferred and displayed in a matter
of seconds, making this setup great for first responders needing
to sift through lots of information quickly.

B. Regional-Scale Evaluation

Herein, we first consider characterize the resultant impact
on the LOFT-Lite application compute offloading to the cloud
when using multiple video resolutions corresponding to dif-
ferent mobile devices and under disaster network degradation
conditions. Next, we show user QoE improvements in data

throughput and tracking time when using our URB implemen-
tation that utilizes SDN and divides the LOFT-Lite application
into small and large instance processing for cloud/fog compu-
tation, versus complete compute offloading to a core cloud
over best-effort IP networks.

1) Disaster Network Experiments Setup and Results: Mul-
tiple video resolutions in practice need to be processed because
the input source imagery in surveillance typically spans a wide
variety sensor technologies found in mobile devices. In our
experiments, we consider common resolutions in surveillance
video belonging to the broad categories of: (a) Full-resolution
WAMI (7800 x 10600) (see Figure 5), (b) Large-scale aerial
video (2560 x 1900), and (c) Ground surveillance video (640
x 480) (see Figure 14). To consider disaster network scenarios
systematically that impact data transfer, we assume a 4G-LTE
network configuration with an initial bandwidth of 100 Mbps
(best case) and apply a bandwidth degradation profile during
compute offloading test cases with different resolutions. For
experimental purposes, the profile degrades the bandwidth at a
rate of 20 Mbps per minute due to heavy cross-traffic load or
candidate network path failures till it falls to zero (i.e., worst
case disconnection scenario).

Our visual cloud computing setup for the disaster network
experiments includes two virtual machines (VMs) for the data
collection and computation sites, respectively each with a
single core CPU and 1GB of main memory in a GENI plat-
form testbed connected through an OpenFlow switch. Several
performance metrics such as estimated throughout, tracking
time, waiting time and total time are measured to characterize
Quality of Application (QoA) of LOFT-Lite application com-
putation as well as SCP (standard secure copy utility) data
movement under the bandwidth degradation profile.

Table III shows measurement results averaged over ten trials

12

377 847 1,748 3,496
0
10
20
30
40
50

Number of objects

Ti
m

e
in

Se
co

nd
s Consumption - Wireless Overlay Network

377 847 1,748 3,496
0

0.5
1

1.5
2

2.5

Number of objects

Ti
m

e
in

Se
co

nd
s Consumption - Disaster Overlay Network

Fig. 13. Transfer times for dynamic 3D objects captured in videos to be sent to remote device for viewing. Left: Transfer times for our wireless overlay
network. Right: Transfer times for our disaster overlay network.

(a) (b)

Fig. 14. LOFT-Lite results on (a) standard and (b) Full-Motion surveillance
video. Each frame in these video datasets is about 2MB compressed.

100 10050

h1

h3

s1

s3

s2 h2
congested link# of cores: 4

memory: 4 GB
HDD: 30GB

of cores: 1
memory: 1 GB
HDD: 30GB

of cores: 2
memory: 2 GB
HDD: 30GB

(a)

100 10050

h1

h3

s1

s3

s2 h2
congestion-free link

SDN
optimization

of cores: 4
memory: 4 GB
HDD: 30GB

of cores: 1
memory: 1 GB
HDD: 30GB

of cores: 2
memory: 2 GB
HDD: 30GB

(b)

main flow concurrent flow

Fig. 15. Data flows in the allocated GENI topology: (a) Standard video data
flow interferes with concurrent flow on the s2! s1 link as regular network
sends data through the best (the shortest) path; (b) Using SDN and the NPP
algorithm, we optimize network resources usage and redirect concurrent flow
through the longer path s2 ! s3 ! s1 which avoids congestion. Further,
moving image pre-processing to the fog (h2 instead of h1) enables real-time
tracking using LOFT-Lite.

with 95% confidence intervals. Our full-resolution WAMI and
large-scale aerial video processing pipelines are non real-
time and suffer relatively long wait times in comparison
with the lower resolution ground-based FMV pipeline that
runs in real-time. These results quantify system scalability
and the benefits of reducing video resolution under disaster
network conditions to support single target real-time tracking
for multiple instances of LOFT-Lite. Standard video resolution
results in the highest throughput over 3G/4G networks.

2) Cloud/Fog Computation Experiments Setup and Results:
Standard (VGA) video resolution was used for the cloud/fog
experiments to track pedestrians [12] in a crowd (see Fig-
ure 14(b)). An adaptive contrast enhancement global image

pre-processing operation is applied as needed in the cloud/fog
(using Imagemagick) before images are sent to the core cloud
for object tracking. All images are pyramidal tiled TIFF
(Tagged Image File Format) and the pre-processing retains
the tile geometry.

Our setup for the cloud/fog computation experiments in-
cludes six virtual machines (VMs) in the GENI platform
testbed as shown in Figure 15, where three of these VMs
emulate OpenFlow switches (s1, s2 and s3) and others are
regular hosts (h1, h2 and h3). Each host-to-switch link has 100
Mbps bandwidth, and each switch-to-switch link has only 50
Mbps bandwidth to emulate congested and damaged network
infrastructure in a disaster scenario. Our LOFT-Lite applica-
tion runs on h1 (quad-core CPU, 4GB of RAM and 30GB
of HDD) which acts as a computation cloud site, whereas h2
(double-core CPU, 2GB of RAM and 30GB of HDD) acts as
a collection fog site, and h3 (single-core CPU, 1GB of RAM
and 30GB of HDD) consumes raw data from h2 by acting as
a storage consumption fog site. Node h3 is configured with
cross-traffic flow consumption such that it interferes with the
main data traffic for the LOFT-Lite application. We call this
cross-traffic as the ‘concurrent flow’, and the application traffic
for LOFT-Lite as the ‘main flow’. Finally, the thin-client (local
PC) acts as a data consumer at the user end. LOFT-Lite runs
on a thread with a backoff timer which sleeps for a specified
delay while querying the local folder for the image stream. To
transfer data between hosts, we use the SCP utility.

To differentiate between the cloud/fog and the core cloud
computation, our experiment workflow is as follows: (i) start
sending concurrent traffic from h2 to h3; (ii) start sending
main traffic (video) from h2 to h1; (ii.a) while performing
cloud/fog computing, start pre-processing concurrently with
step (ii) (we assume here that pre-processing is faster than
data transfer); (iii) wait till at least the first frame has been
transferred; (iii.b) in case of core cloud computing, start pre-
processing before step (iv) (in this case LOFT-Lite has to wait
for each frame when its pre-processing ends); (iv) start LOFT-
Lite; (v) wait until all main traffic has been transferred; and
(vi) terminate both the applications and data transfers.

Table IV shows the final timing results averaged over ten
trials to estimate 95% confidence intervals for the cloud/fog
and core cloud computation cases. For each trial, we used
a 500 frame video sequence and measured several QoA
performance metrics such as estimated throughput, tracking
time, waiting time and total time. We can pre-process frames
faster in the core cloud computation case in comparison to
cloud/fog computation. Due to congestion in best-effort IP

13

TABLE III
QOA IMPACT FOR COMPUTE OFFLOADING OF MULTIPLE VIDEO RESOLUTIONS FOR A SYSTEMATIC NETWORK DEGRADATION PROFILE.

Performance Metrics Full-resolution WAMI Large-scale aerial video Ground-based standard video
(7800 x 10600) (2560 x 1900) (640 x 480)

(SCP QoA) Number of transferred frames 25.80± 0.26 180.9± 0.9 892± 9
(LOFT-Lite QoA) Estimated throughput (Mbps) 66.5± 0.9 76± 0.9 43.9± 0.4
(LOFT-Lite QoA) Tracking time (sec/fr) 0.4035± 0.005 0.368± 0.002 0.403± 0.004
(LOFT-Lite QoA) Waiting time (sec/fr) 9.03± 0.13 0.845± 0.014 0± 0
(LOFT-Lite QoA) Total time (sec/fr) 9.46± 0.13 1.214± 0.014 0.403± 0.004

TABLE IV
QOA IMPACT RESULTS COMPARISON FOR CORE CLOUD COMPUTING OVER IP NETWORK VERSUS UTILIZING SDN AND CLOUD/FOG COMPUTING BY

DIVIDING THE APPLICATION INTO SMALL AND LARGE INSTANCE PROCESSING.

Performance Metrics Core Cloud Computing Cloud/Fog Computing Perceived Benefits
over IP network utilizing SDN

(SCP QoA) Storage transfer time (sec/fr) 0.564± 0.007 0.402± 0.006 Avoiding congestion with SDN traffic steering
results in lower transfer time

(Imagemagick QoA) Pre-processing time (sec/fr) 0.1955± 0.0011 0.292± 0.023 No significant difference
(LOFT-Lite QoA) Estimated throughput (Mbps) 13.50± 0.34 41.85± 0.24 Lower transfer time and fog computation

maximizes application throughput
(LOFT-Lite QoA) Tracking time (sec/fr) 0.4097± 0.0022 0.4229± 0.0024 No significant difference
(LOFT-Lite QoA) Waiting time (sec/fr) 0.902± 0.032 0± 0 Achieving maximum application throughput avoids

waiting time and supports real-time computation
(LOFT-Lite QoA) Total time (sec/fr) 1.312± 0.034 0.4229± 0.0024 Cloud/fog computation of small and large instances

can produce 3X speedup over core cloud computation

network and the unavailability of video at the computation
cloud site, we cannot track with LOFT-Lite application in real-
time (with 0 waiting time) in the core cloud computation case.
Whereas in the cloud/fog computation utilizing SDN, LOFT-
Lite can be run in real time at 3� 4 Hz.

VII. CONCLUSIONS

In this paper, we have proposed a novel visual cloud
computing architecture for media-rich scalable data movement
and computation utilizing the benefits of SDN for collection,
computation and consumption (3C) in handling incidents due
to natural or man-made disasters. We have shown how our 3C
architecture and cloud resource provisioning and placement
algorithms (CPP and NPP) can be used in combination with
computer vision based applications to: (a) create 3D visualiza-
tions of disaster scenarios, and (b) track objects of interest for
automated scene understanding. Thus, our approach enables
situational awareness for emergency management and law
enforcement officials during disaster incidents. Our algorithm
novelty was to propose a parameterization of application
resource requirements in the form of small and large instance
visual processing, which enables optimization of fog and cloud
computation location selection utilizing SDN to connect the
network-edges in the fog with the cloud core. We developed a
realistic virtual testbed environment for experimentally validat-
ing that the proposed optimization tradeoffs between fog and
core cloud computing reduces latency and congestion while
increasing application responsiveness.

Our computer vision algorithms for disaster incident re-
sponse are not fundamentally different from visual analytics
algorithms for other applications such as autonomous systems.
Our work can be extended to use special variants of occlusion-
aware algorithms in disaster scene imagery with limited vis-
ibility due to smoke, fire, etc. obtained from smart devices
e.g., thermal cameras. Thus, our work lays the foundation for
adaptive resource management to handle incident-supporting
visual cloud computing that can foster effective disaster relief
co-ordination to save lives.

REFERENCES

[1] Openflow switch specification. https://www.opennetworking.org/
sdn-resources/openflow/57-sdn-resources/onf-specifications/openflow.

[2] H. Agrawal, C. Mathialagan, Y. Goyal, N. Chavali, P. Banik, A. Mo-
hapatra, A. Osman, and D. Batra. CloudCV: Large scale distributed
computer vision as a cloud service. arXiv:1506.04130, 2015.

[3] H. Aliakbarpour, K. Palaniappan, and G. Seetharaman. Robust camera
pose refinement and rapid SfM for multiview aerial imagery Without
RANSAC. IEEE Geoscience and Remote Sensing Letters (GRSL), pages
2203–2207, 2015.

[4] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar. Geni: A federated testbed for innovative
network experiments. Computer Networks, pages 5–23, 2014.

[5] E. Blasch, P. Deignan, S. Dockstader, M. Pellechia, K. Palaniappan,
and G. Seetharaman. Contemporary concerns in geographical/geospatial
information systems (GIS) processing. IEEE National Aerospace and
Electronics Conference (NAECON), pages 183–190, 2011.

[6] P. Calyam, A. Berryman, A Lai, and M. Honigford. VMLab: Infras-
tructure to Support Desktop Virtualization Experiments for Research and
Education. VMware Technical Journal, pages 2–8, 2012.

[7] P. Calyam, A. Berryman, E. Saule, H. Subramoni, P. Schopis,
G. Springer, U. Catalyurek, and D. Panda. Wide-area overlay networking
to manage science dmz accelerated flows. International Conference on
Computing, Networking and Communications (ICNC), 2014.

[8] P. Calyam, S. Rajagopalan, A. Selvadhurai, S. Mohan, A. Venkataraman,
A. Berryman, and R. Ramnath. Leveraging OpenFlow for resource
placement of virtual desktop cloud applications. IEEE Symposium on
Integrated Network Management (IM), pages 311–319, 2013.

[9] E. Chemeritskiy and R. Smeliansky. On QoS management in SDN by
multipath routing. Conference on Science and Technology (MoNeTeC),
pages 1–6, 2014.

[10] E. Chissungo, H. Le, and E. Blake. An electronic health application
for disaster recovery. Symposium on Information and Communication
Technology (SoICT), pages 134–138, 2010.

[11] H. Egilmez and A. Tekalp. Distributed QoS architectures for multimedia
streaming over software defined networks. IEEE Transactions on
Multimedia (MM), pages 1597–1609, 2014.

[12] A. Ellis, A. Shahrokni, and J. Ferryman. Pets2009 and winter-pets 2009
results: A combined evaluation. In IEEE Workshop on Performance
Evaluation of Tracking and Surveillance (PETS-Winter), pages 1–8,
2009.

[13] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM (CACM), pages 381–395,
1981.

[14] B. Giang, P. Calyam, B. Morago, R. Antequera, T. Nguyen, and Y. Duan.
LiDAR-based virtual environment study for disaster response scenarios.
IEEE Symposium on Integrated Network Management (IM), pages 790–
793, 2015.

14

[15] K. Govindarajan, K. Meng, H. Ong, M. Wong, S. Sivanand, and
S. Leong. Realizing the quality of service (QoS) in software-defined
networking (SDN) based cloud infrastructure. Conference on Informa-
tion and Communication Technology (ICoICT), pages 505–510, 2014.

[16] W. Guan, S. You, and G. Pang. Estimation of camera pose with respect
to terrestrial LiDAR data. IEEE Workshop on Applications of Computer
Vision (WACV), pages 391–398, 2013.

[17] A. Hafiane, K. Palaniappan, and G. Seetharaman. UAV-Video registra-
tion using block-based features. In IEEE International Symposium on
Geoscience and Remote Sensing (IGARSS), pages 1104–1107, 2008.

[18] A. Hafiane, G. Seetharaman, K. Palaniappan, and B. Zavidovique. Ro-
tationally invariant hashing of median patterns for texture classification.
Lecture Notes in Computer Science (LNCS), pages 619–629, 2008.

[19] A. Haridas, R. Pelapur, J. Fraser, F. Bunyak, and K. Palaniappan.
Visualization of automated and manual trajectories in wide-area motion
imagery. IEEE Conference on Information Visualization (IV), pages
288–293, 2011.

[20] R. Hartley and A. Zisserman. Multiple View Geometry. Cambridge
University Press, 2010.

[21] A. Herrera. NVIDIA GRID: Graphics accelerated VDI with the visual
performance of a workstation. NVIDIA Corp, 2014.

[22] A. Hossain. Framework for a cloud-based multimedia surveillance
system. International Journal of Distributed Sensor Networks, 2014.

[23] Z. Jiang, D. Chan, M. Prabhu, P. Natarajan, H. Hao, and F. Bonomi.
Improving web sites performance using edge servers in fog computing
architecture. IEEE Symposium on Service Oriented System Engineering
(SOSE), pages 320–323, 2013.

[24] J. Klontz and A. Jain. A case study of automated face recognition: The
Boston marathon bombings suspects. IEEE Computer, pages 91–94,
2013.

[25] T. Korkmaz and M. Krunz. Multi-constrained optimal path selection.
IEEE Conference on Computer Communications (INFOCOM), 2001.

[26] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Čehovin, G. Nebe-
hay, T. Vojı́ř, G. Fernandez, A. Lukež, A. Dimitriev, et al. The visual
object tracking VOT2014 challenge results. IEEE European Conference
on Computer Vision Workshops (ECCVW), pages 191–217, 2014.

[27] S. Kumar, R. Rathy, and D. Pandey. Design of an ad-hoc network model
for disaster recovery scenario using various routing protocols. ACM
Conference on Advances in Computing, Communication and Control
(ICAC3), pages 100–105, 2009.

[28] M. Kwan and D. Ransberger. LiDAR assisted emergency response:
Detection of transport network obstructions caused by major disasters.
Computers, Environment and Urban Systems, pages 179–188, 2010.

[29] B. Liu, Y. Chen, R. Blasch, K. Pham, D. Shen, and G. Chen. A holistic
cloud-enabled robotics system for real-time video tracking application.
Lecture Notes in Electrical Engineering, pages 455–468, 2014.

[30] B. Liu, Y. Chen, A. Hadiks, E. Blasch, A. Aved, D. Shen, and G. Chen.
Information fusion in a cloud computing era: a systems-level perspective.
IEEE Aerospace and Electronic Systems Magazine (AES-M), pages 16–
24, 2014.

[31] Y. Ma, S. Soatta, J. Kosecka, and S. Sastry. An Invitation to 3-D Vision.
Springer, 2004.

[32] A. Mastin, J. Kepner, and J. Fisher. Automatic registration of LiDAR
and optical images of urban scenes. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2639–2646, 2009.

[33] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation
in campus networks. ACM Computer Communication Review (CCR),
pages 69–74, 2008.

[34] A. Mohammad. and H. Eui-Nam. Fog Computing micro datacenter
based dynamic resource estimation and pricing model for IoT. IEEE
Conference on Advanced Information Networking and Applications
(AINA), pages 687–694, March 2015.

[35] B. Morago, G. Bui, and Y. Duan. Integrating LiDAR range scans and
photographs with temporal changes. IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 732–737,
2014.

[36] B. Morago, G. Bui, and Y. Duan. An ensemble approach to image
matching using contextual features. IEEE Transactions on Image
Processing (TIP), 2015.

[37] K. Nahrstedt and S. Chen. Coexistence of QoS and best-effort flows.
Multimedia Communications, pages 175–188, 1999.

[38] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli,
A. Haridas, J. Fraser, R. Rao, and G. Seetharaman. Efficient feature
extraction and likelihood fusion for vehicle tracking in low frame rate
airborne video. IEEE Conference on Information Fusion (FUSION),
pages 1–8, 2010.

[39] K. Palaniappan, R. Rao, and G. Seetharaman. Wide-area persistent
airborne video: Architecture and challenges. Distributed Video Sensor
Networks, pages 349–371, 2011.

[40] G. Pandey, J. McBride, S. Savarese, and R. Eustice. Automatic targetless
extrinsic calibration of a 3D LiDAR and camera by maximizing mutual
information. AAAI Conference on Artifical Intelligence, pages 2053–
2059, 2012.

[41] R. Pelapur, S. Candemir, F. Bunyak, M. Poostchi, G. Seetharaman,
and K. Palaniappan. Persistent target tracking using likelihood fusion
in wide-area and full motion video sequences. IEEE Conference on
Information Fusion (FUSION), pages 2420–2427, 2012.

[42] R. Pelapur, K. Palaniappan, and G. Seetharaman. Robust orientation and
appearance adaptation for wide-area large format video object tracking.
IEEE Conference on Advanced Video and Signal based Surveillance
(AVSS), pages 337–342, 2012.

[43] N. Ray and A. Turuk. A framework for disaster management using wire-
less ad hoc networks. ACM Conference on Communication, Computing
and Security (CCS), pages 138–141, 2011.

[44] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of large
number of targets in wide area surveillance. IEEE European Conference
on Computer Vision (ECCV), pages 186–199, 2010.

[45] N. Schurr, J. Marecki, M. Tambe, P. Scerri, N. Kasinadhuni, and
J. P. Lewis. The future of disaster response: Humans working with
multiagent teams using DEFACTO. AAAI Symposium: AI Technologies
for Homeland Security, pages 9–16, 2005.

[46] S. Seetharam, P. Calyam, and T. Beyene. ADON: Application-driven
overlay network-as-a-service for data-intensive science. IEEE Confer-
ence on Cloud Networking (CloudNet), pages 313–319, 2014.

[47] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah. Visual tracking: An experimental survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), pages 1442–1468,
2014.

[48] I. Stamos, L. Liu, C. Chen, G. Wolberg, G. Yu, and S. Zokai. Inte-
grating automated range registration with multiview geometry for the
photorealistic modeling of large-scale scenes. International Journal of
Computer Vision (IJCV), pages 237–260, 2008.

[49] C. Stauffer and W. Grimson. Adaptive background mixture models for
real-time tracking. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 246–253, 1999.

[50] I. Stojmenovic and W. Sheng. The Fog computing paradigm: Scenarios
and security issues. IEEE Conference on Computer Science and
Information Systems (FedCSIS), pages 1–8, 2014.

[51] N. Truong, L. Gyu, and Y. Ghamri-Doudane. Software defined
networking-based vehicular adhoc network with Fog computing. IEEE
Symposium on Integrated Network Management (IM), pages 1202–1207,
2015.

[52] Y. Tsung-Feng, K. Wang, and Y. Hsu. Adaptive routing for video
streaming with QoS support over SDN networks. Conference on
Information Networking (ICOIN), pages 318–323, 2015.

[53] R. Vázquez-Martı́n, P. Núñez, A. Bandera, and F. Sandoval. Curvature-
based environment description for robot navigation using laser range
sensors. Sensors, pages 5894–5918, 2009.

[54] Q. Wang and S. You. A vision-based 2D-3D registration system. IEEE
Workshop on Applications of Computer Vision (WACV), pages 1–8, 2009.

[55] Y. Wen, X. Zhu, J. Rodrigues, and C. Chen. Cloud mobile media:
reflections and outlook. IEEE Transactions on Multimedia, pages 885–
902, 2014.

[56] U. Witkowski, E. Habbal, M. A. Mostafa, S. Herbrechtsmeier, A. Tanoto,
J. Penders, L. Alboul, and V. Gazi. Ad-hoc network communication in-
frastructure for multi-robot systems in disaster scenarios. EURON Work-
shop on Robotics for Risky Interventions and Environmental Surveillance
(RISE), 2008.

[57] G. Yang, J. Becker, and C. Stewart. Estimating the location of a camera
with respect to a 3D model. IEEE Conference on 3-D Digital Imaging
and Modeling (3DIM), pages 159–166, 2007.

[58] L. Zhou and H. Wang. Toward blind scheduling in mobile media cloud:
Fairness, simplicity, and asymptotic optimality. IEEE Transactions on
Multimedia, pages 735–746, 2013.

[59] W. Zhu, C. Luo, J. Wang, and S. Li. Multimedia cloud computing. IEEE
Signal Processing Magazine, pages 59–69, 2011.

15

Rasha Gargees received her MS degree in Com-
puter Science from University of Mosul, Iraq in
2011. She is currently pursuing her PhD degree
in Computer Science at University of Missouri-
Columbia. Her current research interests include
computer networking, distributed and cloud comput-
ing, and big data.

Brittany Morago received a BS degree in Digital
Arts and Sciences from the University of Florida
in 2010 and her PhD in Computer Science at the
University of Missouri-Columbia in 2016. She is
currently an Assistant Professor in the Department
of Computer Science at the University of North
Carolina-Wilmington. Her research interests include
computer vision and graphics. She is a recipient of
NSFGRF and GAANN Fellowships.

Rengarajan Pelapur received his BS degree in
Computer Engineering from University of Pune,
India in 2010. He is currently a PhD student in
the Department of Computer Science at University
of Missouri-Columbia. His current research interests
include appearance-based target tracking in imagery,
biomedical image analysis, and multiscale theory.

Dmitrii Chemodanov received his MS degree from
the Department of Computer Science at Samara
State Aerospace University, Russia in 2014. He is
currently a PhD student in the Department of Com-
puter Science at University of Missouri-Columbia.
His current research interests include distributed and
cloud computing, network and service management,
and peer-to-peer networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Assistant
Professor in the Department of Computer Science
at University of Missouri-Columbia. His current
research interests include distributed and cloud com-
puting, computer networking, and cyber security. He
is a Senior Member of IEEE.

Zakariya Oraibi received his BS and MS degrees
from the University of Basrah, Iraq in 2007 and
2010, respectively. He is currently pursuing his PhD
degree in Computer Science at the University of
Missouri-Columbia, and is a recipient of HCED
scholarship. His research interests include image
processing and machine learning.

Ye Duan received his BA degree in Mathematics
from Peking University in 1991. He received his MS
degree in Mathematics from Utah State University
in 1996. He received his MS and PhD degree in
Computer Science from the State University of New
York at Stony Brook in 1998 and 2003. He is cur-
rently an Associate Professor of Computer Science
at University of Missouri-Columbia. His research in-
terests include computer graphics and visualization,
biomedical imaging and computer vision.

Guna Seetharaman received the PhD degree in
electrical and computer engineering from the Uni-
versity of Miami, in 1988. He served as a Principal
Engineer for Computer Vision and Video Exploita-
tion with the Information Directorate, Air Force
Research Laboratory, Rome, NY. He served as an
Associate Professor of Computer Science and Engi-
neering with the Air Force Institute of Technology
(AFIT) (2003?2008) and the University of Louisiana
at Lafayette (1988?2003). He is currently a Senior
Scientist with the Senior Executive Service for ad-

vanced computing concepts and the Chief Scientist for computational sciences
with the Information Technology Division, Systems Directorate, U.S. Naval
Research Laboratory, DC. His research interests include high performance
computing for video exploitation, such as computer vision, machine learn-
ing, content-based image retrieval, persistent surveillance, and computational
science and engineering. He guest edited the IEEE Computer Special Issue
(2006) on Unmanned Intelligent Autonomous Vehicles and the Special Issue
of the EURASIP Journal on Embedded Computing on Intelligent Vehicles.
He was the General Chair of the IEEE Workshop on Computer Architecture
for Machine Perception (2003), and the Co-Chair of the Technical Program
Committee of the IEEE AIPR (2014). He served as the Section Chair of
the IEEE Mohawk Valley Section, NY, in 2013 and 2014. He serves as
an Associate Editor of the journal ACM Computing Surveys. He has been
recognized as the Fellow of the IEEE as of January 2015.

Kannappan Palaniappan received his PhD from
the University of Illinois at Urbana-Champaign, and
MS and BS degrees in Systems Design Engineering
from the University of Waterloo, Canada. He is a
faculty member in Computer Science at the Univer-
sity of Missouri where he directs the Computational
Imaging and VisAnalysis Lab and helped establish
the NASA Center of Excellence in Remote Sensing.
At NASA Goddard Space Flight Center he co-
invented the Interactive Image SpreadSheet for visu-
alizing large multispectral imagery and deformable

cloud motion analysis. His research is at the synergistic intersection of
image and video big data, computer vision, high performance computing and
artificial intelligence to understand, quantify and model physical processes
with applications to biomedical, space and defense imaging. Recent multi-
disciplinary contributions range across orders of scale from sub-cellular mi-
croscopy at the molecular level to aerial and satellite remote sensing imaging
at the macro level. In 2014 his team won first place at the IEEE Computer
Vision and Pattern Recognition Change Detection Workshop video analytics
challenge. He has received several notable awards including the William T.
Kemper Fellowship for Teaching Excellence at the University of Missouri,
ASEE Air Force and Boeing Welliver Summer Faculty Fellowships, the
NASA Public Service Medal for pioneering contributions in data science for
understanding petabyte-sized archives, and the first US National Academies
Jefferson Science Fellowship from the state of Missouri. He is a member of
the Editorial Board of the IEEE Transactions on Image Processing. He is a
Senior Member of IEEE.

