CS 4001 / 7001, Cyber Defense

Instructor: Dr. Prasad Calyam (calyamp@missouri.edu)

Lectures: Two 75-minute lecture sessions and one 2-hour lab/homework every week

Course Description: Cyber attacks are occurring at unprecedented levels on both legacy and state-of-the-art systems that are vital to our society for media, finance, manufacturing, healthcare and energy. Given that attacks are occurring in unexpected ways at different scales, the problem of cyber defense has become a critical area that uses synergies between various cyber tools, techniques and technologies. The course topics will familiarize students with intrusion detection systems; application and network attacks; security architectures; design principles; compliance standards; risk assessment and management; policy management; authentication and access control; and moving target defense. The course also will provide hands-on skills to apply cyber defense at the application and network levels. Course students will conduct experiments on the “Mizzou Cyber Range” relating to attack detection, resource adaptation as well as human/behavioral aspects. Finally, students will collaboratively survey research literature, real-world case studies and latest trends in data science, artificial intelligence, and human-centered design that are shaping next-generation cyber defense services in enterprise systems and critical infrastructures.

Prerequisite: CS 3330 or Instructor Consent

Course Topics: This course will explore the cyber security principles that will provide understanding of sophisticated cyber attacks and their defense with the related analytics, architectures, design and standards of enterprise systems and critical infrastructures (e.g., media, finance, manufacturing, healthcare and energy). Topics include:

- Network Analysis
 - Network and application layers, Packet sniffing and spoofing
 - Intrusion detection systems
 - Legal and ethical issues

- Application and Network Attacks
 - Attacks on the TCP protocol
 - Denial-of-Service attack
 - Cross-side scripting attack, SQL injection attack
 - Miscellaneous: Heartbleed bug and attack, Ransomware, Cryptojacking

- Cybersecurity Analytics
 - Security architectures
 - Anomaly detection, Threat intelligence collection
 - Penetration testing, Risk assessment and management

- Defense Architectures and Design
 - Security and privacy policies
 - Firewalls, DNS and attacks
 - Authentication, Access controls
 - Moving target defense
 - Federated trust, IoT/Cloud middleware
Homeworks, Labs and Team Presentations:

There will be 4 Homeworks, 6 Labs and 2 Team Presentations assigned during the course.

Homework assignments will be assigned to deepen understanding of concepts and will require students to read a major portion of the textbook chapters 1, 2, 3, 4, 7, 15 and 16. As part of each assignment, students will need to submit answers for select questions at the end of each chapter in the textbook. Students will perform homeworks individually. The solutions to all homework assignments will be discussed in class.

Lab exercises will be assigned to develop students’ skills and understanding for working with distributed system and related software environments. There will be 3 lab sessions that will focus on the “Mizzou Cyber Range” hands-on laboratory exercises and 3 other lab sessions that will focus on textbook laboratory exercises. Step-by-step instructions will be provided for each lab to access and use the content, and a set of questions will need to be answered as part of the lab reports, which will demonstrate good understanding of the concepts being explored in the lab steps. Students will perform labs individually. Each Graduate Student will be additionally required to complete one additional project/lab exercise of their choice from a list of advanced lab exercises that will be provided.

To develop students’ ability to understand and communicate content on special topics and improve group discussion skills, Graduate/Undergraduate Student Team Presentations will be assigned. This will require literature review from state-of-the-art research publications (using e.g., Google Scholar) and state-of-the-practice online publications (referring to e.g., Cyber Defense Magazine). Each presentation team will be required to submit a written report with in-depth information about a topic, and also complete an oral presentation in class.

Grading:

<table>
<thead>
<tr>
<th>ASSIGNMENTS</th>
<th>CS 4001</th>
<th>CS 7001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Lab Sessions</td>
<td>25%</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Class Attendance</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Grading Scale:

Passing grades (A/B/C) ≥ 65%; +/- grades (A+, A-, B+, B-, C+, C-)

- CS 4001 (Undergraduate):
 - A+ (97-100), A (93-96), A- (89-92)
 - B+ (85-88), B (81-84), B- (77-80)
- C+ (73-76), C (69-72), C- (65-68)
- D+ (60-64), D (55-59)
- F (< 55)

- CS 7001 (Graduate):
 - A+ (97-100), A (93-96), A- (89-92)
 - B+ (85-88), B (81-84), B- (77-80)
 - C+ (73-76), C (69-72), C- (65-68)
 - F (< 65)

Academic Dishonesty: Academic integrity is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person’s work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest whether or not the effort is successful. The academic community regards breaches of the academic integrity rules as extremely serious matters. Sanctions for such a breach may include academic sanctions from the instructor, including failing the course for any violation, to disciplinary sanctions ranging from probation to expulsion. When in doubt about plagiarism, paraphrasing, quoting, collaboration, or any other form of cheating, consult the course instructor. Any student found to have cheated during an exam will be given a 0 grade for that exam and the evidence will be sent to the Provost’s Office. Students submitting the same or similar solutions to homework or programming assignments will be given a 0 for the assignment and the evidence will be sent to the Provost's Office for determination of possible disciplinary action. Unless an assignment is specifically structured as a group project, duplicate homework written in collaboration with others is not acceptable. Although it is permissible to discuss the homework with others, these discussions should be of a general nature. All work at a detailed level must be done on your own. Students submitting the same or similar solutions to the homework will be considered as having cheated. No statements or actions made by anyone can alter this policy.

ADA statement: If you need accommodations because of a disability, if you have emergency medical information to share with me, or if you need special arrangements in case the building must be evacuated, please inform me immediately. Please see me privately after class, or at my office. To request academic accommodations (for example, a notetaker), students must also register with the Office of Disability Services, (http://disabilityservices.missouri.edu), S5 Memorial Union, 882-4696. It is the campus office responsible for reviewing documentation provided by students requesting academic accommodations, and for accommodations planning in cooperation with students and instructors, as needed and consistent with course requirements. For other MU resources for students with disabilities, click on “Disability Resources” on the MU homepage.

Intellectual Pluralism: The University community welcomes intellectual diversity and respects student rights. Students who have questions or concerns regarding the atmosphere in this class (including respect for diverse opinions) may contact the Departmental Chair or Divisional Director; the Director of the Office of Students Rights and Responsibilities (http://osrr.missouri.edu/) or the MU Equity Office (equity@missouri.edu; http://equity.missouri.edu/). All students will have the opportunity to submit an anonymous evaluation of the instructor(s) at the end of the course.